Download citation
Download citation
link to html
The title compound, [Cd(C13H14N2)4(H2O)2](NO3)2·2H2O, has been prepared from the self-assembly reaction of oligoaniline dadpm (dadpm is di­amino­di­phenyl­methane) and Cd(NO3)2 in MeOH/H2O. The CdII mononuclear complex cation has a center of symmetry, and dadpm acts as a monodentate ligand.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801011072/ob6060sup1.cif
Contains datablocks I, Cd

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801011072/ob6060Isup2.hkl
Contains datablock I

CCDC reference: 170865

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.044
  • wR factor = 0.126
  • Data-to-parameter ratio = 12.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_420 Alert C D-H Without Acceptor N1 - H1A ? PLAT_420 Alert C D-H Without Acceptor N4 - H4A ? PLAT_731 Alert C Bond Calc 0.93(4), Rep 0.935(19) .... 2.11 s.u-Ratio O1 -HOB 1.555 1.555 PLAT_731 Alert C Bond Calc 0.95(5), Rep 0.95(2) .... 2.50 s.u-Ratio O101 -H02 1.555 1.555 PLAT_731 Alert C Bond Calc 0.88(4), Rep 0.875(18) .... 2.22 s.u-Ratio O101 -H01 1.555 1.555 PLAT_735 Alert C D-H Calc 0.93(4), Rep 0.935(19) .... 2.11 s.u-Ratio O1 -HOB 1.555 1.555 PLAT_735 Alert C D-H Calc 0.88(4), Rep 0.875(18) .... 2.22 s.u-Ratio O101 -H01 1.555 1.555 PLAT_735 Alert C D-H Calc 0.95(5), Rep 0.95(2) .... 2.50 s.u-Ratio O101 -H02 1.555 1.555
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
8 Alert Level C = Please check

Comment top

In recent decades, there has been great interest in the study of metal–organic supramolecular frameworks owing to their intriguing structral diversity and potential application in catalysis, separation and molecular recognization (Piguet et al., 1997; Yaghi et al., 1998; Swiegers et al., 2000). In the construction of one-, two- and three-dimensional frameworks, the rational design and selection of ligands are crucial for the formation of metal–organic coordination frameworks. For example, many rigid ligands, such as 4,4-bipyridine or polycarboxylic acids, and flexible ligands, such as bipyridine derivatives with spacers, have been extensively employed in the formation of supramolecular architectures (Yang et al., 2001; Wang et al., 2001; Horikoshi et al., 2001). The displacement of oligopyridine by oligoaniline should result in new structural motifs and new topologies, but oligoaniline ligands are seldom employed (Zhang et al., 1999). In this paper, we report the crystal structure of [Cd(dadpm)4(H2O)2](NO3)2·2H2O, (I), obtained from the self-assembly of dadpm and Cd(NO3)2.

Compound (I) is a mononuclear CdII complex and dadpm serves as a monodentate ligand (Fig. 1). The Cd atom is coordinated by N atoms from four different dadpm ligands and O atoms from two water molecules, forming a distorted octahedral coordination fashion of CdN4O2. The Cd—N and Cd—O bond distances are 2.363 (3)–2.405 (3) and 2.295 (3) Å, respectively (Table 1).

Experimental top

A mixture of Cd(NO3)2 (0.08 g, 0.25 mmol) and dadpm (0.10 g, 0.50 mmol) in water/methanol (10/20) was stirred for 3 h. The colorless solution was allowed to evaporate slowly for a week, after which time, colorless crystals of (I) were obtained.

Refinement top

The positions of the H atoms were genetared geometrically (C—H bond fixed at 0.96 Å), assigned isotropic displacement parameters and allowed to ride on their respective parent C atoms, and the positions of the water H atoms were refined with isotropic displacement parameters before the final cycle of least-squares refinement. There are short intermolecular H···H contacts; HOB···H01i = 2.06 Å, H01···H4Bii = 2.09 Å and H02···H2Biii = 1.99 Å (see Table 2 for symmetry codes). However, the assumed H-atom positions are reasonable based on the following angles, O1···H01i—O101i = 63.9°, O101···H4Bii—N4ii = 89.4° and O101···H2Biii—N2iii = 95.9°.

Computing details top

Data collection: SMART (Siemens, 1994); cell refinement: SMART; data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of (I) with NO3- and uncoordinated water ommited for clarity. Displacement ellipsoids are plotted at the 50% probability level.
trans-Diaquatetrakis(4,4'-methylenediphenylamine-N)cadmium(II) dinitrate dihydrate top
Crystal data top
[Cd(C13H14N2)4(H2O)2](NO3)2·2H2OZ = 1
Mr = 1101.53F(000) = 574
Triclinic, P1Dx = 1.417 Mg m3
a = 9.3189 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.6565 (3) ÅCell parameters from 68 reflections
c = 12.0590 (1) Åθ = 1.7–25.1°
α = 80.845 (1)°µ = 0.49 mm1
β = 86.638 (1)°T = 293 K
γ = 89.051 (1)°Columnar, colorless
V = 1290.97 (4) Å30.32 × 0.17 × 0.15 mm
Data collection top
Smart CCD
diffractometer
4428 independent reflections
Radiation source: fine-focus sealed tube3749 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 25.1°, θmin = 1.7°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 1110
Tmin = 0.855, Tmax = 0.929k = 1113
6516 measured reflectionsl = 1114
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0795P)2]
where P = (Fo2 + 2Fc2)/3
4428 reflections(Δ/σ)max < 0.001
347 parametersΔρmax = 0.35 e Å3
4 restraintsΔρmin = 0.75 e Å3
Crystal data top
[Cd(C13H14N2)4(H2O)2](NO3)2·2H2Oγ = 89.051 (1)°
Mr = 1101.53V = 1290.97 (4) Å3
Triclinic, P1Z = 1
a = 9.3189 (2) ÅMo Kα radiation
b = 11.6565 (3) ŵ = 0.49 mm1
c = 12.0590 (1) ÅT = 293 K
α = 80.845 (1)°0.32 × 0.17 × 0.15 mm
β = 86.638 (1)°
Data collection top
Smart CCD
diffractometer
4428 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
3749 reflections with I > 2σ(I)
Tmin = 0.855, Tmax = 0.929Rint = 0.024
6516 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0444 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.35 e Å3
4428 reflectionsΔρmin = 0.75 e Å3
347 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd0.00001.00001.00000.04167 (16)
N10.1200 (4)1.0018 (3)1.1675 (3)0.0483 (8)
H1A0.06160.96881.21570.058*
H1B0.19820.95661.15120.058*
N20.3687 (4)1.4780 (3)1.8633 (3)0.0691 (11)
H2A0.34701.54061.90880.083*
H2B0.40351.41981.88840.083*
N30.2305 (3)1.0432 (3)0.9152 (3)0.0498 (8)
H3A0.24781.11960.93570.060*
H3C0.29731.00480.94560.060*
N40.0190 (5)0.5567 (4)0.1891 (3)0.0826 (13)
H4A0.06430.53620.21390.099*
H4B0.05610.52140.12610.099*
N110.4370 (4)0.2080 (3)0.0127 (3)0.0472 (8)
O10.0595 (4)0.8070 (3)0.9609 (3)0.0680 (9)
HOA0.154 (3)0.782 (4)0.964 (4)0.091 (17)*
HOB0.003 (4)0.748 (3)0.977 (4)0.072 (15)*
O110.5437 (3)0.2591 (3)0.0373 (3)0.0685 (9)
O120.3452 (3)0.2646 (3)0.0461 (2)0.0648 (8)
O130.4202 (4)0.1032 (3)0.0446 (3)0.0665 (8)
O1010.1389 (6)0.3519 (4)0.0065 (6)0.1286 (19)
H020.236 (4)0.376 (8)0.017 (8)0.21 (4)*
H010.083 (4)0.401 (3)0.031 (3)0.039 (11)*
C10.1652 (4)1.1132 (3)1.2244 (3)0.0413 (8)
C20.3022 (4)1.1539 (4)1.2066 (3)0.0482 (9)
H2D0.36841.10801.15920.058*
C30.3420 (4)1.2635 (4)1.2592 (3)0.0525 (10)
H3B0.43501.29021.24590.063*
C40.2483 (4)1.3335 (3)1.3303 (3)0.0463 (9)
C50.2930 (5)1.4507 (3)1.3919 (3)0.0577 (11)
H5B0.38471.47251.35860.069*
H5C0.22301.50791.38090.069*
C60.3067 (4)1.4549 (3)1.5161 (3)0.0445 (9)
C70.3587 (4)1.3630 (3)1.5607 (4)0.0508 (10)
H7B0.38031.29401.51290.061*
C80.3797 (4)1.3698 (3)1.6735 (4)0.0535 (10)
H8C0.41581.30601.69990.064*
C90.3477 (4)1.4707 (3)1.7488 (3)0.0497 (10)
C100.2919 (5)1.5628 (3)1.7058 (4)0.0542 (10)
H10A0.26741.63091.75400.065*
C110.2724 (4)1.5546 (3)1.5920 (3)0.0510 (10)
H11A0.23501.61781.56540.061*
C120.1107 (5)1.2918 (4)1.3469 (3)0.0581 (11)
H12A0.04481.33771.39450.070*
C130.0684 (4)1.1833 (4)1.2946 (3)0.0572 (11)
H13A0.02531.15751.30650.069*
C140.2535 (4)1.0169 (3)0.7946 (3)0.0417 (9)
C150.3160 (4)0.9136 (3)0.7447 (3)0.0451 (9)
H15A0.34490.86100.78930.054*
C160.3360 (4)0.8876 (4)0.6295 (3)0.0470 (9)
H16A0.37830.81750.59750.056*
C170.2943 (4)0.9639 (4)0.5603 (3)0.0474 (9)
C180.3232 (5)0.9370 (4)0.4336 (3)0.0626 (12)
H18A0.30031.00540.40180.075*
H18B0.42520.92280.41800.075*
C190.2418 (4)0.8349 (4)0.3737 (3)0.0483 (10)
C200.2991 (5)0.7752 (4)0.2711 (3)0.0529 (10)
H20A0.38820.79780.24260.064*
C210.2268 (5)0.6840 (4)0.2113 (4)0.0618 (12)
H21A0.26770.64640.14330.074*
C220.0941 (5)0.6472 (4)0.2509 (3)0.0560 (11)
C230.0366 (4)0.7052 (4)0.3523 (3)0.0572 (11)
H23A0.05210.68210.38100.069*
C240.1098 (4)0.7971 (4)0.4113 (3)0.0544 (10)
H24A0.06820.83490.47900.065*
C250.2316 (5)1.0660 (4)0.6112 (4)0.0547 (11)
H25A0.20221.11840.56660.066*
C260.2106 (5)1.0933 (4)0.7269 (4)0.0530 (10)
H26A0.16771.16310.75890.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd0.0408 (3)0.0429 (3)0.0404 (2)0.00008 (16)0.00823 (16)0.00149 (16)
N10.047 (2)0.0497 (19)0.0485 (18)0.0075 (15)0.0138 (15)0.0061 (15)
N20.086 (3)0.058 (2)0.065 (2)0.002 (2)0.020 (2)0.0080 (19)
N30.045 (2)0.057 (2)0.0465 (18)0.0061 (15)0.0084 (15)0.0038 (15)
N40.087 (3)0.081 (3)0.073 (3)0.020 (2)0.005 (2)0.003 (2)
N110.048 (2)0.052 (2)0.0418 (17)0.0018 (16)0.0006 (15)0.0100 (15)
O10.055 (2)0.0457 (18)0.103 (2)0.0043 (15)0.0125 (18)0.0062 (17)
O110.059 (2)0.075 (2)0.076 (2)0.0205 (17)0.0060 (16)0.0218 (17)
O120.063 (2)0.064 (2)0.0632 (18)0.0031 (16)0.0136 (16)0.0041 (15)
O130.077 (2)0.0418 (18)0.080 (2)0.0035 (15)0.0131 (17)0.0045 (15)
O1010.089 (4)0.089 (3)0.207 (6)0.004 (3)0.039 (4)0.039 (3)
C10.042 (2)0.049 (2)0.0353 (18)0.0070 (17)0.0134 (16)0.0085 (16)
C20.035 (2)0.058 (3)0.047 (2)0.0034 (18)0.0003 (17)0.0037 (18)
C30.036 (2)0.062 (3)0.057 (2)0.0107 (19)0.0034 (18)0.003 (2)
C40.045 (2)0.050 (2)0.043 (2)0.0067 (18)0.0050 (17)0.0041 (17)
C50.068 (3)0.045 (2)0.058 (2)0.010 (2)0.001 (2)0.0030 (19)
C60.036 (2)0.037 (2)0.058 (2)0.0046 (16)0.0044 (17)0.0019 (17)
C70.045 (2)0.036 (2)0.068 (3)0.0001 (17)0.005 (2)0.0033 (18)
C80.047 (2)0.040 (2)0.075 (3)0.0000 (18)0.012 (2)0.009 (2)
C90.047 (2)0.044 (2)0.059 (2)0.0062 (18)0.0114 (19)0.0082 (19)
C100.057 (3)0.040 (2)0.062 (3)0.0031 (19)0.007 (2)0.0050 (19)
C110.052 (3)0.035 (2)0.066 (3)0.0027 (17)0.007 (2)0.0063 (18)
C120.046 (3)0.070 (3)0.052 (2)0.001 (2)0.0054 (19)0.010 (2)
C130.035 (2)0.080 (3)0.051 (2)0.014 (2)0.0034 (18)0.005 (2)
C140.033 (2)0.046 (2)0.046 (2)0.0084 (16)0.0046 (16)0.0100 (17)
C150.036 (2)0.052 (2)0.050 (2)0.0041 (17)0.0046 (17)0.0184 (18)
C160.041 (2)0.050 (2)0.050 (2)0.0033 (18)0.0000 (17)0.0092 (18)
C170.038 (2)0.061 (3)0.045 (2)0.0112 (18)0.0038 (17)0.0160 (19)
C180.061 (3)0.083 (3)0.046 (2)0.021 (2)0.001 (2)0.018 (2)
C190.039 (2)0.070 (3)0.040 (2)0.0021 (19)0.0022 (17)0.0210 (19)
C200.044 (2)0.072 (3)0.047 (2)0.007 (2)0.0060 (18)0.024 (2)
C210.068 (3)0.067 (3)0.050 (2)0.009 (2)0.013 (2)0.014 (2)
C220.059 (3)0.058 (3)0.053 (2)0.004 (2)0.004 (2)0.016 (2)
C230.038 (2)0.075 (3)0.059 (3)0.003 (2)0.0044 (19)0.013 (2)
C240.039 (2)0.072 (3)0.050 (2)0.000 (2)0.0032 (18)0.007 (2)
C250.052 (3)0.054 (3)0.064 (3)0.006 (2)0.008 (2)0.030 (2)
C260.050 (3)0.044 (2)0.065 (3)0.0022 (19)0.004 (2)0.0084 (19)
Geometric parameters (Å, º) top
Cd—O1i2.295 (3)C5—H5C0.9700
Cd—O12.295 (3)C6—C71.381 (5)
Cd—N12.363 (3)C6—C111.388 (5)
Cd—N1i2.363 (3)C7—C81.375 (6)
Cd—N32.405 (3)C7—H7B0.9300
Cd—N3i2.405 (3)C8—C91.391 (5)
N1—C11.438 (5)C8—H8C0.9300
N1—H1A0.9000C9—C101.385 (6)
N1—H1B0.9000C10—C111.384 (6)
N2—C91.395 (5)C10—H10A0.9300
N2—H2A0.8600C11—H11A0.9300
N2—H2B0.8600C12—C131.382 (6)
N3—C141.442 (4)C12—H12A0.9300
N3—H3A0.9000C13—H13A0.9300
N3—H3C0.9000C14—C261.378 (5)
N4—C221.394 (6)C14—C151.380 (5)
N4—H4A0.8600C15—C161.375 (5)
N4—H4B0.8600C15—H15A0.9300
N11—O131.231 (4)C16—C171.387 (5)
N11—O111.242 (4)C16—H16A0.9300
N11—O121.254 (4)C17—C251.372 (6)
O1—O101ii2.691 (6)C17—C181.519 (5)
O1—O12ii2.796 (5)C18—C191.508 (6)
O1—HOA0.94 (2)C18—H18A0.9700
O1—HOB0.935 (19)C18—H18B0.9700
O101—N4iii3.054 (8)C19—C241.376 (6)
O101—N2iv3.074 (6)C19—C201.400 (5)
O101—H020.95 (2)C20—C211.376 (6)
O101—H010.875 (18)C20—H20A0.9300
C1—C21.372 (5)C21—C221.385 (6)
C1—C131.383 (5)C21—H21A0.9300
C2—C31.388 (5)C22—C231.382 (6)
C2—H2D0.9300C23—C241.382 (6)
C3—C41.369 (5)C23—H23A0.9300
C3—H3B0.9300C24—H24A0.9300
C4—C121.378 (6)C25—C261.383 (6)
C4—C51.513 (5)C25—H25A0.9300
C5—C61.504 (5)C26—H26A0.9300
C5—H5B0.9700
O1i—Cd—O1180.000 (1)C8—C7—H7B118.9
O1i—Cd—N194.44 (12)C6—C7—H7B118.9
O1—Cd—N185.56 (12)C7—C8—C9121.1 (4)
O1i—Cd—N1i85.56 (12)C7—C8—H8C119.5
O1—Cd—N1i94.44 (12)C9—C8—H8C119.5
N1—Cd—N1i180.0C10—C9—C8117.4 (4)
O1i—Cd—N392.03 (12)C10—C9—N2121.4 (4)
O1—Cd—N387.97 (12)C8—C9—N2121.2 (4)
N1—Cd—N386.30 (11)C11—C10—C9120.7 (4)
N1i—Cd—N393.70 (11)C11—C10—H10A119.6
O1i—Cd—N3i87.97 (12)C9—C10—H10A119.6
O1—Cd—N3i92.03 (12)C10—C11—C6122.1 (4)
N1—Cd—N3i93.70 (11)C10—C11—H11A118.9
N1i—Cd—N3i86.30 (11)C6—C11—H11A118.9
N3—Cd—N3i180.000 (1)C4—C12—C13121.6 (4)
C1—N1—Cd116.9 (2)C4—C12—H12A119.2
C1—N1—H1A108.1C13—C12—H12A119.2
Cd—N1—H1A108.1C12—C13—C1120.1 (4)
C1—N1—H1B108.1C12—C13—H13A119.9
Cd—N1—H1B108.1C1—C13—H13A119.9
H1A—N1—H1B107.3C26—C14—C15118.7 (3)
C9—N2—H2A120.0C26—C14—N3120.7 (3)
C9—N2—H2B120.0C15—C14—N3120.5 (3)
H2A—N2—H2B120.0C16—C15—C14120.6 (3)
C14—N3—Cd118.8 (2)C16—C15—H15A119.7
C14—N3—H3A107.6C14—C15—H15A119.7
Cd—N3—H3A107.6C15—C16—C17121.3 (4)
C14—N3—H3C107.6C15—C16—H16A119.3
Cd—N3—H3C107.6C17—C16—H16A119.3
H3A—N3—H3C107.0C25—C17—C16117.4 (3)
C22—N4—H4A120.0C25—C17—C18121.7 (4)
C22—N4—H4B120.0C16—C17—C18120.9 (4)
H4A—N4—H4B120.0C19—C18—C17116.0 (3)
O13—N11—O11121.2 (4)C19—C18—H18A108.3
O13—N11—O12119.6 (3)C17—C18—H18A108.3
O11—N11—O12119.1 (4)C19—C18—H18B108.3
Cd—O1—HOA122 (3)C17—C18—H18B108.3
Cd—O1—HOB123 (3)H18A—C18—H18B107.4
HOA—O1—HOB108 (4)C24—C19—C20116.3 (4)
H02—O101—H01109 (6)C24—C19—C18124.2 (4)
C2—C1—C13118.9 (4)C20—C19—C18119.4 (4)
C2—C1—N1120.9 (3)C21—C20—C19121.6 (4)
C13—C1—N1120.1 (4)C21—C20—H20A119.2
C1—C2—C3120.0 (3)C19—C20—H20A119.2
C1—C2—H2D120.0C20—C21—C22121.1 (4)
C3—C2—H2D120.0C20—C21—H21A119.5
C4—C3—C2121.9 (4)C22—C21—H21A119.5
C4—C3—H3B119.0C23—C22—C21117.8 (4)
C2—C3—H3B119.0C23—C22—N4121.0 (4)
C3—C4—C12117.5 (4)C21—C22—N4121.1 (4)
C3—C4—C5122.1 (4)C22—C23—C24120.6 (4)
C12—C4—C5120.4 (4)C22—C23—H23A119.7
C6—C5—C4114.4 (3)C24—C23—H23A119.7
C6—C5—H5B108.6C19—C24—C23122.5 (4)
C4—C5—H5B108.6C19—C24—H24A118.7
C6—C5—H5C108.6C23—C24—H24A118.7
C4—C5—H5C108.6C17—C25—C26122.0 (4)
H5B—C5—H5C107.6C17—C25—H25A119.0
C7—C6—C11116.3 (4)C26—C25—H25A119.0
C7—C6—C5122.5 (3)C14—C26—C25120.0 (4)
C11—C6—C5121.1 (3)C14—C26—H26A120.0
C8—C7—C6122.3 (4)C25—C26—H26A120.0
Symmetry codes: (i) x, y+2, z2; (ii) x, y+1, z1; (iii) x, y+1, z; (iv) x, y1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—HOA···O12ii0.94 (2)1.86 (2)2.796 (5)174 (5)
O1—HOB···O101ii0.94 (2)1.76 (2)2.691 (6)173 (4)
O101—H01···N4iii0.88 (2)2.30 (3)3.054 (8)144 (3)
O101—H02···N2iv0.95 (2)2.30 (7)3.074 (6)138 (8)
Symmetry codes: (ii) x, y+1, z1; (iii) x, y+1, z; (iv) x, y1, z+2.

Experimental details

Crystal data
Chemical formula[Cd(C13H14N2)4(H2O)2](NO3)2·2H2O
Mr1101.53
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.3189 (2), 11.6565 (3), 12.0590 (1)
α, β, γ (°)80.845 (1), 86.638 (1), 89.051 (1)
V3)1290.97 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.49
Crystal size (mm)0.32 × 0.17 × 0.15
Data collection
DiffractometerSmart CCD
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.855, 0.929
No. of measured, independent and
observed [I > 2σ(I)] reflections
6516, 4428, 3749
Rint0.024
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.126, 1.10
No. of reflections4428
No. of parameters347
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.75

Computer programs: SMART (Siemens, 1994), SMART, SAINT (Siemens, 1994), SHELXTL (Sheldrick, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
Cd—O12.295 (3)Cd—N32.405 (3)
Cd—N12.363 (3)
O1—Cd—N185.56 (12)N1—Cd—N386.30 (11)
O1—Cd—N387.97 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—HOA···O12i0.94 (2)1.86 (2)2.796 (5)174 (5)
O1—HOB···O101i0.935 (19)1.76 (2)2.691 (6)173 (4)
O101—H01···N4ii0.875 (18)2.30 (3)3.054 (8)144 (3)
O101—H02···N2iii0.95 (2)2.30 (7)3.074 (6)138 (8)
Symmetry codes: (i) x, y+1, z1; (ii) x, y+1, z; (iii) x, y1, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds