Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, 2C4H10NO3+·SO42−·H2O, both threoninium mol­ecules have a gauche II form for the Cγ and gauche I form for the Oγ. The sulfate anion links the cation in an infinite manner through hydrogen bonds along the b and c axes. The two water mol­ecules on the twofold axes link the sulfate groups and one of the cations.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801008960/ob6047sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801008960/ob6047Isup2.hkl
Contains datablock I

CCDC reference: 170759

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.032
  • wR factor = 0.094
  • Data-to-parameter ratio = 8.1

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

REFLT_03 From the CIF: _diffrn_reflns_theta_max 24.97 From the CIF: _reflns_number_total 1732 Count of symmetry unique reflns 1468 Completeness (_total/calc) 117.98% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 264 Fraction of Friedel pairs measured 0.180 Are heavy atom types Z>Si present yes WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure

Comment top

Threonine is the isometric form of amino acids containing more than one asymmetric C atom. The crystal structures of DL-threonine (Shoemaker et al., 1950), L-threonine (Shoemaker et al., 1950) and L-allothreonine (Swaminathan & Srinivasan, 1975) have been reported. In the present study, threonine complex with sulfuric acid, (I), has been investigated.

The geometries of the L-threoninium cations A and B are as expected (Fig. 1 and Table 1). In cation A, the O1A—C11—C12—N11 and O1B—C11—C12—N11 torsion angles are -12.6 (4) and 167.9 (3)°, respectively, and the corresponding torsion angles in B are -8.3 (4) and 172.1 (3)°. This tendency towards non-planarity is also found in various amino acids (Lakshiminarayanan et al., 1967). The side-chain conformation is given by the torsion angles about Cα—Cβ, giving the orientation of the γ atom with respect to N (Lakshiminarayanan et al., 1967). These angles are close to 60, 180 and 300°. In the present case, the Cγ atom moves to a gauche II form [-49.2 (4) and -48.1 (4)°] and the Oγ atom to a gauche I form [75.8 (3) and 78.6 (3)°] for both molecules.

The sulfate anion forms hydrogen bonds with threoninium molecules A and B (Fig. 2 and Table 2). Threonium molecule A is engaged in a three-centred zigzag (Z1) head-to-tail sequence with N11—H11C···O1A(-x + 1/2, y + 1/2, -z + 2) and N11—H11C···O2A(-x + 1/2, y - 1/2, -z + 2) hydrogen bonds connecting 21-related amino acids (Vijayan, 1988). The Oγ atom of threoninium molecule A, as acceptor, links the carboxyl O atom of threoninium molecule B through a strong hydrogen bond, O2B—H2B···O1C(x, y + 1, z). The two water molecules, lying on the twofold axes, link (i) the sulfate groups and (ii) threoninium molecule B through the O2C atom. One of the water molecules, as acceptor, links the amino group of threoninum molecule B, N21—H21B···OW1(x, y, 1 + z). Two bifurcated hydrogen bonds are observed for the N21 amino group with sulfate O atoms through H21A and H21C. A four-centre hydrogen bond is observed in the case of N11—H11C involving the sulfate O atom and the double-bonded O atom of the carboxyl group of both molecules, connecting all the moieties in the structure (Jeffrey & Saengar, 1991). The sulfate anion links through the N11 atom of three threoninium A molecules, resulting in infinite chains along the b axis. The O3 atom of the sulfate anion links the N21 atoms of two threoninium B molecules, resulting in infinite chains along the c axis.

Experimental top

Crystals of (I) were obtained from an aqueous solution of a 2:1 stoichiometric ratio of L-threonine and sulfuric acid.

Refinement top

The H atoms of the water molecules were located by difference Fourier maps and were refined, while all other H atoms were fixed with geometric restraints using HFIX and allowed to ride on the parent atom.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1999); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Views of the two independent threonine cations showing the atomic numbering scheme and 50% probability displacement ellipsoids (Johnson, 1976).
[Figure 2] Fig. 2. Packing diagram of the molecule viewed down the b axis.
Bis(L-threoninium) sulfate monohydrate top
Crystal data top
2C4H10NO3+·SO42·H2OF(000) = 752
Mr = 354.34Dx = 1.551 Mg m3
Dm = 1.54 Mg m3
Dm measured by floatation in carbon tetrachloride and xylene
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
a = 23.096 (4) ÅCell parameters from 25 reflections
b = 6.281 (9) Åθ = 10.8–14.4°
c = 11.648 (1) ŵ = 0.27 mm1
β = 116.122 (9)°T = 293 K
V = 1517 (2) Å3Needles, colorless
Z = 40.5 × 0.45 × 0.33 mm
Data collection top
Enraf-Nonius sealed tube
diffractometer
1675 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.018
Graphite monochromatorθmax = 25.0°, θmin = 2.0°
ω–2θ scansh = 127
Absorption correction: ψ scan
(North et al., 1968)
k = 17
Tmin = 0.869, Tmax = 0.914l = 1312
1872 measured reflections25 standard reflections every 3 reflections
1732 independent reflections intensity decay: none
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0764P)2 + 1.0496P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.094(Δ/σ)max < 0.001
S = 0.98Δρmax = 0.26 e Å3
1732 reflectionsΔρmin = 0.32 e Å3
213 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.026 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: (Flack, 1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.07 (10)
Crystal data top
2C4H10NO3+·SO42·H2OV = 1517 (2) Å3
Mr = 354.34Z = 4
Monoclinic, C2Mo Kα radiation
a = 23.096 (4) ŵ = 0.27 mm1
b = 6.281 (9) ÅT = 293 K
c = 11.648 (1) Å0.5 × 0.45 × 0.33 mm
β = 116.122 (9)°
Data collection top
Enraf-Nonius sealed tube
diffractometer
1675 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.018
Tmin = 0.869, Tmax = 0.91425 standard reflections every 3 reflections
1872 measured reflections intensity decay: none
1732 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094Δρmax = 0.26 e Å3
S = 0.98Δρmin = 0.32 e Å3
1732 reflectionsAbsolute structure: (Flack, 1983)
213 parametersAbsolute structure parameter: 0.07 (10)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.12376 (3)0.18012 (12)0.15518 (6)0.0233 (2)
O10.10142 (10)0.0461 (4)0.0385 (2)0.0393 (6)
O20.07958 (10)0.1482 (4)0.21372 (19)0.0335 (5)
O30.12167 (11)0.4041 (4)0.1165 (2)0.0406 (6)
O40.18916 (10)0.1178 (5)0.2433 (2)0.0394 (6)
O1A0.23195 (10)0.0417 (5)0.9916 (2)0.0380 (6)
O1B0.13354 (9)0.1455 (4)0.85151 (19)0.0335 (5)
H1B0.12220.08200.89970.050*
C110.19592 (13)0.1223 (5)0.8917 (2)0.0251 (6)
C120.21886 (11)0.2074 (5)0.7972 (2)0.0231 (6)
H120.20240.35270.77390.028*
N110.29024 (10)0.2174 (4)0.8618 (2)0.0250 (6)
H11A0.30460.26790.80770.038*
H11B0.30610.08740.88700.038*
H11C0.30290.30270.92950.038*
C130.19350 (13)0.0731 (6)0.6746 (3)0.0282 (7)
H130.14710.09990.62760.034*
C140.22416 (16)0.1343 (7)0.5879 (3)0.0428 (9)
H14A0.20720.04550.51320.064*
H14B0.27000.11530.63280.064*
H14C0.21470.28060.56290.064*
O1C0.20185 (9)0.1482 (4)0.7063 (2)0.0339 (5)
H1C0.23800.18570.71780.051*
O2A0.12088 (9)0.6655 (5)0.87761 (17)0.0368 (6)
O2B0.09874 (9)0.6397 (5)0.67159 (17)0.0354 (6)
H2B0.13120.71290.69260.053*
C210.08573 (12)0.6159 (5)0.7699 (2)0.0250 (6)
C220.02032 (13)0.5186 (5)0.7319 (2)0.0237 (6)
H220.01740.38580.68550.028*
N210.01341 (11)0.4693 (5)0.8498 (2)0.0265 (6)
H21A0.02520.41210.82890.040*
H21B0.01730.58850.89390.040*
H21C0.04390.37760.89750.040*
C230.03193 (12)0.6721 (6)0.6437 (2)0.0290 (6)
H230.03090.66850.56060.035*
O2C0.01522 (11)0.8823 (4)0.6921 (2)0.0398 (6)
H2C0.03830.91950.72550.060*
C240.09955 (14)0.6109 (9)0.6208 (3)0.0492 (10)
H24A0.12970.71270.56450.074*
H24B0.10220.60900.70080.074*
H24C0.10960.47210.58250.074*
OW10.00000.7880 (6)0.00000.0318 (7)
HW10.0343 (19)0.847 (11)0.019 (4)0.067 (15)*
OW20.00000.1407 (8)0.50000.106 (3)
HW20.012 (4)0.053 (13)0.543 (6)0.13 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0237 (3)0.0195 (4)0.0307 (3)0.0005 (3)0.0156 (3)0.0009 (3)
O10.0383 (11)0.0466 (17)0.0423 (12)0.0143 (12)0.0262 (10)0.0136 (12)
O20.0383 (10)0.0290 (14)0.0444 (10)0.0009 (11)0.0284 (9)0.0024 (11)
O30.0420 (12)0.0239 (13)0.0589 (14)0.0011 (10)0.0250 (11)0.0106 (12)
O40.0319 (10)0.0403 (15)0.0422 (11)0.0073 (11)0.0128 (9)0.0029 (12)
O1A0.0312 (10)0.0454 (16)0.0347 (11)0.0037 (11)0.0119 (9)0.0138 (11)
O1B0.0271 (9)0.0359 (15)0.0430 (10)0.0045 (10)0.0205 (8)0.0105 (11)
C110.0266 (12)0.0192 (15)0.0298 (13)0.0007 (12)0.0126 (11)0.0002 (12)
C120.0201 (11)0.0210 (15)0.0272 (12)0.0005 (12)0.0094 (10)0.0027 (13)
N110.0223 (10)0.0245 (15)0.0259 (10)0.0039 (10)0.0084 (9)0.0044 (10)
C130.0208 (12)0.0336 (18)0.0273 (13)0.0001 (13)0.0081 (10)0.0012 (14)
C140.0505 (17)0.052 (3)0.0280 (13)0.0107 (19)0.0192 (13)0.0017 (17)
O1C0.0270 (10)0.0276 (13)0.0495 (12)0.0050 (10)0.0189 (10)0.0086 (11)
O2A0.0308 (10)0.0447 (16)0.0258 (9)0.0122 (12)0.0041 (8)0.0016 (12)
O2B0.0318 (10)0.0467 (17)0.0317 (9)0.0134 (11)0.0177 (8)0.0043 (11)
C210.0248 (12)0.0206 (14)0.0282 (13)0.0023 (12)0.0104 (10)0.0012 (12)
C220.0251 (13)0.0240 (15)0.0231 (12)0.0025 (12)0.0117 (10)0.0042 (12)
N210.0279 (12)0.0255 (14)0.0257 (11)0.0008 (11)0.0115 (9)0.0042 (10)
C230.0251 (12)0.0384 (18)0.0228 (12)0.0009 (15)0.0101 (10)0.0040 (15)
O2C0.0450 (13)0.0289 (13)0.0573 (14)0.0063 (12)0.0333 (12)0.0070 (12)
C240.0230 (13)0.070 (3)0.0469 (16)0.0018 (18)0.0087 (12)0.019 (2)
OW10.0289 (15)0.0262 (17)0.0417 (17)0.0000.0169 (14)0.000
OW20.240 (8)0.030 (3)0.087 (3)0.0000.106 (5)0.000
Geometric parameters (Å, º) top
S1—O41.457 (2)O1C—H1C0.8200
S1—O21.4692 (19)O2A—C211.197 (3)
S1—O31.471 (3)O2B—C211.314 (3)
S1—O11.485 (2)O2B—H2B0.8200
O1A—C111.204 (4)C21—C221.504 (4)
O1B—C111.312 (3)C22—N211.484 (3)
O1B—H1B0.8200C22—C231.533 (4)
C11—C121.515 (4)C22—H220.9800
C12—N111.482 (3)N21—H21A0.8900
C12—C131.535 (4)N21—H21B0.8900
C12—H120.9800N21—H21C0.8900
N11—H11A0.8900C23—O2C1.420 (5)
N11—H11B0.8900C23—C241.514 (4)
N11—H11C0.8900C23—H230.9800
C13—O1C1.429 (5)O2C—H2C0.8200
C13—C141.516 (4)C24—H24A0.9600
C13—H130.9800C24—H24B0.9600
C14—H14A0.9600C24—H24C0.9600
C14—H14B0.9600OW1—HW10.81 (5)
C14—H14C0.9600OW2—HW20.86 (7)
O4—S1—O2110.68 (13)H14B—C14—H14C109.5
O4—S1—O3110.88 (16)C13—O1C—H1C109.5
O2—S1—O3109.68 (14)C21—O2B—H2B109.5
O4—S1—O1109.09 (15)O2A—C21—O2B125.0 (3)
O2—S1—O1108.37 (13)O2A—C21—C22122.9 (2)
O3—S1—O1108.07 (17)O2B—C21—C22112.0 (2)
C11—O1B—H1B109.5N21—C22—C21108.4 (2)
O1A—C11—O1B125.1 (3)N21—C22—C23112.2 (2)
O1A—C11—C12122.5 (2)C21—C22—C23109.5 (3)
O1B—C11—C12112.4 (2)N21—C22—H22108.9
N11—C12—C11108.2 (2)C21—C22—H22108.9
N11—C12—C13112.3 (2)C23—C22—H22108.9
C11—C12—C13111.7 (3)C22—N21—H21A109.5
N11—C12—H12108.2C22—N21—H21B109.5
C11—C12—H12108.2H21A—N21—H21B109.5
C13—C12—H12108.2C22—N21—H21C109.5
C12—N11—H11A109.5H21A—N21—H21C109.5
C12—N11—H11B109.5H21B—N21—H21C109.5
H11A—N11—H11B109.5O2C—C23—C24112.7 (3)
C12—N11—H11C109.5O2C—C23—C22108.8 (2)
H11A—N11—H11C109.5C24—C23—C22113.9 (3)
H11B—N11—H11C109.5O2C—C23—H23107.0
O1C—C13—C14111.7 (3)C24—C23—H23107.0
O1C—C13—C12109.9 (2)C22—C23—H23107.0
C14—C13—C12112.4 (3)C23—O2C—H2C109.5
O1C—C13—H13107.5C23—C24—H24A109.5
C14—C13—H13107.5C23—C24—H24B109.5
C12—C13—H13107.5H24A—C24—H24B109.5
C13—C14—H14A109.5C23—C24—H24C109.5
C13—C14—H14B109.5H24A—C24—H24C109.5
H14A—C14—H14B109.5H24B—C24—H24C109.5
C13—C14—H14C109.5HW1—OW1—HW1i125.5 (9)
H14A—C14—H14C109.5HW2—OW2—HW2ii101.0 (10)
O1A—C11—C12—N1112.6 (4)O2A—C21—C22—N218.3 (4)
O1B—C11—C12—N11167.9 (3)O2B—C21—C22—N21172.1 (3)
O1A—C11—C12—C13111.5 (3)O2A—C21—C22—C23114.4 (3)
O1B—C11—C12—C1368.0 (3)O2B—C21—C22—C2365.2 (3)
N11—C12—C13—O1C75.8 (3)N21—C22—C23—O2C78.6 (3)
C11—C12—C13—O1C46.0 (3)C21—C22—C23—O2C41.9 (3)
N11—C12—C13—C1449.2 (4)N21—C22—C23—C2448.1 (4)
C11—C12—C13—C14171.0 (3)C21—C22—C23—C24168.5 (3)
Symmetry codes: (i) x, y, z; (ii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1B—H1B···O1iii0.821.892.666 (3)157
N11—H11A···O4iv0.892.302.927 (5)128
N11—H11B···O3v0.892.042.761 (4)137
N11—H11C···O1Avi0.892.102.846 (4)141
N11—H11C···O2Avii0.892.332.837 (3)117
N11—H11C···O1iv0.892.583.052 (4)114
O1C—H1C···O4v0.821.972.746 (3)157
O2B—H2B···O1Cviii0.821.792.600 (3)167
N21—H21A···O2ii0.892.012.797 (4)148
N21—H21A···O3ii0.892.573.337 (3)144
N21—H21B···OW1iii0.891.922.764 (4)157
N21—H21C···O3iii0.892.393.038 (3)130
N21—H21C···O1iii0.892.623.477 (5)161
O2C—H2C···O2ix0.822.022.764 (3)151
OW1—HW1···O1viii0.81 (5)1.93 (5)2.719 (3)165 (6)
OW2—HW2···O2Cx0.86 (7)2.07 (7)2.908 (4)162 (7)
Symmetry codes: (ii) x, y, z+1; (iii) x, y, z+1; (iv) x+1/2, y+1/2, z+1; (v) x+1/2, y1/2, z+1; (vi) x+1/2, y+1/2, z+2; (vii) x+1/2, y1/2, z+2; (viii) x, y+1, z; (ix) x, y+1, z+1; (x) x, y1, z.

Experimental details

Crystal data
Chemical formula2C4H10NO3+·SO42·H2O
Mr354.34
Crystal system, space groupMonoclinic, C2
Temperature (K)293
a, b, c (Å)23.096 (4), 6.281 (9), 11.648 (1)
β (°) 116.122 (9)
V3)1517 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.5 × 0.45 × 0.33
Data collection
DiffractometerEnraf-Nonius sealed tube
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.869, 0.914
No. of measured, independent and
observed [I > 2σ(I)] reflections
1872, 1732, 1675
Rint0.018
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.094, 0.98
No. of reflections1732
No. of parameters213
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.32
Absolute structure(Flack, 1983)
Absolute structure parameter0.07 (10)

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1999), SHELXL97.

Selected torsion angles (º) top
O1A—C11—C12—N1112.6 (4)O2A—C21—C22—N218.3 (4)
N11—C12—C13—O1C75.8 (3)N21—C22—C23—O2C78.6 (3)
N11—C12—C13—C1449.2 (4)N21—C22—C23—C2448.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1B—H1B···O1i0.821.892.666 (3)157.0
N11—H11A···O4ii0.892.302.927 (5)127.6
N11—H11B···O3iii0.892.042.761 (4)137.0
N11—H11C···O1Aiv0.892.102.846 (4)141.3
N11—H11C···O2Av0.892.332.837 (3)116.5
N11—H11C···O1ii0.892.583.052 (4)114.3
O1C—H1C···O4iii0.821.972.746 (3)157.2
O2B—H2B···O1Cvi0.821.792.600 (3)167.3
N21—H21A···O2vii0.892.012.797 (4)147.6
N21—H21A···O3vii0.892.573.337 (3)144.3
N21—H21B···OW1i0.891.922.764 (4)157.3
N21—H21C···O3i0.892.393.038 (3)129.5
N21—H21C···O1i0.892.623.477 (5)161.4
O2C—H2C···O2viii0.822.022.764 (3)151.1
OW1—HW1···O1vi0.81 (5)1.93 (5)2.719 (3)165 (6)
OW2—HW2···O2Cix0.86 (7)2.07 (7)2.908 (4)162 (7)
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+1/2, z+1; (iii) x+1/2, y1/2, z+1; (iv) x+1/2, y+1/2, z+2; (v) x+1/2, y1/2, z+2; (vi) x, y+1, z; (vii) x, y, z+1; (viii) x, y+1, z+1; (ix) x, y1, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds