Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title complex, [La(C2H5NO2)3(H2O)2]Cl3·H2O or [La(gly)3(H2O)2]Cl3·H2O, is a one-dimensional coordination polymer. Its basic repeat unit contains three glycine mol­ecules in the zwitterion form and two coordinated water mol­ecules. Three carboxyl moieties of the three glycine mol­ecules serve as bridging groups, which connect the neighbouring LaIII ions. The coordination number of lanthanum is nine. Intermolecular hydrogen bonds, involving water mol­ecules and chloride ions, form a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802007444/ob6121sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802007444/ob6121Isup2.hkl
Contains datablock I

CCDC reference: 103381

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.032
  • wR factor = 0.086
  • Data-to-parameter ratio = 16.2

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

REFLT_03 From the CIF: _diffrn_reflns_theta_max 25.00 From the CIF: _reflns_number_total 3168 Count of symmetry unique reflns 1895 Completeness (_total/calc) 167.18% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1273 Fraction of Friedel pairs measured 0.672 Are heavy atom types Z>Si present yes Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.

Comment top

Lanthanide ions are often used as spectroscopic probes of Ca2+ in studies of biological systems, as well as dyeing promoters in the wool dyeing industry, and diagnostic agents in clinical medicine (Brittain et al., 1978; Brittain, 1979; Fang et al., 1987; Lauffer et al., 1987). In order to obtain a deeper understanding of the interactions between lanthanide ions and biological tissue, studies of the bonding modes and structures of lanthanide complexes with some amino acids have been carried out. Studies on the coordination behaviour of rare-earth salts with some amino acids in water have been carried out using the semimicro method of phase-equilibrium study. Many studies on these complexes in the solid state have also appeared (Gao et al., 1993; Dang et al., 1995; Jiang et al., 1993; Chen et al., 1886). The present paper reports the crystal structure of the title compound, (I).

Compound (I) is a one-dimensional chain complex of infinite length along the a axis (Figs. 2 and 3). Its basic repeat unit, [La(gly)3(H2O)2]Cl3·H2O, consist of three glycine molecules in the zwitterion form, two coordinated water molecules, three free chloride ions and one water molecule of crystallization (Fig. 1). The three carboxyl groups from the three glycine molecules serve as bridging groups, which connect neighboring La atoms. The La···La distance is 4.798 (4) Å, showing that there is no direct metal–metal bond between the La atoms. The coordination number of La is nine and the coordination polyhedron can be approximated by a distorted trigonal prism (Fig. 2). The La—O bond lengths are in the range 2.419 (4)–2.908 (4) Å, and the average bond length is 2.576 (4) Å (Table 1).

There are two intramolecular hydrogen bonds and 14 intermolecular hydrogen bonds (Table 2). The three free Cl- anions are located in the neighborhood of the –NH3+ groups of the coordinated glycine molecules and form N—H···Cl hydrogen bonds with an average N···O distance of 3.123 (4) Å. The average hydrogen-bond length for water–water (O—H···O) is 2.805 (4) Å. The average hydrogen bond lengths for O—H···Cl and N—H···Cl are 3.147 (4) and 2.757 (4) Å, respectively. These hydrogen bonds produce a three-dimensional network in the crystal (Fig. 3).

Experimental top

All chemicals were of reagent grade and were used without further purification. The title complex was prepared based on phase equilibrium data. LaCl3·6H2O and glycinic acid are dissolved in water (molar ratio 1: 3), the colourless crystals of (I) were obtained by slow evaporation of the above aqueous solution (pH = 4–5) at room temperature. Its metal composition was determined by titration with edta using xylenol orange as the end point indicator.

Refinement top

The achiral title compound crystallizes in a chiral space group. All the H atoms were placed in geometrically calculated positions, with N—H = 0.89 Å and C—H = 0.97 Å (except for the water H atoms, which were found in difference maps) and refined as riding atoms, with Uiso(H) = 1.2–1.5Ueq(parent atom).

Computing details top

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: SHELXTL (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. View of the basic repeating unit of (I).
[Figure 2] Fig. 2. View of the one-dimensional chain complex of infinite length in (I).
[Figure 3] Fig. 3. View of the packing form along a axis and the hydrogen-bond network for (I).
catena-Poly[[[diaqualanthanum(III)]-tri-µ-glycinato] trichloride monohydrate] top
Crystal data top
[La(C2H5NO2)3(H2O)2]Cl3·H2OF(000) = 1032
Mr = 524.52Dx = 1.938 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 4.798 (1) Åθ = 2.2–12.8°
b = 12.094 (1) ŵ = 2.86 mm1
c = 30.974 (2) ÅT = 293 K
V = 1797.3 (4) Å3Prism, colourless
Z = 40.3 × 0.2 × 0.2 mm
Data collection top
Siemens P4
diffractometer
3145 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.074
Graphite monochromatorθmax = 25.0°, θmin = 1.3°
ω scansh = 55
Absorption correction: ψ scan
(North et al., 1968)
k = 014
Tmin = 0.509, Tmax = 0.566l = 036
3172 measured reflections3 standard reflections every 100 reflections
3168 independent reflections intensity decay: 2.2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.01P)2 + 0.35P]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
3172 reflectionsΔρmax = 0.60 e Å3
196 parametersΔρmin = 0.74 e Å3
0 restraintsAbsolute structure: (Flack, 1983), 1274 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.0012 (2)
Crystal data top
[La(C2H5NO2)3(H2O)2]Cl3·H2OV = 1797.3 (4) Å3
Mr = 524.52Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.798 (1) ŵ = 2.86 mm1
b = 12.094 (1) ÅT = 293 K
c = 30.974 (2) Å0.3 × 0.2 × 0.2 mm
Data collection top
Siemens P4
diffractometer
3145 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.074
Tmin = 0.509, Tmax = 0.5663 standard reflections every 100 reflections
3172 measured reflections intensity decay: 2.2%
3168 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.086Δρmax = 0.60 e Å3
S = 0.97Δρmin = 0.74 e Å3
3172 reflectionsAbsolute structure: (Flack, 1983), 1274 Friedel pairs
196 parametersAbsolute structure parameter: 0.0012 (2)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.51428 (5)0.836846 (18)0.621733 (7)0.01291 (5)
C10.0107 (12)0.7847 (4)0.70260 (14)0.0221 (2)
C20.0368 (12)0.7659 (4)0.75082 (14)0.0222 (3)
H2A0.07620.70460.76090.027*
H2B0.01470.83150.76700.027*
C30.0098 (11)0.6395 (3)0.60684 (13)0.0199 (2)
C40.1170 (10)0.5296 (4)0.61807 (16)0.0205 (3)
H4A0.19630.49700.59220.025*
H4B0.26710.54090.63860.025*
C50.0753 (10)1.0132 (4)0.58891 (15)0.0194 (2)
C60.0924 (11)1.1141 (4)0.57406 (15)0.0219 (2)
H6A0.19851.14330.59820.026*
H6B0.22291.09210.55170.026*
N10.3374 (9)0.7410 (3)0.75718 (14)0.0219 (2)
H1A0.41020.78920.77570.033*
H1B0.35600.67280.76760.033*
H1C0.42600.74600.73200.033*
N20.0925 (9)0.4503 (3)0.63720 (12)0.0209 (4)
H2C0.25350.45630.62310.031*
H2D0.02880.38140.63480.031*
H2E0.11860.46640.66490.031*
N30.0928 (9)1.2001 (3)0.55727 (14)0.0232 (4)
H3A0.20721.17080.53780.035*
H3B0.00831.25320.54500.035*
H3C0.19221.22850.57880.035*
O10.2602 (8)0.8109 (3)0.69456 (11)0.0222 (3)
O20.1720 (8)0.7656 (3)0.67616 (10)0.0233 (4)
O30.2616 (7)0.6563 (3)0.61453 (10)0.0199 (3)
O40.1519 (7)0.7054 (3)0.58806 (11)0.0207 (4)
O50.0567 (7)0.9367 (3)0.60643 (10)0.0215 (3)
O60.3329 (7)1.0120 (3)0.58153 (10)0.0190 (4)
O70.5703 (9)1.0023 (3)0.67305 (11)0.0376 (6)
H7A0.59820.97910.69860.045*
H7B0.70891.04080.66490.045*
O80.4215 (7)0.8183 (3)0.53953 (10)0.0191 (6)
H8A0.51220.75310.52880.023*
H8B0.49360.88210.52490.023*
Cl30.3642 (3)0.75681 (10)0.85047 (4)0.0288 (3)
Cl20.8645 (3)0.12101 (11)0.45879 (4)0.0327 (3)
O90.9272 (7)0.8869 (3)0.49882 (11)0.0243 (9)
H9A1.02860.93930.50820.029*
H9B0.83430.91370.47790.029*
Cl10.5663 (4)0.00902 (12)0.77496 (5)0.0504 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.01268 (10)0.01056 (10)0.01550 (11)0.00064 (11)0.00011 (11)0.00245 (9)
C10.0260 (4)0.0237 (5)0.0165 (4)0.0015 (4)0.0004 (3)0.0023 (4)
C20.0271 (5)0.0216 (5)0.0180 (4)0.0004 (5)0.0010 (4)0.0028 (5)
C30.0237 (4)0.0156 (4)0.0205 (5)0.0039 (4)0.0036 (4)0.0003 (4)
C40.0222 (5)0.0169 (4)0.0224 (6)0.0039 (4)0.0043 (5)0.0007 (5)
C50.0232 (4)0.0148 (4)0.0201 (5)0.0061 (4)0.0021 (4)0.0027 (4)
C60.0266 (4)0.0167 (4)0.0223 (4)0.0027 (4)0.0021 (4)0.0033 (4)
N10.0266 (4)0.0167 (4)0.0223 (4)0.0027 (4)0.0021 (4)0.0033 (4)
N20.0222 (8)0.0168 (6)0.0237 (8)0.0037 (6)0.0037 (7)0.0012 (6)
N30.0284 (7)0.0152 (6)0.0260 (8)0.0027 (6)0.0019 (7)0.0034 (6)
O10.0254 (5)0.0233 (6)0.0179 (4)0.0006 (6)0.0019 (4)0.0027 (5)
O20.0266 (6)0.0243 (8)0.0190 (6)0.0006 (7)0.0012 (5)0.0013 (7)
O30.0249 (5)0.0133 (4)0.0214 (6)0.0044 (4)0.0041 (6)0.0023 (4)
O40.0246 (6)0.0181 (6)0.0196 (7)0.0023 (6)0.0022 (6)0.0017 (6)
O50.0242 (5)0.0179 (5)0.0224 (6)0.0076 (5)0.0024 (5)0.0051 (5)
O60.0227 (5)0.0143 (7)0.0198 (7)0.0059 (5)0.0025 (6)0.0009 (7)
O70.0650 (14)0.0302 (8)0.0177 (9)0.0239 (10)0.0025 (10)0.0059 (6)
O80.0310 (15)0.0085 (11)0.0179 (5)0.0022 (11)0.0008 (8)0.0019 (6)
O90.024 (2)0.0201 (16)0.0292 (17)0.0022 (14)0.0053 (16)0.0011 (15)
Cl10.0898 (13)0.0291 (7)0.0323 (7)0.0129 (9)0.0126 (9)0.0039 (6)
Cl20.0433 (8)0.0222 (6)0.0325 (6)0.0103 (6)0.0069 (7)0.0009 (6)
Cl30.0473 (8)0.0216 (6)0.0175 (5)0.0080 (6)0.0056 (6)0.0015 (5)
Geometric parameters (Å, º) top
La1—O32.507 (3)C5—O51.246 (6)
La1—O52.550 (3)C5—O61.257 (6)
La1—O72.570 (4)C5—C61.533 (7)
La1—O12.583 (3)C6—N31.463 (6)
La1—O82.594 (3)C6—H6A0.9700
La1—O6i2.565 (3)C6—H6B0.9700
La1—O2i2.419 (4)N1—H1A0.8900
La1—O4i2.486 (3)N1—H1B0.8900
La1—O5i2.908 (4)N1—H1C0.8900
C1—O21.222 (6)N2—H2C0.8900
C1—O11.263 (7)N2—H2D0.8900
C1—C21.528 (6)N2—H2E0.8900
C2—N11.486 (7)N3—H3A0.8900
C2—H2A0.9700N3—H3B0.8900
C2—H2B0.9700N3—H3C0.8900
C3—O31.248 (6)O7—H7A0.8497
C3—O41.255 (6)O7—H7B0.8501
C3—C41.503 (6)O8—H8A0.9600
C4—N21.510 (6)O8—H8B0.9600
C4—H4A0.9700O9—H9A0.8499
C4—H4B0.9700O9—H9B0.8499
O2i—La1—O4i70.35 (12)N1—C2—H2B110.2
O2i—La1—O393.03 (12)C1—C2—H2B110.2
O4i—La1—O373.59 (11)H2A—C2—H2B108.5
O2i—La1—O5146.51 (11)O3—C3—O4125.7 (4)
O4i—La1—O5141.22 (10)O3—C3—C4119.4 (4)
O3—La1—O588.82 (11)O4—C3—C4114.7 (4)
O2i—La1—O6i117.05 (12)C3—C4—N2112.5 (4)
O4i—La1—O6i98.06 (11)C3—C4—H4A109.1
O3—La1—O6i144.53 (10)N2—C4—H4A109.1
O5—La1—O6i76.40 (10)C3—C4—H4B109.1
O2i—La1—O777.35 (13)N2—C4—H4B109.1
O4i—La1—O7133.63 (13)H4A—C4—H4B107.8
O3—La1—O7141.60 (12)O5—C5—O6124.8 (5)
O5—La1—O780.58 (12)O5—C5—C6117.1 (4)
O6i—La1—O768.11 (11)O6—C5—C6118.0 (4)
O2i—La1—O169.01 (12)N3—C6—C5110.7 (4)
O4i—La1—O1126.36 (11)N3—C6—H6A109.5
O3—La1—O175.17 (11)C5—C6—H6A109.5
O5—La1—O179.25 (11)N3—C6—H6B109.5
O6i—La1—O1131.23 (11)C5—C6—H6B109.5
O7—La1—O166.64 (12)H6A—C6—H6B108.1
O2i—La1—O8139.47 (11)C2—N1—H1A109.5
O4i—La1—O869.12 (11)C2—N1—H1B109.5
O3—La1—O875.78 (10)H1A—N1—H1B109.5
O5—La1—O873.19 (10)C2—N1—H1C109.5
O6i—La1—O869.14 (10)H1A—N1—H1C109.5
O7—La1—O8133.81 (11)H1B—N1—H1C109.5
O1—La1—O8139.96 (11)C4—N2—H2C109.5
O2i—La1—O5i72.80 (11)C4—N2—H2D109.5
O4i—La1—O5i67.69 (10)H2C—N2—H2D109.5
O3—La1—O5i141.24 (10)C4—N2—H2E109.5
O5—La1—O5i122.94 (12)H2C—N2—H2E109.5
O6i—La1—O5i47.31 (10)H2D—N2—H2E109.5
O7—La1—O5i71.58 (12)C6—N3—H3A109.5
O1—La1—O5i127.95 (10)C6—N3—H3B109.5
O8—La1—O5i91.69 (10)H3A—N3—H3B109.5
O2i—La1—C5i94.52 (13)C6—N3—H3C109.5
O4i—La1—C5i83.80 (12)H3A—N3—H3C109.5
O3—La1—C5i152.12 (11)H3B—N3—H3C109.5
O5—La1—C5i99.30 (11)C1—O1—La1130.5 (3)
O6i—La1—C5i23.60 (12)C3—O3—La1128.8 (3)
O7—La1—C5i66.27 (12)H8A—O8—H8B109.5
O1—La1—C5i132.44 (12)H9A—O9—H9B106.0
O8—La1—C5i81.11 (11)La1—O7—H7A109.6
O5i—La1—C5i23.82 (11)La1—O7—H7B109.0
O2—C1—O1126.5 (4)La1—O8—H8A109.4
O2—C1—C2121.3 (5)La1—O8—H8B109.5
O1—C1—C2111.8 (4)H7A—O7—H7B109.5
N1—C2—C1107.7 (4)H8A—O8—H8B109.5
N1—C2—H2A110.2H9A—O9—H9B106.0
C1—C2—H2A110.2
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl3ii0.892.593.231 (4)130
N1—H1A···Cl1iii0.892.663.320 (4)132
N1—H1B···Cl1iv0.892.593.173 (5)124
N1—H1C···O1ii0.892.062.864 (6)150
N1—H1C···O20.892.132.649 (5)117
N2—H2C···Cl2v0.892.763.360 (4)126
N2—H2D···Cl3vi0.892.463.228 (4)145
N2—H2E···Cl1vii0.892.453.254 (4)150
N3—H3A···Cl2iii0.892.543.203 (4)132
N3—H3B···Cl2viii0.892.293.122 (5)155
N3—H3C···Cl3iv0.892.363.214 (4)160
O7—H7A···Cl1ix0.852.403.158 (4)149
O7—H7B···Cl3vii0.852.683.179 (4)119
O8—H8A···O9viii0.961.942.752 (5)141
O8—H8B···O90.962.232.858 (5)122
O9—H9B···Cl2ix0.852.583.105 (4)121
Symmetry codes: (ii) x1, y, z; (iii) x1, y+1, z; (iv) x, y+1/2, z+3/2; (v) x1/2, y+1/2, z+1; (vi) x, y1/2, z+3/2; (vii) x+1, y+1/2, z+3/2; (viii) x1/2, y+3/2, z+1; (ix) x, y+1, z.

Experimental details

Crystal data
Chemical formula[La(C2H5NO2)3(H2O)2]Cl3·H2O
Mr524.52
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)4.798 (1), 12.094 (1), 30.974 (2)
V3)1797.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.86
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.509, 0.566
No. of measured, independent and
observed [I > 2σ(I)] reflections
3172, 3168, 3145
Rint0.074
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.086, 0.97
No. of reflections3172
No. of parameters196
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.74
Absolute structure(Flack, 1983), 1274 Friedel pairs
Absolute structure parameter0.0012 (2)

Computer programs: XSCANS (Siemens, 1994), XSCANS, SHELXTL (Siemens, 1994), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL.

Selected bond lengths (Å) top
La1—O32.507 (3)La1—O6i2.565 (3)
La1—O52.550 (3)La1—O2i2.419 (4)
La1—O72.570 (4)La1—O4i2.486 (3)
La1—O12.583 (3)La1—O5i2.908 (4)
La1—O82.594 (3)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl3ii0.892.593.231 (4)130.0
N1—H1A···Cl1iii0.892.663.320 (4)131.8
N1—H1B···Cl1iv0.892.593.173 (5)124.3
N1—H1C···O1ii0.892.062.864 (6)150.4
N1—H1C···O20.892.132.649 (5)116.5
N2—H2C···Cl2v0.892.763.360 (4)126.3
N2—H2D···Cl3vi0.892.463.228 (4)145.3
N2—H2E···Cl1vii0.892.453.254 (4)149.9
N3—H3A···Cl2iii0.892.543.203 (4)131.6
N3—H3B···Cl2viii0.892.293.122 (5)155.2
N3—H3C···Cl3iv0.892.363.214 (4)159.7
O7—H7A···Cl1ix0.852.403.158 (4)149.1
O7—H7B···Cl3vii0.852.683.179 (4)119.0
O8—H8A···O9viii0.961.942.752 (5)140.7
O8—H8B···O90.962.232.858 (5)121.9
O9—H9B···Cl2ix0.852.583.105 (4)121.1
Symmetry codes: (ii) x1, y, z; (iii) x1, y+1, z; (iv) x, y+1/2, z+3/2; (v) x1/2, y+1/2, z+1; (vi) x, y1/2, z+3/2; (vii) x+1, y+1/2, z+3/2; (viii) x1/2, y+3/2, z+1; (ix) x, y+1, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds