Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title complex, [Ca(C7H5O2)2(C3H7NO)(H2O)]n, the eightfold coordinated calcium ion is bonded to four carboxyl­ate O atoms from two benzoate ions, an O atom from di­methyl­form­amide and an O atom from a water mol­ecule. One of the carboxyl­ate groups bridges adjacent Ca2+ ions to form a polymeric ribbon structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801014660/ob6064sup1.cif
Contains datablocks General, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801014660/ob6064Isup2.hkl
Contains datablock I

CCDC reference: 175346

Key indicators

  • Single-crystal X-ray study
  • T = 143 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.045
  • wR factor = 0.049
  • Data-to-parameter ratio = 16.5

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
ABSTM_02 Alert C The ratio of expected to reported Tmax/Tmin(RR') is < 0.90 Tmin and Tmax reported: 0.755 0.992 Tmin' and Tmax expected: 0.872 0.992 RR' = 0.866 Please check that your absorption correction is appropriate.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

The synthesis and structure determination of inorganic polymers is an interesting subject for basic inorganic chemistry and material science. In this paper, we report the successful isolation and X-ray crystal structure determination of a unique CaII polymeric compound, (I), bridged by a benzoate group.

As shown in Fig. 1, the calcium ion is surrounded by eight O atoms from two bidentate benzoates, an N,N'-dimethylformamide molecule, a water molecule and two carboxylate groups bridging adjacent Ca2+ ions. The octacoordinate CaO8 polyhedron is deviated extensively from idealized octacoordinated geometries. There are two coordinated benzoate groups forming planar four-membered chelate rings. In addition, the O3 and O4 atoms from one of the benzoates link different Ca2+ ions by monodentate bridging bonds forming buckled four-membered Ca—O—Ca—O rings which partly form the basis of the extended structure. The polymeric ribbon structure is formed along the 21 screw axis parallel to b. As is usual in polymeric calcium carboxylates, the Ca—O bridging bond lengths [2.398 (2) and 2.400 (2) Å] are considerably shorter than the Ca—O chelate distances of 2.654 (3) and 2.460 (2) Å. Fairly long Ca—O distances [2.570 (2) and 2.508 (2) Å] are observed in one of the benzoate groups, which has no interaction among the neighboring Ca2+ ions. These observations indicated the importance of the bridging interactions in the crystal structure of a polymeric network of calcium calboxylates (Karipides et al., 1988; Einspahr et al., 1981).

Experimental top

An aqueous solution of benzoic acid (0.74 g, 6.1 mmol) was adjusted to ca pH 7.0 with a 0.5 M KOH solution. Then CaCl2·2H2O (0.38 g, 2.6 mmol) was added to the benzoic acid solution with stirring. A 10 ml portion of dimethylformamide was added to the reaction solution. The solution was concentrated until it became half volume and stand at room temperature for 24 h. Colorless crystals of (I) were obtained. Yield: 0.32 g (32.9%). Analysis found: C 54.55, H 5.14, N 3.72%; calcd for C17H19CaNO6: C 54.68, H 5.13, N 3.75%.

Refinement top

The H atoms, excluding those of water, were placed in idealized positions and refined as riding atoms with relative isotropic displacement parameters. Those of water were located from difference Fourier maps and refined for their positional parameters using the reflections in the range of sinθ/λ < 0.4, which were fixed at the last stage of the refinement.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: TEXSAN (Molecular Structure Corporation, 2000); program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); program(s) used to refine structure: TEXSAN; molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN.

Figures top
[Figure 1] Fig. 1. The structure of the nearest neighber of Ca2+ for (I) showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A perspective view of the polymeric structure of (I). Displacement ellipsoids are drawn at the 50% probability level.
(I) top
Crystal data top
[Ca(C7H5O2)2(C3H7NO)(H2O)]F(000) = 784.00
Mr = 373.42Dx = 1.422 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.7107 Å
a = 10.8346 (6) ÅCell parameters from 9115 reflections
b = 6.7519 (3) Åθ = 2.8–27.4°
c = 24.363 (1) ŵ = 0.39 mm1
β = 101.781 (2)°T = 143 K
V = 1744.7 (2) Å3Prism, colorless
Z = 40.35 × 0.05 × 0.02 mm
Data collection top
Rigaku R-AXIS RAPID Imaging Plate
diffractometer
1789 reflections with F2 > 2σ(F2)
Detector resolution: 10.00 pixels mm-1Rint = 0.048
ω scansθmax = 27.5°
Absorption correction: multi-scan
(Higashi, 1995)
h = 1314
Tmin = 0.755, Tmax = 0.992k = 88
8718 measured reflectionsl = 3131
3967 independent reflections
Refinement top
Refinement on F2H-atom parameters not refined
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + {0.002[Max(Fo2,0) + 2Fc2]/3}2]
wR(F2) = 0.049(Δ/σ)max = 0.0002
S = 0.94Δρmax = 0.82 e Å3
3739 reflectionsΔρmin = 0.80 e Å3
226 parameters
Crystal data top
[Ca(C7H5O2)2(C3H7NO)(H2O)]V = 1744.7 (2) Å3
Mr = 373.42Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.8346 (6) ŵ = 0.39 mm1
b = 6.7519 (3) ÅT = 143 K
c = 24.363 (1) Å0.35 × 0.05 × 0.02 mm
β = 101.781 (2)°
Data collection top
Rigaku R-AXIS RAPID Imaging Plate
diffractometer
3967 independent reflections
Absorption correction: multi-scan
(Higashi, 1995)
1789 reflections with F2 > 2σ(F2)
Tmin = 0.755, Tmax = 0.992Rint = 0.048
8718 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045226 parameters
wR(F2) = 0.049H-atom parameters not refined
S = 0.94Δρmax = 0.82 e Å3
3739 reflectionsΔρmin = 0.80 e Å3
Special details top

Refinement. Refinement using reflections with F2 > 0.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca10.83850 (7)0.1464 (1)0.24049 (2)0.0108 (2)
O10.9765 (2)0.3160 (3)0.32587 (7)0.0195 (7)
O20.9639 (2)0.0103 (3)0.32757 (8)0.0220 (8)
O30.6704 (2)0.0174 (3)0.29188 (8)0.0178 (7)
O40.6888 (2)0.3081 (3)0.28969 (7)0.0172 (7)
O51.0314 (2)0.1238 (3)0.20991 (7)0.0203 (7)
O60.6676 (2)0.1483 (3)0.16009 (6)0.0191 (6)
N11.2400 (3)0.1273 (4)0.20691 (9)0.0234 (8)
C11.0629 (3)0.1560 (5)0.41211 (10)0.0150 (8)
C21.1061 (4)0.0208 (5)0.4391 (1)0.027 (1)
C31.1687 (4)0.0177 (5)0.4956 (1)0.031 (1)
C41.1832 (3)0.1594 (6)0.5247 (1)0.032 (1)
C51.1396 (4)0.3348 (6)0.4979 (1)0.028 (1)
C61.0793 (3)0.3314 (5)0.4422 (1)0.022 (1)
C70.9961 (3)0.1491 (6)0.3517 (1)0.0186 (9)
C80.5945 (3)0.1718 (5)0.3618 (1)0.0184 (10)
C90.5202 (4)0.0213 (5)0.3759 (1)0.025 (1)
C100.4601 (4)0.0447 (5)0.4203 (1)0.031 (1)
C110.4787 (4)0.2190 (5)0.4523 (1)0.033 (1)
C120.5566 (4)0.3654 (6)0.4402 (1)0.033 (1)
C130.6162 (3)0.3430 (5)0.3943 (1)0.0200 (9)
C140.6551 (3)0.1522 (5)0.31112 (10)0.0149 (9)
C151.1439 (3)0.1456 (5)0.2322 (1)0.0197 (10)
C161.3699 (3)0.1573 (6)0.2354 (1)0.032 (1)
C171.2185 (4)0.0760 (5)0.1473 (1)0.043 (1)
H21.09410.14260.41920.0291*
H31.19940.13910.51350.0392*
H41.22380.15720.56290.0403*
H51.15140.45420.51850.0356*
H61.04940.45260.42430.0279*
H6O0.61120.23910.16150.0241*
H6O'0.62240.05680.16110.0241*
H90.51020.09870.35490.0286*
H100.40570.05640.42910.0384*
H110.43630.23470.48250.0396*
H120.57280.47920.46320.0342*
H130.66890.44360.38540.0237*
H151.16230.17820.27110.0245*
H16A1.41940.04640.23270.0379*
H16B1.40270.27070.21960.0379*
H16C1.37220.18660.27450.0379*
H17A1.24430.18030.12790.0483*
H17B1.13310.04420.13490.0483*
H17C1.26890.04060.14410.0483*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0109 (4)0.0077 (3)0.0146 (3)0.0006 (5)0.0044 (3)0.0003 (4)
O10.026 (2)0.012 (2)0.019 (1)0.001 (1)0.001 (1)0.001 (1)
O20.029 (2)0.016 (1)0.020 (1)0.005 (1)0.002 (1)0.0023 (10)
O30.022 (2)0.011 (1)0.024 (1)0.001 (1)0.013 (1)0.0060 (10)
O40.020 (2)0.019 (2)0.016 (1)0.000 (1)0.010 (1)0.0002 (9)
O50.017 (1)0.015 (1)0.029 (1)0.005 (1)0.006 (1)0.006 (1)
O60.019 (1)0.010 (1)0.0274 (10)0.001 (1)0.0018 (10)0.003 (1)
N10.016 (2)0.023 (2)0.032 (1)0.005 (2)0.008 (1)0.010 (1)
C10.017 (2)0.013 (2)0.014 (1)0.002 (2)0.000 (1)0.003 (2)
C20.026 (3)0.035 (3)0.023 (2)0.010 (2)0.009 (2)0.004 (2)
C30.032 (3)0.034 (3)0.027 (2)0.011 (2)0.006 (2)0.018 (2)
C40.022 (2)0.054 (3)0.019 (2)0.006 (3)0.001 (2)0.006 (2)
C50.025 (2)0.034 (2)0.024 (2)0.004 (3)0.001 (2)0.005 (2)
C60.022 (2)0.023 (2)0.022 (2)0.003 (2)0.005 (2)0.003 (2)
C70.010 (2)0.028 (2)0.020 (1)0.003 (2)0.009 (1)0.003 (2)
C80.018 (2)0.024 (2)0.013 (1)0.000 (2)0.002 (1)0.004 (2)
C90.036 (3)0.026 (2)0.015 (2)0.007 (2)0.010 (2)0.003 (1)
C100.035 (3)0.031 (2)0.033 (2)0.008 (2)0.019 (2)0.003 (2)
C110.040 (3)0.045 (3)0.020 (2)0.003 (2)0.020 (2)0.002 (2)
C120.046 (3)0.038 (2)0.020 (2)0.004 (3)0.018 (2)0.003 (2)
C130.028 (2)0.014 (2)0.018 (1)0.005 (2)0.004 (1)0.003 (2)
C140.012 (2)0.014 (2)0.019 (1)0.004 (2)0.003 (1)0.003 (2)
C150.025 (2)0.009 (2)0.027 (2)0.006 (2)0.010 (2)0.001 (2)
C160.015 (2)0.027 (2)0.054 (2)0.007 (2)0.005 (2)0.007 (2)
C170.039 (3)0.066 (3)0.027 (2)0.010 (3)0.016 (2)0.002 (2)
Geometric parameters (Å, º) top
Ca1—O12.570 (2)C4—C51.388 (5)
Ca1—O22.508 (2)C4—H40.944
Ca1—O32.654 (3)C5—C61.381 (4)
Ca1—O3i2.398 (2)C5—H50.945
Ca1—O42.460 (2)C6—H60.952
Ca1—O4ii2.400 (2)C8—C91.382 (5)
Ca1—O52.363 (3)C8—C131.393 (4)
Ca1—O62.405 (2)C8—C141.518 (4)
O1—C71.287 (4)C9—C101.381 (5)
O2—C71.241 (4)C9—H90.952
O3—C141.261 (4)C10—C111.404 (4)
O4—C141.262 (4)C10—H100.955
O5—C151.237 (4)C11—C121.371 (5)
O6—H6O0.871C11—H110.950
O6—H6O'0.791C12—C131.409 (4)
N1—C151.319 (5)C12—H120.946
N1—C161.451 (4)C13—H130.941
N1—C171.466 (4)C15—H150.955
C1—C21.397 (4)C16—H16A0.931
C1—C61.385 (4)C16—H16B0.959
C1—C71.503 (3)C16—H16C0.968
C2—C31.404 (4)C17—H17A0.921
C2—H20.950C17—H17B0.938
C3—C41.384 (5)C17—H17C0.970
C3—H30.956
CA1···O12.570 (2)O6···C4vi3.580 (3)
CA1···O22.508 (2)C2···C4vii3.551 (6)
CA1···O32.654 (3)C8···C16v3.515 (4)
O1···C16iii3.365 (4)C9···C16v3.595 (4)
O2···C16iv3.430 (4)C10···C11viii3.523 (4)
O3···C16v3.471 (4)C14···C16v3.259 (4)
O4···C16v3.586 (4)C15···C16iv3.401 (5)
O5···C16iv3.501 (4)C15···C16iii3.554 (5)
O1—Ca1—O251.54 (7)C2—C3—H3119.2
O1—Ca1—O398.39 (7)C4—C3—H3120.9
O1—Ca1—O3i79.76 (7)C3—C4—C5120.2 (3)
O1—Ca1—O474.96 (7)C3—C4—H4118.3
O1—Ca1—O4ii133.40 (7)C5—C4—H4121.5
O1—Ca1—O582.99 (7)C4—C5—C6119.7 (3)
O1—Ca1—O6151.76 (8)C4—C5—H5118.7
O2—Ca1—O374.37 (8)C6—C5—H5121.5
O2—Ca1—O3i130.99 (7)C1—C6—C5121.2 (3)
O2—Ca1—O494.14 (7)C1—C6—H6119.9
O2—Ca1—O4ii82.48 (7)C5—C6—H6118.9
O2—Ca1—O582.99 (8)O1—C7—O2121.7 (2)
O2—Ca1—O6152.28 (8)O1—C7—C1116.7 (3)
O3—Ca1—O3i124.37 (6)O2—C7—C1121.5 (3)
O3—Ca1—O451.00 (7)C9—C8—C13120.6 (3)
O3—Ca1—O4ii72.18 (7)C9—C8—C14120.5 (3)
O3—Ca1—O5149.15 (8)C13—C8—C14118.9 (3)
O3—Ca1—O684.14 (7)C8—C9—C10120.1 (3)
O3i—Ca1—O475.78 (8)C8—C9—H9120.1
O3i—Ca1—O4ii143.71 (6)C10—C9—H9119.8
O3i—Ca1—O586.33 (8)C9—C10—C11119.6 (3)
O3i—Ca1—O675.81 (7)C9—C10—H10120.5
O4—Ca1—O4ii121.28 (6)C11—C10—H10119.9
O4—Ca1—O5153.62 (8)C10—C11—C12120.6 (3)
O4—Ca1—O685.42 (7)C10—C11—H11119.2
O4ii—Ca1—O584.48 (8)C12—C11—H11120.2
O4ii—Ca1—O674.28 (7)C11—C12—C13119.8 (3)
O5—Ca1—O6109.09 (7)C11—C12—H12120.4
CA1—O1—C790.9 (2)C13—C12—H12119.8
CA1—O2—C794.9 (2)C8—C13—C12119.2 (3)
CA1—O3—CA1ii102.98 (8)C8—C13—H13120.6
CA1—O3—C1487.2 (2)C12—C13—H13120.2
CA1ii—O3—C14169.2 (2)O3—C14—O4122.2 (3)
CA1—O4—CA1i108.99 (9)O3—C14—C8119.5 (3)
CA1—O4—C1496.2 (2)O4—C14—C8118.3 (3)
CA1i—O4—C14153.2 (2)O5—C15—N1125.9 (3)
CA1—O5—C15135.2 (2)O5—C15—H15116.8
CA1—O6—H6O113.7N1—C15—H15117.4
CA1—O6—H6O'110.4N1—C16—H16A111.7
H6O—O6—H6O'96.0N1—C16—H16B108.7
C15—N1—C16123.0 (2)N1—C16—H16C109.1
C15—N1—C17120.2 (3)H16A—C16—H16B110.4
C16—N1—C17116.8 (3)H16A—C16—H16C109.5
C2—C1—C6119.2 (2)H16B—C16—H16C107.2
C2—C1—C7118.9 (3)N1—C17—H17A108.8
C6—C1—C7121.9 (3)N1—C17—H17B108.6
C1—C2—C3119.8 (3)N1—C17—H17C107.0
C1—C2—H2120.1H17A—C17—H17B113.2
C3—C2—H2120.1H17A—C17—H17C110.2
C2—C3—C4119.8 (3)H17B—C17—H17C108.8
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x+5/2, y+1/2, z+1/2; (iv) x+5/2, y1/2, z+1/2; (v) x1, y, z; (vi) x1/2, y+1/2, z1/2; (vii) x+2, y, z+1; (viii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Ca(C7H5O2)2(C3H7NO)(H2O)]
Mr373.42
Crystal system, space groupMonoclinic, P21/n
Temperature (K)143
a, b, c (Å)10.8346 (6), 6.7519 (3), 24.363 (1)
β (°) 101.781 (2)
V3)1744.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.35 × 0.05 × 0.02
Data collection
DiffractometerRigaku R-AXIS RAPID Imaging Plate
diffractometer
Absorption correctionMulti-scan
(Higashi, 1995)
Tmin, Tmax0.755, 0.992
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
8718, 3967, 1789
Rint0.048
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.049, 0.94
No. of reflections3739
No. of parameters226
No. of restraints?
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.82, 0.80

Computer programs: PROCESS-AUTO (Rigaku, 1998), PROCESS-AUTO, TEXSAN (Molecular Structure Corporation, 2000), SHELXS86 (Sheldrick, 1985), TEXSAN, ORTEPII (Johnson, 1976).

Selected geometric parameters (Å, º) top
Ca1—O12.570 (2)Ca1—O42.460 (2)
Ca1—O22.508 (2)Ca1—O4ii2.400 (2)
Ca1—O32.654 (3)Ca1—O52.363 (3)
Ca1—O3i2.398 (2)Ca1—O62.405 (2)
O1—Ca1—O251.54 (7)O3—Ca1—O451.00 (7)
O1—Ca1—O398.39 (7)O3—Ca1—O4ii72.18 (7)
O1—Ca1—O3i79.76 (7)O3—Ca1—O5149.15 (8)
O1—Ca1—O474.96 (7)O3—Ca1—O684.14 (7)
O1—Ca1—O4ii133.40 (7)O3i—Ca1—O475.78 (8)
O1—Ca1—O582.99 (7)O3i—Ca1—O4ii143.71 (6)
O1—Ca1—O6151.76 (8)O3i—Ca1—O586.33 (8)
O2—Ca1—O374.37 (8)O3i—Ca1—O675.81 (7)
O2—Ca1—O3i130.99 (7)O4—Ca1—O4ii121.28 (6)
O2—Ca1—O494.14 (7)O4—Ca1—O5153.62 (8)
O2—Ca1—O4ii82.48 (7)O4—Ca1—O685.42 (7)
O2—Ca1—O582.99 (8)O4ii—Ca1—O584.48 (8)
O2—Ca1—O6152.28 (8)O4ii—Ca1—O674.28 (7)
O3—Ca1—O3i124.37 (6)O5—Ca1—O6109.09 (7)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds