Download citation
Download citation
link to html
The title mol­ecule, C21H24N2O2, is a macrocyclic multidentate Schiff base ligand containing two imine N and two ether O atoms which has a crystallographic twofold axis. The macro­cyclic inner-hole size, estimated as twice the mean distance of the donor atoms from their centroid, is approximately 2.08 Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801003889/ob6032sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801003889/ob6032Isup2.hkl
Contains datablock I

CCDC reference: 162811

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.036
  • wR factor = 0.106
  • Data-to-parameter ratio = 14.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry




Comment top

Over the last two decades, macrocyclic multidentate Schiff base NxOy (where x = 2,3 and y = 2,3) donor-type ligands have been investigated as potential metal-ion-selective ionophores (Lindoy et al., 1993; Esteban et al., 2000). In particular, macrocycles have been widely studied as complexation agents for alkaline, alkaline-earth and transition-metal ion (especially lanthanides) recognition with particular metal-ion binding applications (e.g. selective extraction of heavy and precious metals) are of great interest in environmental, inorganic and coordination chemistry (Lindoy, 1997; Hayvalı et al., 1999; Vicente et al., 2000). Some Schiff base complexes have also been used in catalytic reduction reactions (Tafesh & Weiguny, 1996). In addition, a series of investigations have also involved the synthetic, thermodynamic and structural properties of selective complex formation of a number of transition metal ions (Fenton et al., 1987; Adam et al., 1994a). In literature, there are only a very limited number of reports about the structures of the free macrocyclic multidentate N2O2 and N2O3 donor-type ligands (Chia et al., 1991; Hökelek et al., 1999a,b; Hökelek, Akduran, Kaya & Kılıç, 2000). In 1994, Adam and co-workers synthesized the reduction product (the multidentate diamine, N2O2) from the reaction of 1,4-bis(salicyloxy)butane, 1,3-diaminopropane and sodium borohydride, without isolating the title compound (Adam et al., 1994b). The title compound, (I), may be a potential metal-ion selective reagent for lanthanides, alkaline and alkaline-earth metal ions. The structure determination of (I) was carried out in order to estimate the relative macrocyclic ring hole size and to understand the effects of the macrocyclic ring on the CN imine bond and C—NC bond angle.

As shown in Fig. 1, molecule (I) has a crystallographic twofold axis. The intramolecular C1···C11 [7.219 (3) Å], N1···N1i [3.978 (2) Å], O1···O1i [3.894 (3) Å] and N1···O1i [5.580 (3) Å] distances may indicate the hole size of the ligand cavity [symmetry code: (i) -x, y, 1/2 - z]. The C1···C11 distance is larger than the N···N distance in the potassium complex of substituted diaza-18-crown-6 (6.253 Å; Gandour et al., 1986). The relative macrocyclic inner hole size, estimated as twice the mean distance of the donor atoms from their centroid is approximately 2.08 Å, using the `modified covalent radii' of the Nsp2 (0.66 Å) and Osp3 (0.76 Å) atoms as in the literature method (Goodwin et al., 1982; Adam et al., 1983; Drummond et al., 1982). The inner hole size of (I) (2.08 Å), which is a 17-membered macro-ring, can be compared with the 16- (1.57 Å) and 19-membered (2.53 Å) multidentate ligand hole sizes (Hökelek, Akduran, Kaya & Kılıç, 2000).

The CN imine bond length [1.2607 (14) Å] and C—NC imine bond angle [117.71 (10)°] are smaller than the corresponding values in salicylaldimine and naphthaldimine Schiff base ligands (Yıldız et al., 1998; Hökelek et al., 2001). In naphthaldimine and salicylaldimine Schiff bases, intramolecular hydrogen bonding is observed, which causes a lengthening of the CN imine bond and an increase in the C—NC bond angle (Yıldız et al., 1998; Hökelek, Kılıç, Işıklan & Toy, 2000). CN imine bond lengthening is also observed in the Schiff base complexes (Fernández-G et al., 1986; Calligaris et al., 1972).

Experimental top

1,4-Bis(salicyloxy)butane (m.p. 374 K) was prepared from the reaction of salicylaldehyde (12.2 g, 100 mmol), sodium hydroxide (6.0 g, 150 mmol) and 1,4-dibromobutane (15.3 g, 71 mmol) in boiling ethanol (150 ml). Compound (I) was obtained from the reaction of 1,4-bis(salicyloxy)butane (0.50 g, 1.67 mmol) in ethanol (100 ml) and 1,3-diaminopropane (0.21 ml, 2.45 mmol) in ethanol (50 ml) with argon passing over the reaction mixture and it was refluxed for 5 h. The solvent was evaporated and the residue was crystallized from ethyl acetate [yield 0.31 g (62%), m.p. 440 K].

Refinement top

The H atoms were positioned geometrically with C—H distances of 0.96 and 0.93 Å for CH3 and CH, respectively, and a riding model was used during the refinement.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976).

Figures top
[Figure 1] Fig. 1. An ORTEPII (Johnson, 1976) drawing of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
(I) top
Crystal data top
C21H24N2O2F(000) = 724
Mr = 336.43Dx = 1.255 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 14.231 (8) ÅCell parameters from 25 reflections
b = 15.6630 (14) Åθ = 10–18°
c = 8.206 (4) ŵ = 0.08 mm1
β = 103.044 (8)°T = 293 K
V = 1781.9 (13) Å3Block-like, colourless
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
1468 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 26.3°, θmin = 2.6°
ω/2θ scansh = 1717
Absorption correction: ψ scans
(MolEN; Fair, 1990)
k = 1919
Tmin = 0.975, Tmax = 0.984l = 100
3554 measured reflections3 standard reflections every 120 min
1816 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036Only H-atom displacement parameters refined
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0488P)2 + 0.3494P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1816 reflectionsΔρmax = 0.14 e Å3
127 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.063 (3)
Crystal data top
C21H24N2O2V = 1781.9 (13) Å3
Mr = 336.43Z = 4
Monoclinic, C2/cMo Kα radiation
a = 14.231 (8) ŵ = 0.08 mm1
b = 15.6630 (14) ÅT = 293 K
c = 8.206 (4) Å0.30 × 0.25 × 0.20 mm
β = 103.044 (8)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
1468 reflections with I > 2σ(I)
Absorption correction: ψ scans
(MolEN; Fair, 1990)
Rint = 0.034
Tmin = 0.975, Tmax = 0.9843 standard reflections every 120 min
3554 measured reflections intensity decay: 1%
1816 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.106Only H-atom displacement parameters refined
S = 1.06Δρmax = 0.14 e Å3
1816 reflectionsΔρmin = 0.15 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.13740 (5)0.49049 (5)0.25488 (12)0.0515 (3)
N10.14349 (6)0.23658 (6)0.30725 (12)0.0448 (3)
C90.21554 (7)0.45222 (7)0.21602 (14)0.0417 (3)
C40.21878 (7)0.36282 (7)0.23047 (13)0.0392 (3)
C30.14552 (7)0.31686 (7)0.29760 (13)0.0396 (3)
H310.09890.34830.33440.054 (4)*
C70.36222 (9)0.45047 (8)0.11910 (17)0.0551 (3)
H710.41070.47970.08300.069 (4)*
C100.13676 (8)0.58169 (7)0.27145 (15)0.0448 (3)
H1010.13880.60890.16610.053 (4)*
H1020.19200.60060.35590.048 (3)*
C50.29414 (8)0.31938 (8)0.18443 (15)0.0458 (3)
H510.29660.26010.19160.054 (4)*
C20.06875 (8)0.19826 (7)0.37952 (14)0.0441 (3)
H210.03310.24290.42100.048 (3)*
H220.09850.16220.47320.049 (3)*
C60.36528 (9)0.36251 (8)0.12842 (16)0.0540 (3)
H610.41490.33260.09720.070 (4)*
C110.04434 (8)0.60372 (7)0.32230 (15)0.0461 (3)
H1110.05100.65980.37380.056 (4)*
H1120.03430.56300.40580.055 (4)*
C10.00000.14535 (9)0.25000.0410 (4)
H110.03740.10880.30690.045 (3)*
C80.28829 (8)0.49578 (8)0.16253 (16)0.0509 (3)
H810.28720.55510.15610.055 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0404 (5)0.0348 (4)0.0850 (6)0.0048 (3)0.0262 (4)0.0088 (4)
N10.0400 (5)0.0412 (5)0.0545 (6)0.0019 (4)0.0135 (4)0.0035 (4)
C90.0349 (5)0.0429 (6)0.0481 (6)0.0053 (4)0.0109 (4)0.0107 (4)
C40.0339 (5)0.0423 (6)0.0405 (5)0.0039 (4)0.0066 (4)0.0076 (4)
C30.0357 (5)0.0418 (6)0.0410 (6)0.0008 (4)0.0080 (4)0.0072 (4)
C70.0430 (6)0.0617 (8)0.0663 (8)0.0136 (6)0.0242 (6)0.0126 (6)
C100.0433 (6)0.0344 (6)0.0572 (7)0.0046 (5)0.0127 (5)0.0034 (5)
C50.0424 (6)0.0448 (6)0.0510 (7)0.0015 (5)0.0119 (5)0.0069 (5)
C20.0457 (6)0.0434 (6)0.0448 (6)0.0000 (5)0.0139 (5)0.0021 (5)
C60.0417 (6)0.0614 (8)0.0630 (7)0.0008 (5)0.0207 (5)0.0139 (6)
C110.0474 (7)0.0390 (6)0.0529 (7)0.0001 (5)0.0135 (5)0.0068 (5)
C10.0439 (8)0.0316 (7)0.0511 (9)0.0000.0180 (7)0.000
C80.0450 (7)0.0456 (7)0.0650 (8)0.0124 (5)0.0184 (6)0.0109 (5)
Geometric parameters (Å, º) top
O1—C91.3629 (14)C10—H1020.9700
O1—C101.4350 (13)C5—C61.3793 (17)
N1—C31.2607 (14)C5—H510.9300
N1—C21.4587 (15)C2—C11.5181 (14)
C9—C81.3912 (16)C2—H210.9700
C9—C41.4052 (16)C2—H220.9700
C4—C51.3924 (16)C6—H610.9300
C4—C31.4724 (16)C11—C11i1.525 (2)
C3—H310.9300C11—H1110.9700
C7—C61.3799 (19)C11—H1120.9700
C7—C81.3808 (17)C1—C2i1.5181 (14)
C7—H710.9300C1—H110.9700
C10—C111.5069 (18)C8—H810.9300
C10—H1010.9700
C9—O1—C10118.88 (8)C4—C5—H51119.4
C3—N1—C2117.71 (10)N1—C2—C1110.72 (9)
O1—C9—C8124.24 (11)N1—C2—H21109.5
O1—C9—C4115.57 (9)C1—C2—H21109.5
C8—C9—C4120.18 (10)N1—C2—H22109.5
C5—C4—C9118.47 (10)C1—C2—H22109.5
C5—C4—C3121.09 (10)H21—C2—H22108.1
C9—C4—C3120.41 (9)C5—C6—C7119.42 (11)
N1—C3—C4122.64 (10)C5—C6—H61120.3
N1—C3—H31118.7C7—C6—H61120.3
C4—C3—H31118.7C10—C11—C11i113.92 (12)
C6—C7—C8121.01 (11)C10—C11—H111108.8
C6—C7—H71119.5C11i—C11—H111108.8
C8—C7—H71119.5C10—C11—H112108.8
O1—C10—C11106.19 (9)C11i—C11—H112108.8
O1—C10—H101110.5H111—C11—H112107.7
C11—C10—H101110.5C2—C1—C2i113.81 (13)
O1—C10—H102110.5C2—C1—H11108.8
C11—C10—H102110.5C2i—C1—H11108.8
H101—C10—H102108.7C7—C8—C9119.61 (12)
C6—C5—C4121.28 (11)C7—C8—H81120.2
C6—C5—H51119.4C9—C8—H81120.2
C10—O1—C9—C811.67 (16)C3—C4—C5—C6177.12 (10)
C10—O1—C9—C4169.33 (10)C3—N1—C2—C1115.50 (11)
O1—C9—C4—C5176.77 (10)C4—C5—C6—C70.55 (18)
C8—C9—C4—C52.28 (15)C8—C7—C6—C51.0 (2)
O1—C9—C4—C35.03 (14)O1—C10—C11—C11i79.17 (9)
C8—C9—C4—C3175.92 (10)N1—C2—C1—C2i73.83 (8)
C2—N1—C3—C4178.64 (9)C6—C7—C8—C90.21 (19)
C5—C4—C3—N14.47 (16)O1—C9—C8—C7177.09 (11)
C9—C4—C3—N1177.37 (10)C4—C9—C8—C71.87 (17)
C9—O1—C10—C11177.35 (9)C10—C11—C11i—C10i151.00 (10)
C9—C4—C5—C61.07 (16)
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H24N2O2
Mr336.43
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)14.231 (8), 15.6630 (14), 8.206 (4)
β (°) 103.044 (8)
V3)1781.9 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scans
(MolEN; Fair, 1990)
Tmin, Tmax0.975, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
3554, 1816, 1468
Rint0.034
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.106, 1.06
No. of reflections1816
No. of parameters127
H-atom treatmentOnly H-atom displacement parameters refined
Δρmax, Δρmin (e Å3)0.14, 0.15

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976).

Selected geometric parameters (Å, º) top
O1—C91.3629 (14)C4—C31.4724 (16)
O1—C101.4350 (13)C10—C111.5069 (18)
N1—C31.2607 (14)C2—C11.5181 (14)
N1—C21.4587 (15)C11—C11i1.525 (2)
C9—C41.4052 (16)
C9—O1—C10118.88 (8)N1—C3—C4122.64 (10)
C3—N1—C2117.71 (10)O1—C10—C11106.19 (9)
O1—C9—C8124.24 (11)N1—C2—C1110.72 (9)
O1—C9—C4115.57 (9)C10—C11—C11i113.92 (12)
C5—C4—C3121.09 (10)C2—C1—C2i113.81 (13)
C9—C4—C3120.41 (9)
C2—N1—C3—C4178.64 (9)O1—C10—C11—C11i79.17 (9)
C9—O1—C10—C11177.35 (9)N1—C2—C1—C2i73.83 (8)
C3—N1—C2—C1115.50 (11)C10—C11—C11i—C10i151.00 (10)
Symmetry code: (i) x, y, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds