Download citation
Download citation
link to html
The structure and absolute configuration of the title compound, Λ-(+)589-[Co(C2H8N2)3]I3·H2O, has been determined. The configuration of the complex cation [Co(en)3]3+ is Λ(δδλ).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801015008/ob6070sup1.cif
Contains datablocks General, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801015008/ob6070Isup2.hkl
Contains datablock I

CCDC reference: 175331

Key indicators

  • Single-crystal X-ray study
  • T = 123 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.023
  • wR factor = 0.066
  • Data-to-parameter ratio = 32.1

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_420 Alert C D-H Without Acceptor N3 - H3N ? PLAT_420 Alert C D-H Without Acceptor N3 - H3N' ? PLAT_420 Alert C D-H Without Acceptor N4 - H4N ? General Notes
REFLT_03 From the CIF: _diffrn_reflns_theta_max 30.10 From the CIF: _reflns_number_total 5190 Count of symmetry unique reflns 2943 Completeness (_total/calc) 176.35% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 2247 Fraction of Friedel pairs measured 0.764 Are heavy atom types Z>Si present yes Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
3 Alert Level C = Please check

Comment top

The compound with the complex cation [Co(en)3]3+ (en = ethylenediamine) has played an important role in the development of crystallography for chiral crystals. [Co(en)3]3+ was the first transition metal complex not only to have its absolute configuration determined with anomalous scattering of X-rays (Saito et al., 1955) but also to have its circular dichroism (CD) spectrum measured in both the solid and solution state (Mathieu, 1953; McCaffery & Mason, 1963). Therefore, it has been regarded as a typical substance for investigating the relationship between a chiral crystal structure and the CD spectrum (Kuroda & Saito, 1976; Mason & Seal, 1976; Ernst & Royer, 1993).

In this study, we have examined the crystal structure and absolute configuration of the title compound, (I), for our study of the anisotropic character of optical activity (OA) and CD for [Co(en)3]3+ in the solid state. The ratio of the lattice constants is a:b:c = 0.449:0.600:1, explicitly different from that reported by Jaeger (1919) of a:b:c = 0.8276:1:0.7386. On the other hand, the ratio of the lattice constants of the racemic compound (Whuler et al., 1980) is similar to Jaeger's report (Jaeger, 1919).

The configuration of the [Co(en)3]3+ complex in (I) is Λ(δδλ), meaning the lel2ob form of the three ethylenediamine ligands. In the crystals of the racemate, the configuration is ob2lel (Whuler et al., 1980). Usually there occurs an inversion between conformations of ethylenediamine ligands δ and λ in solution. However, the difference of free energy of each ligand between δ and λ was reported to be about 2 kJ mol-1 (Beattie, 1971; Sudmeier et al., 1971). From a thermodynamic poit of view, the magnitude of enthalpies in various configurations of [Co(en)3]3+ was shown as follows; lel3 < lel2ob < ob2lel < ob3, where statistical and other entropy effects were not considered. The lel2ob configuration is more stable than ob2lel energetically. The complex cation in (I) may be energetically more stable than that in the racemate if the hydrogen bonding is not considered.

In (I), the Co—N bond distances are 1.949 (3)–1.981 (3) Å and the N—Co—N bond angles are 84.7 (1)–93.0 (1) and 173.3 (1)–175.8 (1)°. As shown in Fig. 2, the C3 axis of the complex cation is approximately parallel to a.

Experimental top

[Co(en)3]Cl.d-tart·5H2O was prepared as described by Werner (1912) and was divided into its optical isomers by using solubility differences of diastereoisomer with d-tartrate. The optical isomer Λ-(+)589-[Co(en)3]Cl.d-tart·5H2O was converted into (I) by shaking with sodium iodide. The specific rotation of (I) in an aqueous solution at Na D line (589 nm) is +88.8° g-1 cm3 dm-1. Crystals of (I) were grown from 15% NaI aqueous solution by slow evaporation at 277 K. Because they effloresence in air, the specimen was protected by liquid paraffin and kept at 123 K during X-ray experiments.

Refinement top

All H atoms of the en ligands were placed in idealized positions and refined as riding atoms with relative isotropic displacement parameters. Those of the water molecule were located from difference Fourier maps and refined for their positional parameters.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: TEXSAN (Molecular Structure Corporation and Rigaku, 1999); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: TEXSAN; molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN.

Figures top
[Figure 1] Fig. 1. The molecular structure of the complex cation in (I) with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal structure of (I) viewed along the the a axis.
(I) top
Crystal data top
[Co(C2H8N2)3]I3·H2OF(000) = 1192
Mr = 637.96Dx = 2.397 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.7107 Å
Hall symbol: P 2ac 2abCell parameters from 10070 reflections
a = 8.4086 (4) Åθ = 2.2–20.8°
b = 11.2321 (6) ŵ = 6.21 mm1
c = 18.7217 (7) ÅT = 123 K
V = 1768.2 (1) Å3Block, red
Z = 40.40 × 0.35 × 0.30 mm
Data collection top
Rigaku RAXIS-RAPID Imaging Plate
diffractometer
5024 reflections with F2 > 2σ(F2)
Detector resolution: 10.00 pixels mm-1Rint = 0.028
ω scansθmax = 30.1°
Absorption correction: integration
(NUMABS; Higashi, 1999)
h = 1111
Tmin = 0.098, Tmax = 0.155k = 1515
20028 measured reflectionsl = 2626
5190 independent reflections
Refinement top
Refinement on F2 w = 1/[σ2(Fo2) + {0.05[Max(Fo2,0) + 2Fc2]/3}2]
R[F2 > 2σ(F2)] = 0.023(Δ/σ)max = 0.001
wR(F2) = 0.066Δρmax = 0.41 e Å3
S = 1.04Δρmin = 0.83 e Å3
5163 reflectionsAbsolute structure: (Flack, 1983), 2247 Friedel pairs
161 parametersAbsolute structure parameter: 0.01 (3)
H atoms treated by a mixture of independent and constrained refinement
Crystal data top
[Co(C2H8N2)3]I3·H2OV = 1768.2 (1) Å3
Mr = 637.96Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.4086 (4) ŵ = 6.21 mm1
b = 11.2321 (6) ÅT = 123 K
c = 18.7217 (7) Å0.40 × 0.35 × 0.30 mm
Data collection top
Rigaku RAXIS-RAPID Imaging Plate
diffractometer
5190 independent reflections
Absorption correction: integration
(NUMABS; Higashi, 1999)
5024 reflections with F2 > 2σ(F2)
Tmin = 0.098, Tmax = 0.155Rint = 0.028
20028 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.066Δρmax = 0.41 e Å3
S = 1.04Δρmin = 0.83 e Å3
5163 reflectionsAbsolute structure: (Flack, 1983), 2247 Friedel pairs
161 parametersAbsolute structure parameter: 0.01 (3)
Special details top

Refinement. Refinement using reflections with F2 > -3.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.27354 (3)0.29713 (2)0.43098 (1)0.01783 (5)
I20.27602 (3)0.20650 (2)0.15342 (1)0.01797 (5)
I30.23108 (3)0.39484 (2)0.19287 (1)0.01579 (5)
Co10.21642 (5)0.47850 (4)0.35446 (2)0.00957 (8)
O10.5136 (5)0.5259 (3)0.5261 (2)0.0356 (9)
N10.3277 (4)0.3618 (3)0.4132 (2)0.0141 (6)
N20.1070 (3)0.3399 (3)0.3121 (2)0.0137 (6)
N30.3900 (3)0.4734 (3)0.2839 (2)0.0149 (6)
N40.1087 (3)0.5838 (3)0.2858 (2)0.0146 (6)
N50.3167 (4)0.6136 (3)0.4054 (2)0.0164 (6)
N60.0457 (4)0.4964 (3)0.4252 (2)0.0165 (6)
C10.3161 (4)0.2424 (3)0.3780 (2)0.0164 (7)
C20.1474 (4)0.2302 (3)0.3539 (2)0.0147 (7)
C30.3620 (4)0.5643 (3)0.2267 (2)0.0177 (7)
C40.1846 (4)0.5692 (3)0.2146 (2)0.0169 (7)
C50.2028 (5)0.6670 (3)0.4564 (2)0.0230 (9)
C60.1054 (5)0.5660 (4)0.4877 (2)0.0228 (9)
H1N0.43620.38390.41770.0170*
H1N'0.28020.35850.45920.0170*
H1O0.579 (9)0.459 (6)0.523 (4)0.0431*
H1O'0.542 (8)0.575 (6)0.568 (4)0.0431*
H1a0.38620.23830.33830.0196*
H1b0.34190.18120.41110.0196*
H2N0.00470.35240.31340.0164*
H2N'0.14040.33020.26400.0164*
H2a0.07910.22330.39410.0176*
H2b0.13640.16160.32460.0176*
H3N0.48800.48980.30710.0180*
H3N'0.39420.39640.26300.0180*
H3a0.40010.63990.24160.0212*
H3b0.41470.54140.18390.0212*
H4N0.00060.56300.28280.0175*
H4N'0.11830.66410.30090.0175*
H4a0.14920.49750.19290.0202*
H4b0.15870.63480.18480.0202*
H5N0.40720.58590.43080.0197*
H5N'0.34850.67220.37170.0197*
H5a0.25850.70740.49320.0276*
H5b0.13510.72150.43220.0276*
H6N0.04140.53720.40410.0197*
H6N'0.01190.42000.44080.0197*
H6a0.01890.59660.51470.0274*
H6b0.16990.51730.51740.0274*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01328 (9)0.0218 (1)0.0184 (1)0.00009 (9)0.00024 (7)0.00200 (8)
I20.0170 (1)0.0202 (1)0.01671 (9)0.00206 (9)0.00326 (8)0.00106 (8)
I30.01590 (9)0.01023 (9)0.0212 (1)0.00086 (7)0.00111 (8)0.00006 (7)
Co10.0094 (2)0.0080 (2)0.0114 (2)0.0001 (2)0.0005 (2)0.0004 (1)
O10.045 (2)0.035 (2)0.027 (2)0.002 (2)0.012 (2)0.009 (1)
N10.015 (1)0.014 (1)0.013 (1)0.0017 (10)0.004 (1)0.0009 (9)
N20.014 (1)0.013 (1)0.015 (1)0.0012 (9)0.005 (1)0.0010 (10)
N30.014 (1)0.018 (1)0.013 (1)0.001 (1)0.0019 (9)0.0015 (10)
N40.015 (1)0.011 (1)0.017 (1)0.0014 (10)0.0008 (10)0.0043 (10)
N50.021 (1)0.012 (1)0.016 (1)0.005 (1)0.001 (1)0.0022 (10)
N60.017 (1)0.012 (1)0.020 (1)0.001 (1)0.0065 (9)0.001 (1)
C10.018 (1)0.011 (1)0.021 (2)0.005 (1)0.000 (1)0.002 (1)
C20.020 (1)0.008 (1)0.016 (1)0.001 (1)0.002 (1)0.001 (1)
C30.016 (1)0.019 (2)0.018 (2)0.002 (1)0.005 (1)0.006 (1)
C40.019 (1)0.016 (2)0.016 (1)0.000 (1)0.002 (1)0.004 (1)
C50.030 (2)0.018 (2)0.021 (2)0.000 (1)0.007 (1)0.005 (1)
C60.031 (2)0.019 (2)0.018 (2)0.001 (1)0.008 (1)0.003 (1)
Geometric parameters (Å, º) top
CO1—N11.949 (3)N5—H5N0.950
CO1—N21.975 (3)N5—H5N'0.950
CO1—N31.969 (3)N6—C61.494 (5)
CO1—N41.968 (3)N6—H6N0.950
CO1—N51.981 (3)N6—H6N'0.950
CO1—N61.963 (3)C1—C21.495 (5)
O1—H1O0.93 (7)C1—H1a0.950
O1—H1O'0.99 (7)C1—H1b0.950
N1—C11.497 (4)C2—H2a0.950
N1—H1N0.950C2—H2b0.950
N1—H1N'0.950C3—C41.510 (5)
N2—C21.499 (4)C3—H3a0.950
N2—H2N0.950C3—H3b0.950
N2—H2N'0.950C4—H4a0.950
N3—C31.499 (5)C4—H4b0.950
N3—H3N0.950C5—C61.517 (6)
N3—H3N'0.950C5—H5a0.950
N4—C41.486 (5)C5—H5b0.950
N4—H4N0.950C6—H6a0.950
N4—H4N'0.950C6—H6b0.950
N5—C51.479 (5)
I1···N1i3.447 (3)O1···N13.211 (5)
I1···N63.497 (3)O1···C53.324 (6)
I1···N1ii3.525 (3)O1···C63.536 (6)
O1···N52.970 (5)C2···C4iii3.565 (5)
N1—CO1—N285.4 (1)C5—N5—H5N'109.3
N1—CO1—N390.2 (1)H5N—N5—H5N'109.5
N1—CO1—N4173.3 (1)CO1—N6—C6109.7 (2)
N1—CO1—N592.3 (1)CO1—N6—H6N109.4
N1—CO1—N692.3 (1)CO1—N6—H6N'109.4
N2—CO1—N393.0 (1)C6—N6—H6N109.4
N2—CO1—N489.8 (1)C6—N6—H6N'109.4
N2—CO1—N5174.7 (1)H6N—N6—H6N'109.5
N2—CO1—N690.6 (1)N1—C1—C2106.1 (3)
N3—CO1—N485.4 (1)N1—C1—H1a110.3
N3—CO1—N591.7 (1)N1—C1—H1b110.3
N3—CO1—N6175.8 (1)C2—C1—H1a110.3
N4—CO1—N592.9 (1)C2—C1—H1b110.3
N4—CO1—N692.4 (1)H1a—C1—H1b109.5
N5—CO1—N684.7 (1)N2—C2—C1107.3 (3)
H1O—O1—H1O'110 (7)N2—C2—H2a110.0
CO1—N1—C1108.9 (2)N2—C2—H2b110.0
CO1—N1—H1N109.6C1—C2—H2a110.0
CO1—N1—H1N'109.6C1—C2—H2b110.0
C1—N1—H1N109.6H2a—C2—H2b109.5
C1—N1—H1N'109.6N3—C3—C4106.7 (3)
H1N—N1—H1N'109.5N3—C3—H3a110.2
CO1—N2—C2109.4 (2)N3—C3—H3b110.2
CO1—N2—H2N109.5C4—C3—H3a110.2
CO1—N2—H2N'109.5C4—C3—H3b110.2
C2—N2—H2N109.5H3a—C3—H3b109.4
C2—N2—H2N'109.5N4—C4—C3107.1 (3)
H2N—N2—H2N'109.5N4—C4—H4a110.1
CO1—N3—C3110.1 (2)N4—C4—H4b110.1
CO1—N3—H3N109.3C3—C4—H4a110.0
CO1—N3—H3N'109.3C3—C4—H4b110.0
C3—N3—H3N109.3H4a—C4—H4b109.5
C3—N3—H3N'109.3N5—C5—C6107.2 (3)
H3N—N3—H3N'109.5N5—C5—H5a110.0
CO1—N4—C4108.8 (2)N5—C5—H5b110.0
CO1—N4—H4N109.6C6—C5—H5a110.0
CO1—N4—H4N'109.6C6—C5—H5b110.0
C4—N4—H4N109.7H5a—C5—H5b109.5
C4—N4—H4N'109.7N6—C6—C5105.6 (3)
H4N—N4—H4N'109.4N6—C6—H6a110.4
CO1—N5—C5110.2 (2)N6—C6—H6b110.4
CO1—N5—H5N109.3C5—C6—H6a110.4
CO1—N5—H5N'109.3C5—C6—H6b110.4
C5—N5—H5N109.3H6a—C6—H6b109.5
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+1/2, z+1; (iii) x, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N60.952.592.821 (4)94
N2—H2N···N30.952.672.862 (4)92
N3—H3N···N20.952.662.862 (4)92
N4—H4N···N50.952.632.862 (4)94
N5—H5N···N10.952.632.834 (4)93
N6—H6N···N40.952.602.838 (4)94
N1—H1N···O10.952.663.211 (4)117
N5—H5N···O10.952.112.970 (4)150

Experimental details

Crystal data
Chemical formula[Co(C2H8N2)3]I3·H2O
Mr637.96
Crystal system, space groupOrthorhombic, P212121
Temperature (K)123
a, b, c (Å)8.4086 (4), 11.2321 (6), 18.7217 (7)
V3)1768.2 (1)
Z4
Radiation typeMo Kα
µ (mm1)6.21
Crystal size (mm)0.40 × 0.35 × 0.30
Data collection
DiffractometerRigaku RAXIS-RAPID Imaging Plate
diffractometer
Absorption correctionIntegration
(NUMABS; Higashi, 1999)
Tmin, Tmax0.098, 0.155
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
20028, 5190, 5024
Rint0.028
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.066, 1.04
No. of reflections5163
No. of parameters161
No. of restraints?
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.83
Absolute structure(Flack, 1983), 2247 Friedel pairs
Absolute structure parameter0.01 (3)

Computer programs: PROCESS-AUTO (Rigaku, 1998), PROCESS-AUTO, TEXSAN (Molecular Structure Corporation and Rigaku, 1999), SIR97 (Altomare et al., 1999), TEXSAN, ORTEPII (Johnson, 1976).

Selected geometric parameters (Å, º) top
CO1—N11.949 (3)CO1—N41.968 (3)
CO1—N21.975 (3)CO1—N51.981 (3)
CO1—N31.969 (3)CO1—N61.963 (3)
N1—CO1—N285.4 (1)N2—CO1—N690.6 (1)
N1—CO1—N390.2 (1)N3—CO1—N485.4 (1)
N1—CO1—N4173.3 (1)N3—CO1—N591.7 (1)
N1—CO1—N592.3 (1)N3—CO1—N6175.8 (1)
N1—CO1—N692.3 (1)N4—CO1—N592.9 (1)
N2—CO1—N393.0 (1)N4—CO1—N692.4 (1)
N2—CO1—N489.8 (1)N5—CO1—N684.7 (1)
N2—CO1—N5174.7 (1)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N'···N60.952.592.821 (4)94
N2—H2N'···N30.952.672.862 (4)92
N3—H3N'···N20.952.662.862 (4)92
N4—H4N'···N50.952.632.862 (4)94
N5—H5N···N10.952.632.834 (4)93
N6—H6N···N40.952.602.838 (4)94
N1—H1N···O10.952.663.211 (4)117
N5—H5N···O10.952.112.970 (4)150
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds