Download citation
Download citation
link to html
The crystal structure of the title compound, [Mn(PhCOO)(phen)2(H2O)](ClO4)·dmf (PhCOO is benzoate, C7H5O2, phen is 1,10-phenanthroline, C12H8N2, and dmf is di­methyl­form­amide, C3H7NO), contains a monomeric [Mn(PhCOO)(phen)2(H2O)]+ cation, a perchlorate anion and a di­methyl­form­amide solvent mol­ecule. The Mn2+ ion is coordinated by four N atoms from two phenanthroline ligands [Mn—N = 2.261 (3)–2.303 (3) Å] and two O atoms from one aqua ligand [Mn—O = 2.156 (3) Å] and a benzoate ligand [Mn—O = 2.124 (3) Å], forming a distorted octahedral environment. Perchlorate and dmf are present outside the cation as anion and solvent mol­ecule, respectively. There is an O—H...O hydrogen-bonding interaction between one of the ligated water mol­ecules and the dmf mol­ecule.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802019979/ob6183sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802019979/ob6183Isup2.hkl
Contains datablock I

CCDC reference: 202274

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.060
  • wR factor = 0.153
  • Data-to-parameter ratio = 12.6

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
ABSTM_02 Alert C The ratio of expected to reported Tmax/Tmin(RR') is < 0.90 Tmin and Tmax reported: 0.700 0.916 Tmin' and Tmax expected: 0.827 0.916 RR' = 0.847 Please check that your absorption correction is appropriate. PLAT_731 Alert C Bond Calc 0.83(4), Rep 0.838(19) .... 2.11 su-Ratio O3 -H3D 1.555 1.555 PLAT_731 Alert C Bond Calc 0.84(5), Rep 0.85(2) .... 2.50 su-Ratio O3 -H3C 1.555 1.555 PLAT_735 Alert C D-H Calc 0.83(4), Rep 0.838(19) .... 2.11 su-Ratio O3 -H3D 1.555 1.555
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
4 Alert Level C = Please check

Comment top

One of the most important processes in nature occurs in the oxygen evolving complex (OEC) of photosystem II in green plants (Wieghardt, 1989). Manganese ions are the essential components in the active center of the PSII. The coordination sphere of the manganese is believed to be composed of O and N donors from available amino acid side chains (Wieghardt, 1989). In recent years, we have used phen and carboxylic acids to synthesize a series of manganese–phen–carboxylic acid complexes, of which there are some mononuclear complexes, such as {[Mn(phen)2(OAc)(H2O)]ClO4}2·H2O (Zhang, Huang et al., 2002) and [Mn(phen)2(ClCH2COO)(H2O)]ClO4 (Zhang, Chen et al., 2002). In this paper, we report the synthesis and crystal structure of a similar mononuclear manganese compound, viz. [Mn(PhCOO)(phen)2(H2O)]ClO4.dmf, (I).

The crystal structure of (I) consists of a discrete [Mn(PhCOO)(phen)2(H2O)]+ cation, a perchlorate anion and a dmf solvate molecule. As illustrated in Fig. 1, the MnII atom is located in a distorted octahedral environment, with three trans angles in the range 158.51 (12)–163.23 (11)°. It is coordinated by four N atoms from a pair of cis-related chelating phenanthroline ligands and two O atoms from a monodentate benzoate ligand [Mn—O1 = 2.124 (3) Å] and a water molecule [Mn—O3 = 2.156 (3) Å]. The best plane is formed by atoms O1, N1, N2 and N4, with the largest deviation from the mean plane being 0.176 Å, and the Mn atom is 0.0826 (13) Å out of this plane. The axial positions are occupied by the fourth phen N atom and a water O atom.

Each phenanthroline molecule forms a perfect plane, with mean deviations of 0.028 and 0.039 Å, and the planes are inclined at 76.45 (8)° with respect to one another. The Mn—N bond lengths are in the range 2.261 (3)–2.303 (3) Å, while the Mn—O bond lengths are 2.124 (3) and 2.156 (3) Å. It should be noted that the Mn—N bond lengths trans to benzoate and aqua O atoms are 2.303 (3) and 2.261 (3) Å, respectively, showing the stronger trans influence of benzoate over water. The phenanthroline ligands exhibit the usual acute N···N bite distances [N1···N2 2.7019 (13) Å and N3···N4 2.7092 (16) Å] and N—Mn—N angles [N1—Mn1—N2 72.40 (12)° and N3—Mn1—N4 73.32 (12)°]. These values are close to those observed in {[Mn(phen)2(OAc)(H2O)]ClO4}2·H2O (Zhang, Huang et al., 2002) and [Mn(phen)2(ClCH2COO)(H2O)]ClO4 (Zhang, Chen et al., 2002). In addition, a strong hydrogen-bonding interaction is observed between the ligated water molecule and the dmf solvate molecule (Table 2).

Experimental top

Mn(O2CPh)2·2H2O (0.63 g, 2 mmol) was added in the mixed solution of 2,5-pyridinedicarboxylic acid (0.33 g, 2 mmol) and KOH (0.23 g, 4 mmol) in 30 ml of CH3OH/H2O (v/v 1:2) and the resulting solution stirred for 30 min at room temperature. Then phenanthroline (0.40 g, 2 mmol) and NaClO4·H2O (0.28 g, 2 mmol) were added and the resulting solution was stirred at room temperature for 12 h. After filtration, the collected precipitate was dissolved in 15 ml of dmf/CH2Cl2 (v/v 1:1), the resulting filtrate was kept at room temperature for several weeks and yellow crystals of (I) were obtained.

Refinement top

H atoms bonded to carbon were placed at calculated positions, with isotropic displacement parameters, riding on their carrier atoms. Water H atoms were located from difference maps. The O—H bond lengths are 0.838 (19) and 0.85 (2) Å.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1994); data reduction: XPREP in SHELXTL (Siemens, 1994); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. View of the structure of (I), showing 30% probability displacement ellipsoids.
Aquabenzoatobis(1,10-phenanthroline-κ2N,N')manganese (II) perchlorate dimethylformamide solvate top
Crystal data top
[Mn(C7H5O2)(C12H8N2)2(H2O)](ClO4)·C3H7NOF(000) = 1500
Mr = 727.02Dx = 1.476 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.1787 (4) ÅCell parameters from 5235 reflections
b = 16.0320 (5) Åθ = 1.8–25.0°
c = 17.3628 (5) ŵ = 0.55 mm1
β = 105.223 (1)°T = 293 K
V = 3271.11 (18) Å3Block, yellow
Z = 40.34 × 0.28 × 0.16 mm
Data collection top
Siemens SMART CCD
diffractometer
5671 independent reflections
Radiation source: fine-focus sealed tube4440 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 1413
Tmin = 0.700, Tmax = 0.916k = 1817
9876 measured reflectionsl = 2010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0479P)2 + 5.0132P]
where P = (Fo2 + 2Fc2)/3
5671 reflections(Δ/σ)max = 0.001
450 parametersΔρmax = 0.34 e Å3
2 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Mn(C7H5O2)(C12H8N2)2(H2O)](ClO4)·C3H7NOV = 3271.11 (18) Å3
Mr = 727.02Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.1787 (4) ŵ = 0.55 mm1
b = 16.0320 (5) ÅT = 293 K
c = 17.3628 (5) Å0.34 × 0.28 × 0.16 mm
β = 105.223 (1)°
Data collection top
Siemens SMART CCD
diffractometer
5671 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
4440 reflections with I > 2σ(I)
Tmin = 0.700, Tmax = 0.916Rint = 0.030
9876 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0612 restraints
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 1.13Δρmax = 0.34 e Å3
5671 reflectionsΔρmin = 0.43 e Å3
450 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn0.96327 (5)0.77488 (3)0.17492 (3)0.04156 (18)
Cl0.50925 (11)0.34733 (8)0.58597 (7)0.0712 (3)
O10.8408 (2)0.67976 (16)0.17162 (17)0.0523 (7)
O20.9287 (3)0.5625 (2)0.1542 (2)0.0795 (10)
O31.0871 (3)0.6760 (2)0.1896 (2)0.0593 (8)
H3D1.144 (3)0.673 (3)0.172 (3)0.070 (15)*
H3C1.040 (4)0.637 (3)0.175 (4)0.11 (2)*
O40.4728 (4)0.2635 (3)0.5670 (3)0.1173 (16)
O50.6263 (4)0.3496 (4)0.5947 (3)0.148 (2)
O60.4499 (5)0.3975 (3)0.5249 (3)0.1333 (19)
O70.4848 (4)0.3739 (3)0.6585 (2)0.1053 (14)
O80.7226 (3)0.1873 (2)0.3603 (2)0.0768 (10)
N10.9020 (3)0.7959 (2)0.04104 (18)0.0484 (8)
N21.0871 (3)0.8671 (2)0.1400 (2)0.0508 (8)
N30.8408 (3)0.87014 (19)0.20083 (19)0.0450 (7)
N41.0261 (3)0.8067 (2)0.30689 (18)0.0459 (8)
N50.5679 (3)0.2701 (3)0.3219 (2)0.0667 (10)
C10.8418 (3)0.6028 (2)0.1556 (2)0.0467 (9)
C20.7299 (3)0.5572 (2)0.1369 (2)0.0447 (9)
C30.6337 (4)0.5948 (3)0.1492 (3)0.0683 (13)
H3B0.63720.64920.16840.082*
C40.5320 (4)0.5509 (4)0.1328 (4)0.0888 (18)
H4A0.46750.57600.14150.107*
C50.5252 (4)0.4712 (4)0.1038 (4)0.0817 (16)
H5A0.45640.44250.09230.098*
C60.6207 (4)0.4339 (3)0.0918 (3)0.0741 (14)
H6A0.61670.37950.07270.089*
C70.7223 (4)0.4763 (3)0.1079 (3)0.0580 (11)
H7A0.78640.45040.09930.070*
C80.8086 (4)0.7628 (3)0.0074 (2)0.0584 (11)
H8A0.76230.72980.01490.070*
C90.7770 (4)0.7752 (4)0.0895 (3)0.0735 (15)
H9A0.71100.75080.12080.088*
C100.8424 (5)0.8228 (3)0.1233 (3)0.0737 (15)
H10A0.82210.83140.17820.088*
C110.9418 (4)0.8594 (3)0.0753 (3)0.0626 (13)
C121.0177 (6)0.9086 (3)0.1058 (3)0.0822 (17)
H12A1.00160.91840.16040.099*
C131.1121 (6)0.9411 (3)0.0573 (4)0.0838 (18)
H13A1.16060.97240.07930.101*
C141.1410 (4)0.9291 (3)0.0279 (3)0.0647 (13)
C151.2357 (5)0.9651 (3)0.0816 (4)0.0826 (17)
H15A1.28670.99700.06260.099*
C161.2530 (4)0.9533 (3)0.1611 (4)0.0814 (16)
H16A1.31410.97850.19720.098*
C171.1772 (4)0.9025 (3)0.1881 (3)0.0647 (12)
H17A1.19110.89320.24270.078*
C181.0680 (3)0.8810 (2)0.0606 (2)0.0470 (9)
C190.9685 (4)0.8444 (2)0.0078 (2)0.0490 (10)
C200.7504 (3)0.9016 (3)0.1484 (3)0.0525 (10)
H20A0.73450.88300.09590.063*
C210.6786 (4)0.9604 (3)0.1676 (3)0.0651 (12)
H21A0.61740.98160.12860.078*
C220.6994 (4)0.9864 (3)0.2445 (3)0.0692 (13)
H22A0.65321.02690.25820.083*
C230.7902 (4)0.9527 (3)0.3033 (3)0.0607 (12)
C240.8134 (5)0.9716 (3)0.3865 (3)0.0750 (15)
H24A0.76691.00930.40380.090*
C250.9007 (5)0.9361 (3)0.4401 (3)0.0720 (15)
H25A0.91150.94780.49410.086*
C260.9774 (4)0.8806 (3)0.4160 (3)0.0597 (12)
C271.0722 (5)0.8440 (3)0.4684 (3)0.0701 (15)
H27A1.08810.85530.52280.084*
C281.1416 (4)0.7919 (3)0.4407 (3)0.0664 (13)
H28A1.20550.76870.47570.080*
C291.1156 (4)0.7738 (3)0.3591 (2)0.0553 (10)
H29A1.16250.73740.34070.066*
C300.9581 (3)0.8596 (2)0.3348 (2)0.0470 (9)
C310.8611 (3)0.8951 (2)0.2780 (2)0.0457 (9)
C320.4883 (6)0.3134 (4)0.2582 (4)0.105 (2)
H32A0.50540.30140.20840.158*
H32B0.49410.37230.26810.158*
H32C0.41230.29510.25570.158*
C330.5557 (5)0.2810 (4)0.4019 (3)0.0894 (18)
H33A0.61330.24930.43870.134*
H33B0.48190.26200.40410.134*
H33C0.56390.33900.41610.134*
C340.6520 (4)0.2256 (3)0.3092 (3)0.0671 (12)
H34B0.65850.22290.25710.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn0.0446 (3)0.0427 (3)0.0394 (3)0.0010 (3)0.0148 (2)0.0009 (2)
Cl0.0679 (7)0.0773 (8)0.0662 (7)0.0065 (6)0.0136 (6)0.0104 (6)
O10.0528 (16)0.0425 (16)0.0677 (18)0.0043 (12)0.0266 (14)0.0051 (13)
O20.0518 (18)0.0551 (19)0.137 (3)0.0006 (15)0.0350 (19)0.020 (2)
O30.0461 (17)0.0584 (19)0.078 (2)0.0027 (15)0.0252 (16)0.0035 (16)
O40.149 (4)0.086 (3)0.134 (4)0.024 (3)0.066 (3)0.028 (3)
O50.067 (3)0.206 (6)0.178 (5)0.025 (3)0.043 (3)0.087 (4)
O60.182 (5)0.126 (4)0.087 (3)0.056 (4)0.026 (3)0.033 (3)
O70.111 (3)0.129 (4)0.080 (3)0.002 (3)0.032 (2)0.037 (2)
O80.0557 (19)0.095 (3)0.082 (2)0.0158 (18)0.0231 (18)0.016 (2)
N10.0500 (19)0.056 (2)0.0406 (17)0.0060 (16)0.0150 (15)0.0020 (15)
N20.0512 (19)0.0488 (19)0.053 (2)0.0025 (16)0.0147 (16)0.0004 (16)
N30.0456 (18)0.0410 (17)0.0516 (19)0.0041 (14)0.0185 (15)0.0004 (15)
N40.054 (2)0.0471 (18)0.0380 (17)0.0088 (15)0.0151 (15)0.0022 (14)
N50.058 (2)0.079 (3)0.061 (2)0.016 (2)0.0135 (19)0.010 (2)
C10.051 (2)0.043 (2)0.049 (2)0.0019 (18)0.0186 (18)0.0004 (18)
C20.046 (2)0.041 (2)0.048 (2)0.0024 (17)0.0136 (18)0.0043 (17)
C30.060 (3)0.049 (3)0.104 (4)0.001 (2)0.037 (3)0.006 (3)
C40.053 (3)0.082 (4)0.137 (5)0.001 (3)0.036 (3)0.000 (4)
C50.059 (3)0.073 (4)0.110 (4)0.016 (3)0.016 (3)0.008 (3)
C60.075 (3)0.052 (3)0.090 (4)0.015 (2)0.012 (3)0.009 (3)
C70.061 (3)0.046 (2)0.069 (3)0.001 (2)0.019 (2)0.006 (2)
C80.049 (2)0.076 (3)0.048 (2)0.007 (2)0.010 (2)0.010 (2)
C90.067 (3)0.095 (4)0.051 (3)0.026 (3)0.003 (2)0.018 (3)
C100.091 (4)0.086 (4)0.039 (2)0.038 (3)0.008 (3)0.003 (2)
C110.092 (3)0.058 (3)0.047 (2)0.036 (3)0.034 (3)0.012 (2)
C120.131 (5)0.065 (3)0.067 (3)0.028 (3)0.055 (4)0.021 (3)
C130.128 (5)0.054 (3)0.099 (4)0.011 (3)0.082 (4)0.023 (3)
C140.078 (3)0.041 (2)0.092 (4)0.003 (2)0.051 (3)0.007 (2)
C150.087 (4)0.048 (3)0.134 (5)0.007 (3)0.068 (4)0.004 (3)
C160.066 (3)0.058 (3)0.125 (5)0.018 (2)0.033 (3)0.008 (3)
C170.062 (3)0.059 (3)0.071 (3)0.009 (2)0.015 (2)0.003 (2)
C180.058 (2)0.0346 (19)0.057 (2)0.0108 (17)0.031 (2)0.0049 (17)
C190.063 (3)0.043 (2)0.046 (2)0.0185 (19)0.023 (2)0.0057 (18)
C200.054 (2)0.051 (2)0.057 (2)0.0025 (19)0.021 (2)0.004 (2)
C210.058 (3)0.053 (3)0.087 (4)0.003 (2)0.024 (3)0.004 (2)
C220.058 (3)0.052 (3)0.107 (4)0.001 (2)0.037 (3)0.014 (3)
C230.066 (3)0.050 (2)0.078 (3)0.020 (2)0.039 (3)0.023 (2)
C240.086 (4)0.070 (3)0.085 (4)0.027 (3)0.049 (3)0.038 (3)
C250.096 (4)0.077 (3)0.058 (3)0.041 (3)0.046 (3)0.031 (3)
C260.081 (3)0.059 (3)0.045 (2)0.033 (2)0.027 (2)0.011 (2)
C270.098 (4)0.070 (3)0.043 (2)0.044 (3)0.020 (3)0.007 (2)
C280.073 (3)0.063 (3)0.052 (3)0.028 (2)0.004 (2)0.014 (2)
C290.058 (3)0.056 (3)0.048 (2)0.012 (2)0.007 (2)0.009 (2)
C300.060 (2)0.045 (2)0.043 (2)0.0215 (19)0.0256 (19)0.0060 (17)
C310.053 (2)0.038 (2)0.054 (2)0.0118 (17)0.027 (2)0.0084 (17)
C320.101 (5)0.119 (5)0.085 (4)0.043 (4)0.005 (3)0.003 (4)
C330.073 (3)0.124 (5)0.076 (3)0.012 (3)0.028 (3)0.024 (3)
C340.061 (3)0.081 (3)0.063 (3)0.001 (3)0.022 (2)0.005 (3)
Geometric parameters (Å, º) top
Mn—O12.124 (3)C10—H10A0.9300
Mn—O32.156 (3)C11—C191.414 (6)
Mn—N32.261 (3)C11—C121.419 (7)
Mn—N12.272 (3)C12—C131.340 (8)
Mn—N42.275 (3)C12—H12A0.9300
Mn—N22.303 (3)C13—C141.440 (7)
Cl—O61.376 (4)C13—H13A0.9300
Cl—O51.395 (4)C14—C151.403 (8)
Cl—O41.426 (4)C14—C181.405 (6)
Cl—O71.433 (4)C15—C161.354 (8)
O1—C11.266 (5)C15—H15A0.9300
O2—C11.245 (5)C16—C171.400 (7)
O3—H3D0.838 (19)C16—H16A0.9300
O3—H3C0.85 (2)C17—H17A0.9300
O8—C341.226 (6)C18—C191.438 (6)
N1—C81.334 (5)C20—C211.384 (6)
N1—C191.357 (5)C20—H20A0.9300
N2—C171.320 (5)C21—C221.357 (7)
N2—C181.355 (5)C21—H21A0.9300
N3—C201.330 (5)C22—C231.402 (7)
N3—C311.357 (5)C22—H22A0.9300
N4—C291.331 (5)C23—C311.412 (6)
N4—C301.360 (5)C23—C241.428 (7)
N5—C341.313 (6)C24—C251.343 (7)
N5—C321.443 (6)C24—H24A0.9300
N5—C331.446 (6)C25—C261.431 (7)
C1—C21.504 (5)C25—H25A0.9300
C2—C31.383 (6)C26—C271.398 (7)
C2—C71.386 (6)C26—C301.407 (5)
C3—C41.388 (7)C27—C281.361 (7)
C3—H3B0.9300C27—H27A0.9300
C4—C51.368 (8)C28—C291.399 (6)
C4—H4A0.9300C28—H28A0.9300
C5—C61.371 (7)C29—H29A0.9300
C5—H5A0.9300C30—C311.443 (6)
C6—C71.374 (6)C32—H32A0.9600
C6—H6A0.9300C32—H32B0.9600
C7—H7A0.9300C32—H32C0.9600
C8—C91.390 (6)C33—H33A0.9600
C8—H8A0.9300C33—H33B0.9600
C9—C101.344 (8)C33—H33C0.9600
C9—H9A0.9300C34—H34B0.9300
C10—C111.405 (7)
O1—Mn—O386.56 (12)C13—C12—H12A119.4
O1—Mn—N389.71 (11)C11—C12—H12A119.4
O3—Mn—N3161.90 (12)C12—C13—C14122.1 (5)
O1—Mn—N192.24 (12)C12—C13—H13A119.0
O3—Mn—N1105.13 (12)C14—C13—H13A119.0
N3—Mn—N192.70 (12)C15—C14—C18117.0 (5)
O1—Mn—N4103.67 (11)C15—C14—C13124.4 (5)
O3—Mn—N490.36 (13)C18—C14—C13118.6 (5)
N3—Mn—N473.32 (12)C16—C15—C14120.0 (5)
N1—Mn—N4158.51 (12)C16—C15—H15A120.0
O1—Mn—N2163.23 (11)C14—C15—H15A120.0
O3—Mn—N290.95 (12)C15—C16—C17118.9 (5)
N3—Mn—N297.51 (11)C15—C16—H16A120.6
N1—Mn—N272.40 (12)C17—C16—H16A120.6
N4—Mn—N292.92 (11)N2—C17—C16123.4 (5)
O6—Cl—O5112.6 (4)N2—C17—H17A118.3
O6—Cl—O4107.7 (3)C16—C17—H17A118.3
O5—Cl—O4107.3 (3)N2—C18—C14122.9 (4)
O6—Cl—O7108.4 (3)N2—C18—C19118.2 (3)
O5—Cl—O7109.9 (3)C14—C18—C19118.9 (4)
O4—Cl—O7111.1 (3)N1—C19—C11121.9 (4)
C1—O1—Mn131.2 (3)N1—C19—C18117.4 (3)
Mn—O3—H3D129 (3)C11—C19—C18120.7 (4)
Mn—O3—H3C97 (4)N3—C20—C21123.7 (4)
H3D—O3—H3C114 (5)N3—C20—H20A118.2
C8—N1—C19117.7 (4)C21—C20—H20A118.2
C8—N1—Mn125.6 (3)C22—C21—C20118.7 (5)
C19—N1—Mn116.6 (3)C22—C21—H21A120.7
C17—N2—C18117.7 (4)C20—C21—H21A120.7
C17—N2—Mn127.0 (3)C21—C22—C23120.4 (4)
C18—N2—Mn115.1 (3)C21—C22—H22A119.8
C20—N3—C31117.9 (3)C23—C22—H22A119.8
C20—N3—Mn126.2 (3)C22—C23—C31117.0 (4)
C31—N3—Mn115.9 (3)C22—C23—C24124.3 (5)
C29—N4—C30118.1 (3)C31—C23—C24118.6 (5)
C29—N4—Mn126.6 (3)C25—C24—C23121.5 (5)
C30—N4—Mn115.1 (3)C25—C24—H24A119.3
C34—N5—C32121.9 (4)C23—C24—H24A119.3
C34—N5—C33120.5 (4)C24—C25—C26121.3 (4)
C32—N5—C33117.4 (4)C24—C25—H25A119.4
O2—C1—O1124.5 (4)C26—C25—H25A119.4
O2—C1—C2118.1 (4)C27—C26—C30116.4 (4)
O1—C1—C2117.4 (3)C27—C26—C25124.1 (4)
C3—C2—C7119.0 (4)C30—C26—C25119.5 (5)
C3—C2—C1120.7 (4)C28—C27—C26120.6 (4)
C7—C2—C1120.2 (4)C28—C27—H27A119.7
C2—C3—C4119.5 (4)C26—C27—H27A119.7
C2—C3—H3B120.2C27—C28—C29119.3 (5)
C4—C3—H3B120.2C27—C28—H28A120.4
C5—C4—C3121.0 (5)C29—C28—H28A120.4
C5—C4—H4A119.5N4—C29—C28122.3 (5)
C3—C4—H4A119.5N4—C29—H29A118.8
C4—C5—C6119.4 (5)C28—C29—H29A118.8
C4—C5—H5A120.3N4—C30—C26123.3 (4)
C6—C5—H5A120.3N4—C30—C31117.9 (3)
C5—C6—C7120.6 (5)C26—C30—C31118.8 (4)
C5—C6—H6A119.7N3—C31—C23122.2 (4)
C7—C6—H6A119.7N3—C31—C30117.6 (3)
C6—C7—C2120.5 (4)C23—C31—C30120.2 (4)
C6—C7—H7A119.8N5—C32—H32A109.5
C2—C7—H7A119.8N5—C32—H32B109.5
N1—C8—C9123.4 (5)H32A—C32—H32B109.5
N1—C8—H8A118.3N5—C32—H32C109.5
C9—C8—H8A118.3H32A—C32—H32C109.5
C10—C9—C8119.5 (5)H32B—C32—H32C109.5
C10—C9—H9A120.3N5—C33—H33A109.5
C8—C9—H9A120.3N5—C33—H33B109.5
C9—C10—C11119.7 (4)H33A—C33—H33B109.5
C9—C10—H10A120.2N5—C33—H33C109.5
C11—C10—H10A120.2H33A—C33—H33C109.5
C10—C11—C19117.8 (5)H33B—C33—H33C109.5
C10—C11—C12123.7 (5)O8—C34—N5125.5 (5)
C19—C11—C12118.5 (5)O8—C34—H34B117.3
C13—C12—C11121.2 (5)N5—C34—H34B117.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3D···O8i0.84 (2)1.86 (2)2.684 (4)168 (5)
Symmetry code: (i) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Mn(C7H5O2)(C12H8N2)2(H2O)](ClO4)·C3H7NO
Mr727.02
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.1787 (4), 16.0320 (5), 17.3628 (5)
β (°) 105.223 (1)
V3)3271.11 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.55
Crystal size (mm)0.34 × 0.28 × 0.16
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.700, 0.916
No. of measured, independent and
observed [I > 2σ(I)] reflections
9876, 5671, 4440
Rint0.030
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.153, 1.13
No. of reflections5671
No. of parameters450
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.43

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1994), XPREP in SHELXTL (Siemens, 1994), SHELXTL (Bruker, 1997).

Selected geometric parameters (Å, º) top
Mn—O12.124 (3)Mn—N12.272 (3)
Mn—O32.156 (3)Mn—N42.275 (3)
Mn—N32.261 (3)Mn—N22.303 (3)
O1—Mn—O386.56 (12)N3—Mn—N473.32 (12)
O1—Mn—N389.71 (11)N1—Mn—N4158.51 (12)
O3—Mn—N3161.90 (12)O1—Mn—N2163.23 (11)
O1—Mn—N192.24 (12)O3—Mn—N290.95 (12)
O3—Mn—N1105.13 (12)N3—Mn—N297.51 (11)
N3—Mn—N192.70 (12)N1—Mn—N272.40 (12)
O1—Mn—N4103.67 (11)N4—Mn—N292.92 (11)
O3—Mn—N490.36 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3D···O8i0.838 (19)1.86 (2)2.684 (4)168 (5)
Symmetry code: (i) x+2, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds