Download citation
Download citation
link to html
Crystals of montanastatin anhydride, C36H60N4O12, were grown from a hexyl­ene glycol solution. A crystallographic twofold axis runs through the centre of the mol­ecule. The aliphatic side chains located on one side of the peptide ring form a hydro­phobic region. The shape of the whole mol­ecule is rectangular and is similar to the structure of the valinomycin analogue, viz. cyclo[-(D-Val-L-Hyv-L-Val-D-Hyv)2-].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802013259/ob6157sup1.cif
Contains datablocks I, mont2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802013259/ob6157Isup2.hkl
Contains datablock I

CCDC reference: 193781

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.049
  • wR factor = 0.111
  • Data-to-parameter ratio = 19.5

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
ABSTM_02 Alert C The ratio of expected to reported Tmax/Tmin(RR') is < 0.90 Tmin and Tmax reported: 0.854 0.982 Tmin' and Tmax expected: 0.970 0.982 RR' = 0.881 Please check that your absorption correction is appropriate. STRVAL_01 From the CIF: _refine_ls_abs_structure_Flack 0.100 From the CIF: _refine_ls_abs_structure_Flack_su 0.900 Alert C Flack test results are meaningless. General Notes
REFLT_03 From the CIF: _diffrn_reflns_theta_max 28.60 From the CIF: _reflns_number_total 4717 Count of symmetry unique reflns 2805 Completeness (_total/calc) 168.16% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1912 Fraction of Friedel pairs measured 0.682 Are heavy atom types Z>Si present no ALERT: MoKa measured Friedel data cannot be used to determine absolute structure in a light-atom study EXCEPT under VERY special conditions. It is preferred that Friedel data is merged in such cases.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
2 Alert Level C = Please check

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2001); software used to prepare material for publication: PARST (Nardelli, 1995).

Montanastatin: cyclo(–Val-D-Hyv-D-Val-Lac-)2, Hyv=alpha-hydroxyisovaleric acid, Lac=lactic acid top
Crystal data top
C36H60N4O12Dx = 1.241 Mg m3
Mr = 740.88Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, C2221Cell parameters from 3994 reflections
a = 13.488 (6) Åθ = 2.3–28.0°
b = 17.868 (7) ŵ = 0.09 mm1
c = 16.452 (7) ÅT = 100 K
V = 3965 (3) Å3Block, colourless
Z = 40.32 × 0.24 × 0.20 mm
F(000) = 1600
Data collection top
Bruker AXS SMART APEX CCD
diffractometer
4717 independent reflections
Radiation source: MacScience, M18XCE rotating anode4545 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 8.366 pixels mm-1θmax = 28.6°, θmin = 1.9°
ω scansh = 1717
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1523
Tmin = 0.854, Tmax = 0.982l = 2222
13003 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0472P)2 + 1.956P]
where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max < 0.001
4717 reflectionsΔρmax = 0.32 e Å3
242 parametersΔρmin = 0.22 e Å3
0 restraintsAbsolute structure: (Flack, 1983), 1912 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.1 (9)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
ON_40.75840 (10)0.75068 (8)0.64983 (7)0.0171 (3)
CA_40.71119 (15)0.77521 (11)0.72391 (11)0.0182 (4)
H1_40.76220.79100.76460.022*
CB_40.64520 (19)0.84027 (12)0.70235 (13)0.0272 (5)
H2_40.59640.82440.66170.041*
H3_40.68550.88100.68010.041*
H4_40.61070.85780.75120.041*
C_40.65235 (13)0.70761 (10)0.75589 (11)0.0139 (4)
O_40.62526 (11)0.65716 (8)0.71054 (8)0.0187 (3)
N_10.63456 (12)0.71050 (9)0.83575 (9)0.0145 (3)
H5_10.65450.75010.86300.017*
CA_10.58414 (13)0.65153 (10)0.87941 (10)0.0125 (4)
H6_10.54270.62270.83990.015*
CB_10.65766 (14)0.59673 (11)0.92044 (12)0.0158 (4)
H7_10.61860.56240.95630.019*
CG1_10.73278 (15)0.63802 (13)0.97357 (12)0.0212 (4)
H8_10.77440.67010.93930.032*
H9_10.77460.60161.00200.032*
H10_10.69760.66891.01340.032*
CG2_10.71070 (16)0.54893 (12)0.85690 (13)0.0228 (4)
H11_10.75270.51190.88430.034*
H12_10.75190.58110.82250.034*
H13_10.66150.52310.82320.034*
C_10.51590 (13)0.68775 (11)0.94122 (10)0.0127 (4)
O_10.51084 (11)0.75341 (8)0.95480 (8)0.0192 (3)
ON_20.46187 (9)0.63488 (7)0.97993 (7)0.0130 (3)
CA_20.40142 (13)0.65922 (10)1.04793 (10)0.0129 (3)
H14_20.41710.71301.05870.015*
CB_20.43088 (14)0.61425 (11)1.12323 (11)0.0149 (4)
H15_20.38450.62821.16810.018*
CG1_20.42158 (16)0.53035 (11)1.10937 (12)0.0215 (4)
H16_20.47300.51391.07130.032*
H17_20.35610.51911.08670.032*
H18_20.42960.50401.16120.032*
CG2_20.53535 (15)0.63533 (14)1.14983 (12)0.0258 (5)
H19_20.53710.68851.16450.039*
H20_20.58180.62611.10510.039*
H21_20.55440.60501.19700.039*
C_20.29184 (13)0.65372 (10)1.02782 (11)0.0131 (3)
O_20.23148 (10)0.66612 (8)1.08159 (8)0.0179 (3)
N_30.26771 (11)0.63797 (9)0.95056 (9)0.0150 (3)
H22_30.31300.61970.91760.018*
CA_30.16727 (13)0.65071 (11)0.92056 (11)0.0159 (4)
H23_30.13370.68500.95990.019*
CB_30.10523 (15)0.57892 (12)0.91610 (13)0.0224 (4)
H24_30.11120.55400.97030.027*
CG1_30.14135 (18)0.52245 (14)0.85321 (15)0.0321 (5)
H25_30.21390.52030.85430.048*
H26_30.11910.53780.79900.048*
H27_30.11420.47290.86590.048*
CG2_30.00444 (18)0.59678 (15)0.90426 (16)0.0347 (5)
H28_30.04320.55050.90780.052*
H29_30.01430.61970.85070.052*
H30_30.02630.63160.94660.052*
C_30.82219 (14)0.69313 (11)0.65939 (12)0.0172 (4)
O_30.86226 (11)0.67840 (9)0.72215 (8)0.0251 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
ON_40.0204 (7)0.0194 (7)0.0114 (6)0.0043 (6)0.0024 (5)0.0013 (6)
CA_40.0237 (10)0.0203 (9)0.0107 (8)0.0074 (8)0.0026 (7)0.0019 (7)
CB_40.0399 (13)0.0184 (10)0.0232 (11)0.0028 (9)0.0080 (9)0.0007 (8)
C_40.0111 (8)0.0175 (9)0.0130 (8)0.0014 (7)0.0001 (7)0.0003 (7)
O_40.0223 (7)0.0211 (7)0.0126 (6)0.0090 (6)0.0014 (5)0.0021 (5)
N_10.0175 (7)0.0149 (8)0.0112 (7)0.0053 (6)0.0018 (6)0.0019 (6)
CA_10.0128 (8)0.0148 (9)0.0098 (8)0.0043 (7)0.0004 (6)0.0003 (7)
CB_10.0146 (9)0.0163 (9)0.0165 (9)0.0008 (7)0.0014 (7)0.0023 (7)
CG1_10.0178 (9)0.0288 (11)0.0170 (9)0.0007 (8)0.0022 (7)0.0013 (8)
CG2_10.0227 (10)0.0224 (11)0.0233 (10)0.0051 (8)0.0042 (8)0.0016 (8)
C_10.0122 (9)0.0177 (9)0.0081 (7)0.0026 (7)0.0034 (6)0.0025 (7)
O_10.0235 (7)0.0143 (7)0.0199 (6)0.0041 (6)0.0056 (6)0.0005 (6)
ON_20.0138 (6)0.0136 (6)0.0117 (6)0.0019 (5)0.0035 (5)0.0006 (5)
CA_20.0156 (8)0.0139 (9)0.0092 (8)0.0003 (7)0.0033 (7)0.0016 (7)
CB_20.0142 (9)0.0210 (10)0.0096 (8)0.0014 (7)0.0018 (7)0.0008 (7)
CG1_20.0262 (11)0.0191 (10)0.0193 (10)0.0031 (8)0.0023 (8)0.0059 (8)
CG2_20.0176 (9)0.0455 (14)0.0143 (9)0.0052 (9)0.0019 (8)0.0001 (9)
C_20.0160 (8)0.0098 (8)0.0136 (8)0.0033 (7)0.0016 (7)0.0002 (7)
O_20.0184 (7)0.0235 (7)0.0117 (6)0.0075 (6)0.0023 (5)0.0009 (5)
N_30.0129 (7)0.0201 (8)0.0121 (7)0.0052 (6)0.0012 (6)0.0012 (6)
CA_30.0130 (8)0.0221 (10)0.0126 (8)0.0037 (7)0.0010 (7)0.0030 (7)
CB_30.0204 (10)0.0254 (11)0.0213 (10)0.0008 (8)0.0016 (8)0.0016 (8)
CG1_30.0309 (12)0.0277 (12)0.0376 (13)0.0014 (10)0.0079 (10)0.0066 (10)
CG2_30.0213 (11)0.0444 (14)0.0384 (13)0.0061 (11)0.0048 (10)0.0116 (11)
C_30.0149 (9)0.0204 (10)0.0163 (9)0.0089 (7)0.0027 (7)0.0022 (8)
O_30.0254 (8)0.0344 (9)0.0154 (7)0.0020 (7)0.0063 (6)0.0009 (6)
Geometric parameters (Å, º) top
ON_4—C_31.350 (3)CA_2—C_21.518 (3)
ON_4—CA_41.443 (2)CA_2—CB_21.529 (3)
CA_4—CB_41.506 (3)CB_2—CG1_21.521 (3)
CA_4—C_41.538 (3)CB_2—CG2_21.523 (3)
C_4—O_41.226 (2)C_2—O_21.222 (2)
C_4—N_11.336 (2)C_2—N_31.342 (2)
N_1—CA_11.445 (2)N_3—CA_31.460 (2)
CA_1—C_11.517 (2)CA_3—C_3i1.525 (3)
CA_1—CB_11.548 (3)CA_3—CB_31.533 (3)
CB_1—CG2_11.528 (3)CB_3—CG1_31.525 (3)
CB_1—CG1_11.528 (3)CB_3—CG2_31.526 (3)
C_1—O_11.196 (2)C_3—O_31.195 (2)
C_1—ON_21.353 (2)C_3—CA_3i1.525 (3)
ON_2—CA_21.451 (2)
C_3—ON_4—CA_4114.46 (15)ON_2—CA_2—CB_2108.72 (15)
ON_4—CA_4—CB_4107.23 (16)C_2—CA_2—CB_2113.31 (15)
ON_4—CA_4—C_4106.14 (15)CG1_2—CB_2—CG2_2111.29 (17)
CB_4—CA_4—C_4112.43 (17)CG1_2—CB_2—CA_2112.03 (16)
O_4—C_4—N_1124.97 (17)CG2_2—CB_2—CA_2110.08 (16)
O_4—C_4—CA_4121.54 (17)O_2—C_2—N_3124.19 (17)
N_1—C_4—CA_4113.49 (15)O_2—C_2—CA_2118.62 (16)
C_4—N_1—CA_1123.02 (15)N_3—C_2—CA_2117.14 (15)
N_1—CA_1—C_1107.92 (15)C_2—N_3—CA_3120.84 (16)
N_1—CA_1—CB_1112.11 (15)N_3—CA_3—C_3i106.43 (15)
C_1—CA_1—CB_1111.49 (14)N_3—CA_3—CB_3113.09 (16)
CG2_1—CB_1—CG1_1110.54 (17)C_3i—CA_3—CB_3115.18 (16)
CG2_1—CB_1—CA_1110.80 (16)CG1_3—CB_3—CG2_3111.19 (19)
CG1_1—CB_1—CA_1111.63 (16)CG1_3—CB_3—CA_3114.31 (18)
O_1—C_1—ON_2124.50 (17)CG2_3—CB_3—CA_3111.11 (18)
O_1—C_1—CA_1125.34 (16)O_3—C_3—ON_4123.83 (19)
ON_2—C_1—CA_1110.16 (15)O_3—C_3—CA_3i126.43 (19)
C_1—ON_2—CA_2117.15 (14)ON_4—C_3—CA_3i109.73 (15)
ON_2—CA_2—C_2111.08 (14)
C_3—On_4—Ca_4—Cb_4178.6 (2)O_1—C_1—On_2—Ca_26.5 (3)
C_3—On_4—Ca_4—C_461.0 (2)C_1—On_2—Ca_2—Cb_2123.2 (2)
Ca_4—On_4—C_3—O_323.4 (3)C_1—ON_2—Ca_2—C_2111.4 (2)
On_4—Ca_4—C_4—O_423.4 (2)On_2—Ca_2—Cb_2—Cg1_256.5 (2)
ON_4—Ca_4—C_4—N_1156.9 (2)On_2—Ca_2—Cb_2—Cg2_267.9 (2)
Cb_4—Ca_4—C_4—O_493.5 (2)C_2—Ca_2—Cb_2—Cg1_267.6 (2)
Cb_4—Ca_4—C_4—N_186.2 (2)C_2—Ca_2—Cb_2—Cg2_2168.1 (2)
Ca_4—C_4—N_1—Ca_1177.4 (2)On_2—Ca_2—C_2—O_2173.7 (2)
O_4—C_4—N_1—Ca_13.0 (3)ON_2—Ca_2—C_2—N_38.6 (2)
C_4—N_1—Ca_1—Cb_196.2 (2)Cb_2—Ca_2—C_2—O_251.0 (2)
C_4—N_1—Ca_1—C_1140.6 (2)Cb_2—Ca_2—C_2—N_3131.3 (2)
N_1—Ca_1—Cb_1—Cg1_153.0 (2)Ca_2—C_2—N_3—Ca_3163.8 (2)
N_1—Ca_1—Cb_1—Cg2_170.7 (2)O_2—C_2—N_3—Ca_313.8 (3)
C_1—Ca_1—Cb_1—Cg1_168.1 (2)C_2—N_3—Ca_3—Cb_3101.1 (2)
C_1—Ca_1—Cb_1—Cg2_1168.2 (2)N_3—Ca_3—Cb_3—Cg1_366.7 (2)
N_1—Ca_1—C_1—O_14.9 (3)N_3—Ca_3—Cb_3—Cg2_3166.5 (2)
N_1—Ca_1—C_1—ON_2175.8 (1)C_2—N_3—Ca_3—C_3i131.6 (2)
Cb_1—Ca_1—C_1—O_1118.6 (2)N_3—Ca_3—C_3i—ON_4i47.7 (2)
Cb_1—Ca_1—C_1—On_260.7 (2)Ca_3—C_3i—ON_4i—Ca_4i155.7 (1)
Ca_1—C_1—ON_2—Ca_2172.8 (1)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N_1—H5_1···O_2ii0.882.042.901 (2)167
N_3—H22_3···O_4i0.882.363.037 (2)134
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1/2, y+3/2, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds