Download citation
Download citation
link to html
In the title compound, C5H12NO2+·ClO4·C5H11NO2·H2O, the valine as a zwitterion and valinium are bonded through a strong O—H...O hydrogen bond. Their ammonium groups and the perchlorate ion are held together by hydrogen bonds. Both valine and valinium show gauche-II forms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680100681X/ob6036sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680100681X/ob6036Isup2.hkl
Contains datablock I

CCDC reference: 165673

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.006 Å
  • Disorder in solvent or counterion
  • R factor = 0.037
  • wR factor = 0.110
  • Data-to-parameter ratio = 7.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_302 Alert C Anion/Solvent Disorder ....................... 8.00 Perc. General Notes
REFLT_03 From the CIF: _diffrn_reflns_theta_max 24.98 From the CIF: _reflns_number_total 1665 Count of symmetry unique reflns 1668 Completeness (_total/calc) 99.82% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present yes WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

Valine is an essential amino acid. The crystal structures of L-valine (Torri et al., 1970), DL-valine (Mallikarjunan & Rao, 1969), L-valine hydrochloride monohydrate (Rao, 1969), L-valine hydrochloride (Parathasarathy, 1966; Ando et al., 1967), DL-valine hydrochloride (Di Blasio et al., 1977) and L-valine nitrate (Srinivasan & Rajaram, 1997) have been reported. In the present study, (I), the structure of valine with perchloric acid was undertaken.

All three possible rotational isomers of the valine molecule, viz. trans, gauche-I, gauche-II have been found in the crystalline state (Torri & Iitaka, 1970). In (I), both valine and valinium molecules are in gauche-II form. The amino N atom deviates from the carboxyl plane by 0.050 (6) Å in the valine molecule and 0.024 (7) Å in the valinium molecule, which corresponds to the twisting of the C—N bond out of the plane of the carboxyl group by 3.5 (4)° in valine and -1.8 (5)° in the valinium molecule. This tendency of twisting of the C—N bonds are found in various amino acids (Lakshminarayanan et al., 1967).

The valine and valinium molecules are bonded through a strong O—H···O hydrogen bond [O2B···O1B distance 2.562 (4) Å]. The perchlorate ion plays a vital role in forming hydrogen bonds with valine and valinium molecules, and stabilizing the structure. The water molecule links the ammonium group of the valinium molecule with perchlorate. A bifurcated hydrogen bond is observed in the case of the water molecule with perchlorate O atoms (Jeffrey & Saenger, 1991). The valine molecule is engaged in a head-to-tail straight (S2) sequence since the N11—H11A···O1B(x, y + 1, z) hydrogen bond connects two amino acids separated by a unit cell along the b axis, and a zigzag (Z1) sequence since N11—H11C···O2A(1 - x, y + 1/2, 1 - z) connects two 21-related amino acids (Vijayan, 1988).

Experimental top

Colorless needle-shaped crystals of (I) were obtained by the slow evaporation of an aqueous solution of L-valine and perchloric acid in a stoichiometric ratio of 2:1.

Refinement top

There is a positional disorder of the perchlorate O atoms. The site-occupation factors of O2 and O4 are 0.65 (5), and those of O2' and O4' 0.35 (5). The disorder is possibly due to the onset of rotational disorder of the perchlorate ion. The H atoms of the water molecule were located from the difference Fourier maps and refined, while all the other H atoms were fixed by geometric constraints using HFIX.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1999); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atom-numbering scheme and 50% probability displacement ellipsoids (Johnson, 1976).
L-Valine L-Valinium Perchlorate monohydrate top
Crystal data top
C5H11NO2+·ClO4·C5H12NO2·H2OF(000) = 376
Mr = 352.77Dx = 1.366 Mg m3
Dm = 1.369 Mg m3
Dm measured by flotation in a mixture of carbon tetrachloride and xylene
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 11.235 (3) ÅCell parameters from 25 reflections
b = 5.8312 (14) Åθ = 8.1–13.7°
c = 13.0948 (19) ŵ = 0.27 mm1
β = 91.282 (16)°T = 293 K
V = 857.7 (3) Å3Needles, colorless
Z = 20.25 × 0.23 × 0.13 mm
Data collection top
Enraf-Nonius sealed tube
diffractometer
Rint = 0.011
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.4°
Graphite monochromatorh = 013
ω–2θ scansk = 06
1751 measured reflectionsl = 1515
1665 independent reflections3 standard reflections every 60 min
1481 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0658P)2 + 0.132P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.110(Δ/σ)max = 0.002
S = 1.17Δρmax = 0.21 e Å3
1665 reflectionsΔρmin = 0.26 e Å3
228 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.030 (6)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.06 (11)
Crystal data top
C5H11NO2+·ClO4·C5H12NO2·H2OV = 857.7 (3) Å3
Mr = 352.77Z = 2
Monoclinic, P21Mo Kα radiation
a = 11.235 (3) ŵ = 0.27 mm1
b = 5.8312 (14) ÅT = 293 K
c = 13.0948 (19) Å0.25 × 0.23 × 0.13 mm
β = 91.282 (16)°
Data collection top
Enraf-Nonius sealed tube
diffractometer
Rint = 0.011
1751 measured reflections3 standard reflections every 60 min
1665 independent reflections intensity decay: none
1481 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110Δρmax = 0.21 e Å3
S = 1.17Δρmin = 0.26 e Å3
1665 reflectionsAbsolute structure: Flack (1983)
228 parametersAbsolute structure parameter: 0.06 (11)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.32517 (7)0.02913 (19)0.09205 (6)0.0528 (3)
O10.2394 (3)0.0572 (11)0.0241 (3)0.1091 (18)
O30.2751 (5)0.0918 (11)0.1838 (3)0.1308 (19)
O20.3962 (13)0.197 (4)0.0469 (13)0.112 (6)0.65 (5)
O40.4124 (9)0.132 (3)0.133 (2)0.124 (6)0.65 (5)
O2'0.368 (5)0.231 (7)0.055 (3)0.178 (16)0.35 (5)
O4'0.4038 (19)0.147 (4)0.084 (3)0.112 (7)0.35 (5)
O1A0.4708 (3)0.4853 (5)0.3769 (2)0.0628 (8)
O1B0.3434 (3)0.3121 (4)0.4765 (2)0.0605 (8)
C110.3832 (3)0.4873 (6)0.4311 (2)0.0385 (8)
C120.3191 (3)0.7135 (6)0.4498 (3)0.0335 (7)
H120.32970.75300.52220.040*
N110.3775 (2)0.8941 (5)0.3884 (2)0.0380 (6)
H11A0.34101.02760.39800.057*
H11B0.37280.85670.32250.057*
H11C0.45360.90610.40790.057*
C130.1852 (3)0.6948 (7)0.4259 (3)0.0516 (9)
H130.15430.57670.47150.062*
C140.1204 (4)0.9175 (10)0.4518 (5)0.0815 (16)
H14A0.14060.96190.52060.122*
H14B0.03590.89400.44540.122*
H14C0.14391.03620.40560.122*
C150.1584 (4)0.6139 (10)0.3180 (4)0.0811 (15)
H15A0.07380.60490.30690.122*
H15B0.19300.46510.30820.122*
H15C0.19140.72020.27040.122*
O2A0.3947 (2)0.5095 (6)0.69524 (19)0.0576 (7)
O2B0.2391 (3)0.2967 (6)0.6483 (2)0.0647 (8)
H2B0.26880.30510.59180.097*
C210.3045 (3)0.4107 (7)0.7145 (3)0.0437 (8)
C220.2528 (3)0.4105 (7)0.8206 (3)0.0421 (8)
H220.25310.25170.84520.050*
N210.3369 (2)0.5432 (7)0.88663 (19)0.0498 (7)
H21A0.31030.54700.95010.075*
H21B0.34280.68560.86280.075*
H21C0.40820.47660.88660.075*
C230.1250 (3)0.4973 (9)0.8235 (3)0.0602 (10)
H230.07790.40460.77490.072*
C240.0737 (4)0.4601 (13)0.9282 (5)0.097 (2)
H24A0.08250.30190.94720.145*
H24B0.00920.50010.92650.145*
H24C0.11530.55480.97720.145*
C250.1139 (5)0.7465 (11)0.7894 (5)0.0901 (17)
H25A0.03220.79350.79220.135*
H25B0.14100.76120.72070.135*
H25C0.16160.84180.83400.135*
OW10.5770 (3)0.4660 (5)0.1852 (2)0.0578 (8)
HW10.519 (4)0.503 (12)0.153 (4)0.083 (17)*
HW20.543 (4)0.449 (10)0.245 (4)0.068 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0524 (5)0.0638 (6)0.0419 (4)0.0023 (5)0.0037 (3)0.0025 (5)
O10.0665 (18)0.177 (5)0.083 (2)0.021 (3)0.0084 (16)0.043 (3)
O30.189 (4)0.139 (5)0.066 (2)0.002 (4)0.039 (2)0.020 (3)
O20.102 (7)0.150 (14)0.084 (7)0.070 (7)0.020 (5)0.042 (7)
O40.080 (4)0.120 (8)0.170 (13)0.019 (6)0.060 (6)0.065 (8)
O2'0.29 (4)0.113 (17)0.13 (2)0.04 (2)0.08 (2)0.096 (17)
O4'0.095 (10)0.111 (11)0.127 (17)0.067 (11)0.059 (10)0.042 (12)
O1A0.0708 (16)0.0456 (17)0.0731 (17)0.0148 (14)0.0253 (14)0.0042 (14)
O1B0.107 (2)0.0256 (13)0.0498 (15)0.0036 (15)0.0198 (15)0.0005 (12)
C110.0523 (17)0.0316 (18)0.0315 (14)0.0059 (15)0.0015 (13)0.0056 (14)
C120.0405 (16)0.0248 (15)0.0353 (16)0.0001 (14)0.0034 (13)0.0006 (13)
N110.0407 (13)0.0269 (13)0.0466 (15)0.0021 (12)0.0059 (11)0.0032 (11)
C130.0384 (17)0.0375 (19)0.079 (3)0.0039 (16)0.0071 (17)0.0009 (18)
C140.046 (2)0.068 (3)0.131 (4)0.016 (2)0.009 (2)0.015 (3)
C150.070 (3)0.075 (3)0.097 (3)0.010 (3)0.032 (2)0.015 (3)
O2A0.0586 (14)0.0598 (16)0.0550 (13)0.0118 (16)0.0198 (11)0.0046 (15)
O2B0.0749 (18)0.071 (2)0.0489 (14)0.0180 (17)0.0104 (12)0.0075 (16)
C210.0466 (17)0.0368 (17)0.0480 (18)0.0015 (16)0.0106 (15)0.0026 (16)
C220.0404 (16)0.0381 (17)0.0481 (18)0.0022 (16)0.0085 (13)0.0084 (16)
N210.0476 (14)0.060 (2)0.0420 (13)0.0017 (17)0.0038 (11)0.0070 (16)
C230.0392 (16)0.067 (3)0.075 (2)0.004 (2)0.0068 (15)0.007 (3)
C240.063 (3)0.105 (5)0.125 (4)0.003 (3)0.053 (3)0.006 (4)
C250.075 (3)0.079 (4)0.116 (4)0.038 (3)0.015 (3)0.008 (3)
OW10.0605 (16)0.058 (2)0.0550 (15)0.0017 (14)0.0053 (13)0.0006 (14)
Geometric parameters (Å, º) top
Cl1—O4'1.360 (17)C15—H15C0.9600
Cl1—O2'1.37 (3)O2A—C211.197 (4)
Cl1—O31.387 (4)O2B—C211.305 (5)
Cl1—O11.391 (4)O2B—H2B0.8200
Cl1—O21.402 (12)C21—C221.519 (5)
Cl1—O41.456 (11)C22—N211.485 (5)
O1A—C111.225 (4)C22—C231.523 (5)
O1B—C111.268 (4)C22—H220.9800
C11—C121.525 (5)N21—H21A0.8900
C12—N111.486 (4)N21—H21B0.8900
C12—C131.534 (5)N21—H21C0.8900
C12—H120.9800C23—C241.515 (7)
N11—H11A0.8900C23—C251.524 (8)
N11—H11B0.8900C23—H230.9800
N11—H11C0.8900C24—H24A0.9600
C13—C151.513 (6)C24—H24B0.9600
C13—C141.531 (6)C24—H24C0.9600
C13—H130.9800C25—H25A0.9600
C14—H14A0.9600C25—H25B0.9600
C14—H14B0.9600C25—H25C0.9600
C14—H14C0.9600OW1—HW10.80 (5)
C15—H15A0.9600OW1—HW20.89 (5)
C15—H15B0.9600
O4'—Cl1—O2'113 (2)C13—C15—H15A109.5
O4'—Cl1—O3122.7 (16)C13—C15—H15B109.5
O2'—Cl1—O3104 (2)H15A—C15—H15B109.5
O4'—Cl1—O196.9 (11)C13—C15—H15C109.5
O2'—Cl1—O1109.2 (16)H15A—C15—H15C109.5
O3—Cl1—O1111.2 (3)H15B—C15—H15C109.5
O4'—Cl1—O296.8 (13)C21—O2B—H2B109.5
O2'—Cl1—O216 (3)O2A—C21—O2B124.9 (3)
O3—Cl1—O2115.3 (9)O2A—C21—C22122.4 (3)
O1—Cl1—O2112.1 (7)O2B—C21—C22112.7 (3)
O4'—Cl1—O426.6 (9)N21—C22—C21106.3 (3)
O2'—Cl1—O4117 (2)N21—C22—C23113.6 (3)
O3—Cl1—O497.5 (12)C21—C22—C23113.7 (3)
O1—Cl1—O4117.0 (10)N21—C22—H22107.6
O2—Cl1—O4103.0 (9)C21—C22—H22107.6
O1A—C11—O1B124.0 (3)C23—C22—H22107.6
O1A—C11—C12119.3 (3)C22—N21—H21A109.5
O1B—C11—C12116.7 (3)C22—N21—H21B109.5
N11—C12—C11108.1 (2)H21A—N21—H21B109.5
N11—C12—C13112.5 (3)C22—N21—H21C109.5
C11—C12—C13111.7 (3)H21A—N21—H21C109.5
N11—C12—H12108.1H21B—N21—H21C109.5
C11—C12—H12108.1C24—C23—C22110.6 (4)
C13—C12—H12108.1C24—C23—C25111.8 (5)
C12—N11—H11A109.5C22—C23—C25112.4 (4)
C12—N11—H11B109.5C24—C23—H23107.3
H11A—N11—H11B109.5C22—C23—H23107.3
C12—N11—H11C109.5C25—C23—H23107.3
H11A—N11—H11C109.5C23—C24—H24A109.5
H11B—N11—H11C109.5C23—C24—H24B109.5
C15—C13—C14112.7 (4)H24A—C24—H24B109.5
C15—C13—C12112.7 (3)C23—C24—H24C109.5
C14—C13—C12111.3 (3)H24A—C24—H24C109.5
C15—C13—H13106.5H24B—C24—H24C109.5
C14—C13—H13106.5C23—C25—H25A109.5
C12—C13—H13106.5C23—C25—H25B109.5
C13—C14—H14A109.5H25A—C25—H25B109.5
C13—C14—H14B109.5C23—C25—H25C109.5
H14A—C14—H14B109.5H25A—C25—H25C109.5
C13—C14—H14C109.5H25B—C25—H25C109.5
H14A—C14—H14C109.5HW1—OW1—HW298 (4)
H14B—C14—H14C109.5
O1A—C11—C12—N113.5 (4)O2A—C21—C22—N211.8 (5)
O1B—C11—C12—N11178.7 (3)O2B—C21—C22—N21179.4 (3)
O1A—C11—C12—C13127.7 (3)O2A—C21—C22—C23124.0 (4)
O1B—C11—C12—C1354.4 (4)O2B—C21—C22—C2354.8 (5)
N11—C12—C13—C1565.7 (4)N21—C22—C23—C2466.4 (5)
C11—C12—C13—C1556.1 (5)C21—C22—C23—C24171.8 (4)
N11—C12—C13—C1462.1 (4)N21—C22—C23—C2559.3 (5)
C11—C12—C13—C14176.1 (4)C21—C22—C23—C2562.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···O1Bi0.891.952.727 (4)145
N11—H11B···O3i0.892.513.113 (6)126
N11—H11B···O4i0.892.533.37 (3)159
N11—H11C···O2Aii0.892.282.886 (4)125
O2B—H2B···O1B0.821.742.562 (4)175
N21—H21A···O2iii0.892.382.87 (3)115
N21—H21A···O1iv0.892.633.156 (6)118
N21—H21B···OW1ii0.891.982.818 (5)157
N21—H21C···O4ii0.892.133.013 (11)169
N21—H21C···O4ii0.892.263.13 (2)168
OW1—HW1···O4i0.80 (5)2.45 (7)3.050 (12)133 (6)
OW1—HW1···O4i0.80 (5)2.57 (7)3.24 (3)143 (6)
OW1—HW1···O20.80 (5)2.63 (6)3.115 (15)120 (6)
OW1—HW1···O20.80 (5)2.63 (7)3.18 (4)127 (6)
OW1—HW2···O1A0.89 (5)1.93 (5)2.806 (4)167 (5)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1; (iii) x, y, z+1; (iv) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC5H11NO2+·ClO4·C5H12NO2·H2O
Mr352.77
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)11.235 (3), 5.8312 (14), 13.0948 (19)
β (°) 91.282 (16)
V3)857.7 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.25 × 0.23 × 0.13
Data collection
DiffractometerEnraf-Nonius sealed tube
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
1751, 1665, 1481
Rint0.011
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.110, 1.17
No. of reflections1665
No. of parameters228
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.26
Absolute structureFlack (1983)
Absolute structure parameter0.06 (11)

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1999), SHELXL97.

Selected geometric parameters (Å, º) top
O1A—C111.225 (4)O2A—C211.197 (4)
O1B—C111.268 (4)O2B—C211.305 (5)
O1A—C11—C12—N113.5 (4)O2A—C21—C22—N211.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···O1Bi0.891.952.727 (4)144.8
N11—H11B···O3i0.892.513.113 (6)125.7
N11—H11B···O4i0.892.533.37 (3)159.3
N11—H11C···O2Aii0.892.282.886 (4)125.3
O2B—H2B···O1B0.821.742.562 (4)175.0
N21—H21A···O2'iii0.892.382.87 (3)115.2
N21—H21A···O1iv0.892.633.156 (6)118.4
N21—H21B···OW1ii0.891.982.818 (5)157.1
N21—H21C···O4ii0.892.133.013 (11)169.1
N21—H21C···O4'ii0.892.263.13 (2)168.0
OW1—HW1···O4i0.80 (5)2.45 (7)3.050 (12)133 (6)
OW1—HW1···O4'i0.80 (5)2.57 (7)3.24 (3)143 (6)
OW1—HW1···O20.80 (5)2.63 (6)3.115 (15)120 (6)
OW1—HW1···O2'0.80 (5)2.63 (7)3.18 (4)127 (6)
OW1—HW2···O1A0.89 (5)1.93 (5)2.806 (4)167 (5)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1; (iii) x, y, z+1; (iv) x, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds