Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, (C12H11BrN)[Ni(C3S5)2], the NiIII atom is coplanar with the four S atoms of two 2-thio­xo-1,3-di­thiole-4,5-di­thiol­ate ligands. There are some weak S...S and Ni...Ni interactions between adjacent layers, resulting in a three-dimensional supramolecular network structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802020342/ob6187sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802020342/ob6187Isup2.hkl
Contains datablock I

CCDC reference: 202287

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.048
  • wR factor = 0.079
  • Data-to-parameter ratio = 16.5

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

A great deal of work has been reported on the synthesis and characterization of different types of bis-dithiolate metal complexes (dmit2− is 2-thioxo-1,3-dithiole-4,5-dithiolate). The studies on these bis-dithiolate metal compounds have been extended to other properties and utilization, such as conducting Langmuir–Blodgett films, unconventional magnetic properties, and non-linear optics (NLO). Recent tentative research works on the interplay of conducting, magnetic and NLO properties in such compounds are reported (Patrick, 1999).

In order to study the properties of interplay of magnetic, the title compound, (I), was synthesized. The crystal structure shows that the coordination around the NiIII atom is approximately planar [the Ni—S bond lengths range from 2.1504 (11) to 2.1707 (12) Å]. Two phenyl rings of different anions are parallel, while the pyridine ring is parallel with the Ni(dmit)2 plane.

There are two poles in the structure (Fig. 1). One is composited by Ni(dmit)2 anions, the other is composited by pyridine cations. Some non-classical hydrogen bonds (C—H···S) are found (Table 2). They range from 3.557 (5) to 3.773 (5) Å. The anions composite double deck layers. In these layers, there are some weak S···S and Ni···Ni interactions between layers and weak S···S interactions between different ions in the same layer (Fig. 2). All the S···S, Ni···Ni and non-classical hydrogen bonds extend the molecules into a three-dimensional supramolecular network structure.

Experimental top

A solution of NaOMe dissolved in methanol was added to a methanol solution of 4,5-bis(benzoylthio)-1,3-dithiol-2-thione, i.e. dmit(COPh)2. After stirring, a solution of NiCl2·6H2O was added. After further stirring, the solution of bromobenzylpyridine chloride was added. After further stirring, the black dedimentations were leached and dissolved in acetone. As the solvent slowly evaporated, well formed crystals of (I) appeared.

Refinement top

The positions of all the H atoms were fixed geometrically and distances to H atoms were set by the refinement program.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. View of (I) (50% probability ellipsoids).
[Figure 2] Fig. 2. A view of packing form in the crystal for (I).
N-(4-Br-benzyl)-pyridinium with 2-thioxo-1,3-dithiole-4,5-dithiolato Nickel(III) top
Crystal data top
(C12H11BrN)[Ni(C3S5)2]F(000) = 1396
Mr = 700.57Dx = 1.863 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1002 reflections
a = 6.275 (1) Åθ = 2.3–17.8°
b = 17.438 (3) ŵ = 3.22 mm1
c = 22.839 (3) ÅT = 293 K
β = 91.87 (1)°Block, black
V = 2497.8 (7) Å30.3 × 0.2 × 0.2 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4626 independent reflections
Radiation source: sealed tube2953 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ϕ and ω scansθmax = 25.5°, θmin = 2.1°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1990)
h = 77
Tmin = 0.465, Tmax = 0.523k = 021
12855 measured reflectionsl = 027
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0292P)2 + 0.113P]
where P = (Fo2 + 2Fc2)/3
4626 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
(C12H11BrN)[Ni(C3S5)2]V = 2497.8 (7) Å3
Mr = 700.57Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.275 (1) ŵ = 3.22 mm1
b = 17.438 (3) ÅT = 293 K
c = 22.839 (3) Å0.3 × 0.2 × 0.2 mm
β = 91.87 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4626 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1990)
2953 reflections with I > 2σ(I)
Tmin = 0.465, Tmax = 0.523Rint = 0.043
12855 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.00Δρmax = 0.45 e Å3
4626 reflectionsΔρmin = 0.29 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. The structure was solved by direct methods (Bruker, 2000) and successive difference Fourier syntheses. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.06523 (7)0.41992 (3)0.04340 (2)0.03926 (15)
S10.21937 (15)0.37931 (6)0.03447 (5)0.0456 (3)
S20.05447 (17)0.27371 (7)0.13195 (5)0.0550 (3)
S30.2717 (2)0.16967 (8)0.18707 (5)0.0713 (4)
S40.35241 (16)0.25612 (7)0.07926 (5)0.0505 (3)
S50.22608 (16)0.35982 (7)0.02180 (5)0.0520 (3)
S60.35215 (15)0.48273 (6)0.06706 (5)0.0438 (3)
S70.47233 (17)0.57412 (7)0.17654 (5)0.0552 (3)
S80.3850 (2)0.64015 (8)0.29276 (6)0.0760 (4)
S90.06417 (18)0.54654 (7)0.22677 (5)0.0567 (3)
S100.09431 (16)0.45571 (7)0.12154 (5)0.0497 (3)
C10.0235 (6)0.3238 (2)0.06698 (16)0.0400 (10)
C20.1925 (6)0.2303 (2)0.13574 (17)0.0468 (11)
C30.1699 (6)0.3153 (2)0.04158 (17)0.0418 (10)
C40.2936 (6)0.5200 (2)0.13376 (16)0.0397 (10)
C50.3105 (6)0.5889 (2)0.23520 (18)0.0491 (11)
C60.0998 (6)0.5072 (2)0.15745 (16)0.0410 (10)
C70.9015 (8)0.7612 (3)0.8442 (2)0.0666 (14)
H71.01480.79450.85180.080*
C80.8974 (8)0.7178 (3)0.7948 (2)0.0714 (14)
H81.00730.72250.76870.086*
C90.7367 (9)0.6677 (3)0.7827 (2)0.0719 (14)
H90.73580.63780.74900.086*
C100.5786 (8)0.6622 (3)0.8209 (2)0.0676 (14)
H100.46540.62890.81340.081*
C110.5844 (7)0.7059 (3)0.8708 (2)0.0639 (14)
H110.47670.70060.89750.077*
C120.7426 (8)0.8029 (3)0.9356 (2)0.0698 (14)
H12A0.78910.77110.96850.084*
H12B0.59770.81920.94250.084*
C130.8832 (8)0.8726 (3)0.9338 (2)0.0676 (14)
C141.0777 (8)0.8759 (3)0.9635 (2)0.0739 (15)
H141.12190.83520.98730.089*
C151.2048 (8)0.9382 (3)0.9581 (2)0.0760 (15)
H151.33460.94090.97880.091*
C161.1415 (8)0.9967 (3)0.9222 (2)0.0734 (15)
C170.9490 (8)0.9963 (3)0.8929 (2)0.0734 (15)
H170.90701.03740.86930.088*
C180.8177 (8)0.9335 (3)0.8990 (2)0.0711 (14)
H180.68500.93220.87970.085*
N10.7423 (6)0.7562 (2)0.88191 (17)0.0604 (10)
Br11.32793 (10)1.08044 (4)0.91032 (4)0.1280 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0331 (3)0.0429 (3)0.0418 (3)0.0027 (2)0.0011 (2)0.0031 (3)
S10.0362 (6)0.0524 (7)0.0486 (7)0.0095 (5)0.0055 (5)0.0075 (6)
S20.0497 (7)0.0665 (8)0.0493 (7)0.0109 (6)0.0072 (6)0.0152 (6)
S30.0845 (9)0.0773 (10)0.0517 (8)0.0282 (7)0.0026 (7)0.0149 (7)
S40.0424 (6)0.0550 (8)0.0538 (7)0.0120 (5)0.0026 (5)0.0059 (6)
S50.0366 (6)0.0653 (8)0.0546 (7)0.0112 (5)0.0080 (5)0.0144 (6)
S60.0358 (6)0.0478 (7)0.0480 (7)0.0062 (5)0.0028 (5)0.0059 (5)
S70.0473 (6)0.0595 (8)0.0585 (8)0.0079 (6)0.0036 (6)0.0135 (6)
S80.0724 (9)0.0846 (11)0.0699 (9)0.0032 (7)0.0121 (7)0.0338 (8)
S90.0519 (7)0.0708 (9)0.0477 (7)0.0024 (6)0.0049 (6)0.0142 (6)
S100.0365 (6)0.0644 (8)0.0486 (7)0.0076 (5)0.0057 (5)0.0101 (6)
C10.039 (2)0.041 (3)0.041 (2)0.0013 (19)0.0012 (19)0.001 (2)
C20.056 (3)0.047 (3)0.036 (2)0.008 (2)0.006 (2)0.003 (2)
C30.034 (2)0.045 (3)0.046 (3)0.0030 (19)0.0021 (19)0.003 (2)
C40.038 (2)0.043 (3)0.037 (2)0.0011 (19)0.0062 (18)0.005 (2)
C50.048 (2)0.048 (3)0.050 (3)0.012 (2)0.012 (2)0.007 (2)
C60.040 (2)0.043 (3)0.040 (2)0.0031 (19)0.0016 (19)0.000 (2)
C70.062 (3)0.071 (4)0.067 (4)0.007 (3)0.007 (3)0.009 (3)
C80.067 (3)0.077 (4)0.071 (4)0.003 (3)0.007 (3)0.005 (3)
C90.075 (4)0.067 (4)0.073 (4)0.005 (3)0.009 (3)0.007 (3)
C100.067 (4)0.059 (4)0.075 (4)0.006 (3)0.015 (3)0.016 (3)
C110.062 (3)0.059 (3)0.070 (4)0.008 (3)0.001 (3)0.019 (3)
C120.078 (3)0.066 (4)0.065 (4)0.005 (3)0.007 (3)0.007 (3)
C130.077 (4)0.060 (4)0.065 (4)0.002 (3)0.001 (3)0.005 (3)
C140.082 (4)0.065 (4)0.074 (4)0.002 (3)0.009 (3)0.009 (3)
C150.077 (4)0.068 (4)0.081 (4)0.002 (3)0.013 (3)0.003 (3)
C160.096 (4)0.070 (4)0.083 (4)0.003 (3)0.008 (3)0.004 (3)
C170.079 (4)0.059 (4)0.082 (4)0.000 (3)0.011 (3)0.011 (3)
C180.076 (4)0.060 (4)0.077 (4)0.001 (3)0.009 (3)0.005 (3)
N10.059 (3)0.060 (3)0.063 (3)0.007 (2)0.004 (2)0.012 (2)
Br10.0988 (5)0.0863 (5)0.1987 (8)0.0306 (4)0.0005 (5)0.0174 (5)
Geometric parameters (Å, º) top
Ni1—S52.1504 (11)C8—C91.356 (6)
Ni1—S62.1609 (11)C8—H80.9300
Ni1—S102.1664 (12)C9—C101.345 (6)
Ni1—S12.1707 (12)C9—H90.9300
S1—C11.715 (4)C10—C111.370 (6)
S2—C21.724 (4)C10—H100.9300
S2—C11.738 (4)C11—N11.342 (5)
S3—C21.644 (4)C11—H110.9300
S4—C21.720 (4)C12—N11.472 (5)
S4—C31.747 (4)C12—C131.503 (6)
S5—C31.690 (4)C12—H12A0.9700
S6—C41.707 (4)C12—H12B0.9700
S7—C51.727 (4)C13—C141.378 (6)
S7—C41.741 (4)C13—C181.380 (6)
S8—C51.645 (4)C14—C151.357 (6)
S9—C51.718 (4)C14—H140.9300
S9—C61.747 (4)C15—C161.359 (6)
S10—C61.702 (4)C15—H150.9300
C1—C31.370 (5)C16—C171.361 (6)
C4—C61.365 (5)C16—Br11.896 (5)
C7—N11.344 (5)C17—C181.380 (6)
C7—C81.358 (6)C17—H170.9300
C7—H70.9300C18—H180.9300
S5—Ni1—S6178.09 (5)C7—C8—H8119.3
S5—Ni1—S1085.25 (4)C10—C9—C8118.2 (5)
S6—Ni1—S1092.96 (4)C10—C9—H9120.9
S5—Ni1—S192.93 (4)C8—C9—H9120.9
S6—Ni1—S188.87 (4)C9—C10—C11120.0 (5)
S10—Ni1—S1177.60 (5)C9—C10—H10120.0
C1—S1—Ni1101.94 (13)C11—C10—H10120.0
C2—S2—C197.93 (19)N1—C11—C10121.4 (5)
C2—S4—C397.73 (18)N1—C11—H11119.3
C3—S5—Ni1102.76 (13)C10—C11—H11119.3
C4—S6—Ni1102.37 (13)N1—C12—C13114.1 (4)
C5—S7—C497.57 (19)N1—C12—H12A108.7
C5—S9—C697.41 (19)C13—C12—H12A108.7
C6—S10—Ni1101.90 (14)N1—C12—H12B108.7
C3—C1—S1120.6 (3)C13—C12—H12B108.7
C3—C1—S2115.6 (3)H12A—C12—H12B107.6
S1—C1—S2123.7 (2)C14—C13—C18119.6 (5)
S3—C2—S4122.2 (2)C14—C13—C12122.1 (5)
S3—C2—S2124.6 (2)C18—C13—C12118.3 (5)
S4—C2—S2113.2 (2)C15—C14—C13120.2 (5)
C1—C3—S5121.7 (3)C15—C14—H14119.9
C1—C3—S4115.5 (3)C13—C14—H14119.9
S5—C3—S4122.8 (2)C14—C15—C16119.7 (5)
C6—C4—S6120.8 (3)C14—C15—H15120.2
C6—C4—S7115.6 (3)C16—C15—H15120.2
S6—C4—S7123.6 (2)C15—C16—C17121.9 (5)
S8—C5—S9123.7 (3)C15—C16—Br1119.6 (4)
S8—C5—S7122.8 (2)C17—C16—Br1118.4 (4)
S9—C5—S7113.5 (2)C16—C17—C18118.6 (5)
C4—C6—S10121.9 (3)C16—C17—H17120.7
C4—C6—S9115.9 (3)C18—C17—H17120.7
S10—C6—S9122.2 (2)C17—C18—C13120.1 (5)
N1—C7—C8120.1 (5)C17—C18—H18120.0
N1—C7—H7119.9C13—C18—H18120.0
C8—C7—H7119.9C11—N1—C7118.7 (4)
C9—C8—C7121.5 (5)C11—N1—C12120.0 (4)
C9—C8—H8119.3C7—N1—C12121.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···S3i0.932.703.557 (5)154
C11—H11···S5ii0.932.683.570 (5)161
C17—H17···S3iii0.932.853.773 (5)170
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C12H11BrN)[Ni(C3S5)2]
Mr700.57
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.275 (1), 17.438 (3), 22.839 (3)
β (°) 91.87 (1)
V3)2497.8 (7)
Z4
Radiation typeMo Kα
µ (mm1)3.22
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1990)
Tmin, Tmax0.465, 0.523
No. of measured, independent and
observed [I > 2σ(I)] reflections
12855, 4626, 2953
Rint0.043
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.079, 1.00
No. of reflections4626
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.29

Computer programs: SMART (Bruker, 2000), SMART, SAINT (Bruker, 2000), SHELXTL (Bruker, 2000), SHELXTL.

Selected geometric parameters (Å, º) top
Ni1—S52.1504 (11)S5—C31.690 (4)
Ni1—S62.1609 (11)S6—C41.707 (4)
Ni1—S102.1664 (12)S7—C51.727 (4)
Ni1—S12.1707 (12)S7—C41.741 (4)
S1—C11.715 (4)S8—C51.645 (4)
S2—C21.724 (4)S9—C51.718 (4)
S2—C11.738 (4)S9—C61.747 (4)
S3—C21.644 (4)S10—C61.702 (4)
S4—C21.720 (4)C7—N11.344 (5)
S4—C31.747 (4)C16—Br11.896 (5)
S5—Ni1—S6178.09 (5)S5—Ni1—S192.93 (4)
S5—Ni1—S1085.25 (4)S6—Ni1—S188.87 (4)
S6—Ni1—S1092.96 (4)S10—Ni1—S1177.60 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···S3i0.932.703.557 (5)154
C11—H11···S5ii0.932.683.570 (5)161
C17—H17···S3iii0.932.853.773 (5)170
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds