Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, (C10H10N2)2[Mo8O26], was produced by hydro­thermal reaction of an acidified aqueous solution of H2MoO4, 4,4′-bi­pyridine and NiCl2·6H2O. The structure of the title compound consists of the β-octamolybdate anion having a center of symmetry and protonated 4,4′-bi­pyridine cations. The distances between Mo and O atoms shared by two or more neighboring {MoO6} octahedra are in the range 1.750 (2)–2.450 (2) Å and those between Mo and terminal O atoms in the range 1.696 (3)–1.720 (3) Å. The N—H...O hydrogen-bond lengths are in the range 2.722 (4)-2.755 (4) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801010546/ob6052sup1.cif
Contains datablocks I, new

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801010546/ob6052Isup2.hkl
Contains datablock I

CCDC reference: 170867

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.022
  • wR factor = 0.054
  • Data-to-parameter ratio = 10.1

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_702 Alert C Angle Calc 77.35(8), Rep 77.50(10), Dev. 1.88 Sigma O13 -MO4 -O8 1.555 1.555 3.656
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

One of the interesting aspects of octamolybdates, [Mo8O26]4-, is that they exhibit various structural patterns (Xi et al., 1994). Up to now, a series of octamolybdates have been reported in the literature; the structures of the α-, β-, γ, αγ-, βγ-, ε- and ξ-[Mo8O26]4- isomers had been studied in great detail (Day et al., 1977; Hagrman et al., 1999; Lindgvist, 1950; Pope, 1983; Xi et al., 1994; Xu et al., 1999). In the course of our interest in the synthesis of 4,4'-bipyridine-bridged heterometallic polymers, the title compound, (I), was obtained as a single-crystal.

As shown in Fig. 1, the octamolybdate anion is built up of eight edge-shared {MoO6} octahedra. It can also be described as that two centrosymmetric related cyclic {Mo4O13} units are crosslinked by bridging O atoms. The coordination environment of each Mo atom is a distorted octahedron, with Mo—O distances ranging from 1.696 (3) to 2.450 (2) Å and angles involving the neighboring O atoms ranging from 69.7 (1) to 104.8 (1)°. According to the coordinating mode, the O atoms in the anion can be divided into four different groups, which are terminal O atoms [Mo—O = 1.696 (3)–1.720 (2) Å], µ2-O atoms [Mo—O = 1.750 (2)–2.299 (3) Å], µ3-O atoms [Mo—O = 1.954 (2)–2.388 (2) Å] and µ5-O atoms [Mo—O = 2.155 (2)–2.450 (2) Å]. N—H···O hydrogen bonding exists in the packing of the title compound (Table 2 and Fig. 2).

Experimental top

The title compound, (I), was prepared by hydrothermal synthesis from a mixture of H2MoO4 (0.10 g, 0.62 mmol), NiCl2.6H2O (0.10 g, 0.42 mmol), 4,4'-bipyridine.2H2O (0.05 g, 0.26 mmol) and 65%wt HNO3 (0.1 ml, 1.5 mmol) in H2O (18 ml) was heated at 443 K for 6 d under autogeneous pressure. After the reaction mixture had been slowly cooled to room temperature, colorless crystals of (I) appeared.

Refinement top

H atoms were clearly visible in the difference maps. All of the H atoms were refined isotropically and in the subsequent least-squares refinement. The C—H and N—H bond-length ranges are 0.86 (4)–1.02 (6) and 0.88 (5)–0.93 (4) Å, respectively. The highest residual peak (0.46 e Å-3) is located at (0.2010, 0.8171, 0.6423), 0.81 Å from O1; the deepest hole (-0.67 e Å-3) is located at (0.2088, 0.3951, 0.8263), 0.78 Å from Mo3.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART and SAINT (Siemens, 1994); data reduction: SMART and SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The structure of the β-[Mo8O26]4- anion.
[Figure 2] Fig. 2. Packing diagram viewed down the c axis.
Di-4,4'-bipridine Hexacosaoxooctamolybdate top
Crystal data top
(C10H10N2)[Mo8O26]F(000) = 1424
Mr = 1499.92Dx = 2.829 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.7493 (2) ÅCell parameters from 5475 reflections
b = 15.2255 (1) Åθ = 2.3–25.0°
c = 10.7828 (2) ŵ = 2.86 mm1
β = 93.840 (1)°T = 293 K
V = 1760.79 (5) Å3Prism, colorless
Z = 20.39 × 0.32 × 0.28 mm
Data collection top
SMART CCD
diffractometer
3065 independent reflections
Radiation source: fine-focus sealed tube2781 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.329, Tmax = 0.449k = 1814
6344 measured reflectionsl = 1012
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022All H-atom parameters refined
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.0222P)2 + 2.4922P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
3065 reflectionsΔρmax = 0.46 e Å3
303 parametersΔρmin = 0.67 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00224 (12)
Crystal data top
(C10H10N2)[Mo8O26]V = 1760.79 (5) Å3
Mr = 1499.92Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.7493 (2) ŵ = 2.86 mm1
b = 15.2255 (1) ÅT = 293 K
c = 10.7828 (2) Å0.39 × 0.32 × 0.28 mm
β = 93.840 (1)°
Data collection top
SMART CCD
diffractometer
3065 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
2781 reflections with I > 2σ(I)
Tmin = 0.329, Tmax = 0.449Rint = 0.017
6344 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.054All H-atom parameters refined
S = 1.09Δρmax = 0.46 e Å3
3065 reflectionsΔρmin = 0.67 e Å3
303 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.24215 (3)0.023975 (19)0.41069 (3)0.02040 (10)
Mo20.49830 (3)0.04076 (2)0.24051 (3)0.02049 (10)
Mo30.74812 (3)0.13054 (2)0.37742 (3)0.02391 (10)
Mo40.48690 (3)0.111430 (18)0.55018 (3)0.01793 (9)
O10.8145 (3)0.23319 (18)0.3771 (3)0.0371 (7)
O20.6001 (2)0.18415 (15)0.5019 (2)0.0255 (5)
O30.8360 (3)0.0692 (2)0.2848 (3)0.0398 (7)
O40.8088 (2)0.08878 (16)0.5374 (2)0.0262 (5)
O50.1696 (2)0.03081 (18)0.2654 (2)0.0312 (6)
O60.6027 (2)0.14074 (16)0.2637 (2)0.0273 (6)
O70.5918 (2)0.02641 (18)0.1584 (2)0.0319 (6)
O80.3938 (2)0.01284 (15)0.5680 (2)0.0207 (5)
O90.1606 (2)0.09296 (18)0.4989 (2)0.0314 (6)
O100.5944 (2)0.05457 (15)0.6800 (2)0.0213 (5)
O110.3892 (2)0.08031 (18)0.1323 (2)0.0318 (6)
O120.3941 (2)0.17446 (17)0.6351 (2)0.0302 (6)
O130.3878 (2)0.10446 (14)0.3918 (2)0.0190 (5)
N11.0597 (3)0.2744 (2)0.3644 (3)0.0311 (7)
H1A0.975 (4)0.259 (3)0.363 (4)0.033 (11)*
N21.6812 (3)0.4010 (2)0.3882 (3)0.0346 (8)
H2A1.759 (5)0.418 (3)0.390 (4)0.048 (14)*
C11.2236 (4)0.3560 (3)0.4613 (4)0.0373 (10)
H11.250 (5)0.395 (3)0.524 (5)0.055 (15)*
C21.1005 (4)0.3301 (3)0.4530 (4)0.0417 (11)
H21.045 (5)0.355 (3)0.503 (5)0.056 (15)*
C31.4368 (3)0.3526 (2)0.3800 (3)0.0229 (7)
C41.1335 (4)0.2423 (3)0.2821 (4)0.0323 (9)
H41.099 (4)0.205 (3)0.228 (4)0.034 (12)*
C51.2561 (4)0.2665 (2)0.2850 (4)0.0277 (8)
H51.302 (4)0.245 (2)0.231 (4)0.021 (10)*
C61.3038 (3)0.3250 (2)0.3758 (3)0.0240 (7)
C71.5028 (4)0.3510 (3)0.2738 (4)0.0331 (9)
H71.465 (4)0.335 (3)0.193 (4)0.034 (11)*
C81.6268 (4)0.3754 (3)0.2801 (4)0.0368 (10)
H81.689 (5)0.371 (3)0.213 (6)0.071 (17)*
C91.4982 (4)0.3808 (2)0.4910 (4)0.0271 (8)
H91.458 (4)0.382 (2)0.561 (4)0.022 (10)*
C101.6208 (4)0.4047 (3)0.4929 (4)0.0334 (9)
H101.668 (4)0.425 (3)0.568 (4)0.042 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01509 (16)0.02654 (17)0.01941 (17)0.00040 (11)0.00014 (12)0.00269 (12)
Mo20.01621 (16)0.03073 (17)0.01461 (16)0.00070 (12)0.00170 (12)0.00145 (12)
Mo30.01748 (17)0.02918 (17)0.02513 (18)0.00308 (12)0.00193 (13)0.00564 (13)
Mo40.01682 (16)0.01970 (16)0.01713 (16)0.00114 (11)0.00008 (12)0.00167 (11)
O10.0270 (14)0.0361 (15)0.0480 (18)0.0071 (12)0.0015 (13)0.0106 (13)
O20.0253 (13)0.0233 (12)0.0276 (14)0.0016 (10)0.0009 (11)0.0001 (10)
O30.0290 (15)0.0546 (18)0.0363 (17)0.0054 (13)0.0064 (13)0.0013 (14)
O40.0205 (13)0.0298 (13)0.0277 (14)0.0052 (10)0.0033 (10)0.0039 (11)
O50.0245 (14)0.0435 (15)0.0250 (14)0.0016 (11)0.0033 (11)0.0057 (11)
O60.0249 (14)0.0333 (13)0.0236 (14)0.0031 (11)0.0001 (11)0.0078 (11)
O70.0232 (14)0.0474 (16)0.0257 (14)0.0048 (12)0.0052 (11)0.0034 (12)
O80.0189 (12)0.0244 (12)0.0186 (12)0.0000 (9)0.0004 (9)0.0003 (10)
O90.0262 (14)0.0389 (14)0.0296 (15)0.0042 (12)0.0044 (11)0.0019 (12)
O100.0201 (12)0.0246 (12)0.0188 (12)0.0012 (10)0.0013 (10)0.0013 (10)
O110.0238 (14)0.0478 (16)0.0234 (14)0.0035 (12)0.0000 (11)0.0056 (12)
O120.0271 (14)0.0346 (14)0.0289 (14)0.0049 (11)0.0005 (11)0.0072 (11)
O130.0176 (12)0.0225 (11)0.0166 (12)0.0001 (9)0.0004 (9)0.0022 (9)
N10.0194 (16)0.0359 (17)0.038 (2)0.0052 (14)0.0000 (14)0.0063 (15)
N20.0193 (17)0.0386 (18)0.046 (2)0.0035 (14)0.0043 (16)0.0070 (16)
C10.025 (2)0.055 (3)0.032 (2)0.0056 (19)0.0032 (17)0.013 (2)
C20.026 (2)0.065 (3)0.035 (2)0.001 (2)0.0081 (19)0.011 (2)
C30.0202 (18)0.0254 (17)0.0227 (18)0.0026 (14)0.0008 (14)0.0040 (14)
C40.032 (2)0.0276 (19)0.035 (2)0.0012 (17)0.0088 (18)0.0027 (18)
C50.027 (2)0.0296 (19)0.027 (2)0.0059 (16)0.0009 (16)0.0013 (16)
C60.0196 (17)0.0267 (18)0.0251 (19)0.0013 (14)0.0024 (14)0.0036 (15)
C70.027 (2)0.046 (2)0.025 (2)0.0010 (17)0.0010 (17)0.0031 (18)
C80.029 (2)0.050 (2)0.033 (2)0.0014 (18)0.0106 (18)0.0080 (19)
C90.0248 (19)0.0319 (19)0.025 (2)0.0008 (15)0.0022 (16)0.0008 (16)
C100.026 (2)0.036 (2)0.037 (2)0.0034 (17)0.0043 (18)0.0023 (19)
Geometric parameters (Å, º) top
Mo1—O91.700 (3)O8—Mo3i2.450 (2)
Mo1—O51.705 (3)O10—Mo2i1.987 (2)
Mo1—O4i1.898 (2)O10—Mo1i2.388 (2)
Mo1—O132.009 (2)N1—C41.324 (5)
Mo1—O82.341 (2)N1—C21.330 (6)
Mo1—O10i2.388 (2)N1—H1A0.93 (4)
Mo2—O111.707 (2)N2—C81.328 (6)
Mo2—O71.720 (3)N2—C101.341 (6)
Mo2—O61.898 (2)N2—H2A0.88 (5)
Mo2—O10i1.987 (2)C1—C21.377 (6)
Mo2—O132.297 (2)C1—C61.387 (6)
Mo2—O8i2.338 (2)C1—H10.92 (5)
Mo3—O31.699 (3)C2—H20.91 (5)
Mo3—O11.718 (3)C3—C71.388 (5)
Mo3—O41.912 (2)C3—C91.396 (5)
Mo3—O61.927 (2)C3—C61.487 (5)
Mo3—O22.299 (3)C4—C51.366 (6)
Mo3—O8i2.450 (2)C4—H40.88 (4)
Mo4—O121.696 (3)C5—C61.396 (5)
Mo4—O21.750 (2)C5—H50.86 (4)
Mo4—O131.954 (2)C7—C81.381 (6)
Mo4—O101.957 (2)C7—H70.96 (4)
Mo4—O82.155 (2)C8—H81.02 (6)
Mo4—O8i2.396 (2)C9—C101.365 (6)
O4—Mo1i1.898 (2)C9—H90.89 (4)
O8—Mo2i2.338 (2)C10—H100.98 (5)
O8—Mo4i2.396 (2)
O9—Mo1—O5104.8 (1)O10—Mo4—O8i78.0 (1)
O9—Mo1—O4i103.0 (1)O8—Mo4—O8i76.5 (1)
O5—Mo1—O4i101.7 (1)Mo4—O2—Mo3118.1 (1)
O9—Mo1—O1396.6 (1)Mo1i—O4—Mo3118.6 (1)
O5—Mo1—O13100.4 (1)Mo2—O6—Mo3117.8 (1)
O4i—Mo1—O13145.5 (1)Mo4—O8—Mo2i91.9 (1)
O9—Mo1—O895.9 (1)Mo4—O8—Mo191.7 (1)
O5—Mo1—O8159.0 (1)Mo2i—O8—Mo1164.5 (1)
O4i—Mo1—O876.7 (1)Mo4—O8—Mo4i103.5 (1)
O13—Mo1—O873.1 (1)Mo2i—O8—Mo4i96.0 (1)
O9—Mo1—O10i163.7 (1)Mo1—O8—Mo4i97.8 (1)
O5—Mo1—O10i87.6 (1)Mo4—O8—Mo3i164.5 (1)
O4i—Mo1—O10i84.4 (1)Mo2i—O8—Mo3i86.3 (1)
O13—Mo1—O10i70.4 (1)Mo1—O8—Mo3i86.3 (1)
O8—Mo1—O10i71.4 (1)Mo4i—O8—Mo3i91.9 (1)
O11—Mo2—O7104.8 (1)Mo4—O10—Mo2i110.0 (1)
O11—Mo2—O6100.4 (1)Mo4—O10—Mo1i110.1 (1)
O7—Mo2—O6100.6 (1)Mo2i—O10—Mo1i102.4 (1)
O11—Mo2—O10i102.2 (1)Mo4—O13—Mo1109.1 (1)
O7—Mo2—O10i96.6 (1)Mo4—O13—Mo2111.5 (1)
O6—Mo2—O10i147.0 (1)Mo1—O13—Mo2105.0 (1)
O11—Mo2—O1388.4 (1)C4—N1—C2122.2 (4)
O7—Mo2—O13164.7 (1)C4—N1—H1A121 (3)
O6—Mo2—O1384.1 (1)C2—N1—H1A116 (3)
O10i—Mo2—O1372.8 (1)C8—N2—C10122.8 (4)
O11—Mo2—O8i160.9 (1)C8—N2—H2A118 (3)
O7—Mo2—O8i94.3 (1)C10—N2—H2A119 (3)
O6—Mo2—O8i77.0 (1)C2—C1—C6119.8 (4)
O10i—Mo2—O8i73.8 (1)C2—C1—H1118 (3)
O13—Mo2—O8i72.5 (1)C6—C1—H1122 (3)
O3—Mo3—O1104.6 (1)N1—C2—C1119.9 (4)
O3—Mo3—O4100.2 (1)N1—C2—H2119 (3)
O1—Mo3—O4100.8 (1)C1—C2—H2120 (3)
O3—Mo3—O697.4 (1)C7—C3—C9118.3 (3)
O1—Mo3—O6104.2 (1)C7—C3—C6120.9 (3)
O4—Mo3—O6144.5 (1)C9—C3—C6120.8 (3)
O3—Mo3—O2166.4 (1)N1—C4—C5120.4 (4)
O1—Mo3—O289.0 (1)N1—C4—H4116 (3)
O4—Mo3—O278.4 (1)C5—C4—H4124 (3)
O6—Mo3—O277.3 (1)C4—C5—C6119.7 (4)
O3—Mo3—O8i96.8 (1)C4—C5—H5119 (3)
O1—Mo3—O8i158.6 (1)C6—C5—H5122 (3)
O4—Mo3—O8i73.8 (1)C1—C6—C5117.9 (3)
O6—Mo3—O8i73.8 (1)C1—C6—C3121.5 (3)
O2—Mo3—O8i69.7 (1)C5—C6—C3120.6 (3)
O12—Mo4—O2104.4 (1)C8—C7—C3120.0 (4)
O12—Mo4—O13101.3 (1)C8—C7—H7117 (3)
O2—Mo4—O1397.1 (1)C3—C7—H7123 (3)
O12—Mo4—O10101.8 (1)N2—C8—C7119.3 (4)
O2—Mo4—O1096.0 (1)N2—C8—H8112 (3)
O13—Mo4—O10149.6 (1)C7—C8—H8128 (3)
O12—Mo4—O898.9 (1)C10—C9—C3119.7 (4)
O2—Mo4—O8156.7 (1)C10—C9—H9120 (3)
O13—Mo4—O878.5 (1)C3—C9—H9120 (3)
O10—Mo4—O878.7 (1)N2—C10—C9119.9 (4)
O12—Mo4—O8i175.4 (1)N2—C10—H10117 (3)
O2—Mo4—O8i80.2 (1)C9—C10—H10123 (3)
O13—Mo4—O8i77.5 (1)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.93 (4)1.79 (5)2.722 (4)174 (4)
N2—H2A···O7ii0.88 (5)1.91 (5)2.755 (4)161 (5)
Symmetry code: (ii) x+5/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C10H10N2)[Mo8O26]
Mr1499.92
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.7493 (2), 15.2255 (1), 10.7828 (2)
β (°) 93.840 (1)
V3)1760.79 (5)
Z2
Radiation typeMo Kα
µ (mm1)2.86
Crystal size (mm)0.39 × 0.32 × 0.28
Data collection
DiffractometerSMART CCD
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.329, 0.449
No. of measured, independent and
observed [I > 2σ(I)] reflections
6344, 3065, 2781
Rint0.017
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.054, 1.09
No. of reflections3065
No. of parameters303
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.46, 0.67

Computer programs: SMART (Siemens, 1996), SMART and SAINT (Siemens, 1994), SMART and SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Mo1—O91.700 (3)Mo3—O31.699 (3)
Mo1—O51.705 (3)Mo3—O11.718 (3)
Mo1—O4i1.898 (2)Mo3—O41.912 (2)
Mo1—O132.009 (2)Mo3—O61.927 (2)
Mo1—O82.341 (2)Mo3—O22.299 (3)
Mo1—O10i2.388 (2)Mo3—O8i2.450 (2)
Mo2—O111.707 (2)Mo4—O121.696 (3)
Mo2—O71.720 (3)Mo4—O21.750 (2)
Mo2—O61.898 (2)Mo4—O131.954 (2)
Mo2—O10i1.987 (2)Mo4—O101.957 (2)
Mo2—O132.297 (2)Mo4—O82.155 (2)
Mo2—O8i2.338 (2)Mo4—O8i2.396 (2)
O9—Mo1—O5104.8 (1)O4—Mo3—O8i73.8 (1)
O9—Mo1—O4i103.0 (1)O6—Mo3—O8i73.8 (1)
O5—Mo1—O4i101.7 (1)O2—Mo3—O8i69.7 (1)
O9—Mo1—O1396.6 (1)O12—Mo4—O2104.4 (1)
O5—Mo1—O13100.4 (1)O12—Mo4—O13101.3 (1)
O9—Mo1—O895.9 (1)O2—Mo4—O1397.1 (1)
O4i—Mo1—O876.7 (1)O12—Mo4—O10101.8 (1)
O13—Mo1—O873.1 (1)O2—Mo4—O1096.0 (1)
O5—Mo1—O10i87.6 (1)O12—Mo4—O898.9 (1)
O4i—Mo1—O10i84.4 (1)O13—Mo4—O878.5 (1)
O13—Mo1—O10i70.4 (1)O10—Mo4—O878.7 (1)
O8—Mo1—O10i71.4 (1)O2—Mo4—O8i80.2 (1)
O11—Mo2—O7104.8 (1)O13—Mo4—O8i77.5 (1)
O11—Mo2—O6100.4 (1)O10—Mo4—O8i78.0 (1)
O7—Mo2—O6100.6 (1)O8—Mo4—O8i76.5 (1)
O11—Mo2—O10i102.2 (1)Mo4—O2—Mo3118.1 (1)
O7—Mo2—O10i96.6 (1)Mo1i—O4—Mo3118.6 (1)
O11—Mo2—O1388.4 (1)Mo2—O6—Mo3117.8 (1)
O6—Mo2—O1384.1 (1)Mo4—O8—Mo2i91.9 (1)
O10i—Mo2—O1372.8 (1)Mo4—O8—Mo191.7 (1)
O7—Mo2—O8i94.3 (1)Mo4—O8—Mo4i103.5 (1)
O6—Mo2—O8i77.0 (1)Mo2i—O8—Mo4i96.0 (1)
O10i—Mo2—O8i73.8 (1)Mo1—O8—Mo4i97.8 (1)
O13—Mo2—O8i72.5 (1)Mo2i—O8—Mo3i86.3 (1)
O3—Mo3—O1104.6 (1)Mo1—O8—Mo3i86.3 (1)
O3—Mo3—O4100.2 (1)Mo4i—O8—Mo3i91.9 (1)
O1—Mo3—O4100.8 (1)Mo4—O10—Mo2i110.0 (1)
O3—Mo3—O697.4 (1)Mo4—O10—Mo1i110.1 (1)
O1—Mo3—O6104.2 (1)Mo2i—O10—Mo1i102.4 (1)
O1—Mo3—O289.0 (1)Mo4—O13—Mo1109.1 (1)
O4—Mo3—O278.4 (1)Mo4—O13—Mo2111.5 (1)
O6—Mo3—O277.3 (1)Mo1—O13—Mo2105.0 (1)
O3—Mo3—O8i96.8 (1)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.93 (4)1.79 (5)2.722 (4)174 (4)
N2—H2A···O7ii0.88 (5)1.91 (5)2.755 (4)161 (5)
Symmetry code: (ii) x+5/2, y+1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds