Download citation
Download citation
link to html
The title compound, C28H42B2P2, (II), was synthesized with >95% enantiomeric excess, and the relative and absolute configuration was determined. Both P atoms have distorted tetrahedral geometry, and the average B—P—C angle and P—B distance are 112.7 (6)° and 1.910 (6) Å, respectively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680100294X/ob6030sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680100294X/ob6030Isup2.hkl
Contains datablock I

CCDC reference: 159873

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.035
  • wR factor = 0.088
  • Data-to-parameter ratio = 17.9

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
RADNW_01 Alert C The radiation wavelength lies outside the expected range for the supplied radiation type. Expected range 1.54175-1.54180 Wavelength given = 1.54056 General Notes
RADNW_01 The radiation wavelength given implies that Cu Kalpha1 has been used. Please check that this is correct. Wavelength given = 1.54056 REFLT_03 From the CIF: _diffrn_reflns_theta_max 69.84 From the CIF: _reflns_number_total 5320 Count of symmetry unique reflns 3046 Completeness (_total/calc) 174.66% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 2274 Fraction of Friedel pairs measured 0.747 Are heavy atom types Z>Si present yes Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

The importance of phosphine ligands in transition metal chemistry is remarkable. Among them optically active C2-symmetric phosphine ligands proved to be instrumental in asymmetric catalysis (Yamanoi & Imamoto, 1999). Recently, P-chiral phosphines have emerged as a good chiral controller in transition metal-catalyzed reaction (Kolodiazhnyi, 1998). Transition metal complexes with phosphorus–carbon–phosphorus (PCP) tridentate or pincer ligands were studied extensively (Laurenti & Santelli, 1999). However, to our knowledge, no structure of a pincer ligand with P-chiral phosphines has been reported so far. Therefore, we wish to report the first crystallographic structure of a P-chiral PCP tridentate ligand as a bis-boron complex.

Fig. 1 clearly indicates the C2-symmetry of (II). The two phosphorus substituents are on opposite sides of the aromatic ring. Both P atoms have adopted a distorted tetrahedral geometry. The average B—P—C angle and P—B distance are 112.7 (6)° and 1.910 (6) Å, respectively (Table 1).

Experimental top

According the literature procedure of Wolfe & Livinghouse (1998), the enantioselective alkylation of the phosphine–borane (I) with the lithium–sparteine complex afforded the desired C2-symmetric diphosphine in 54% yield and 98.5% ee, contaminated with 5% of the meso diastereoisomer. Recrystallization from dichloromethane/ether afforded the enantio- and diastereomerically pure (>99%) bis(phosphine–borane) (II). Optical rotation of (II): [a]D = +127.6 (c 2.78, CHCl3).

Refinement top

The title compound, (II), is quite stable and can be stored for months on the bench, whitout any significant decomposition. It might be sensitive to the X-ray especially since it was a linear decay, which was corrected. H atoms were constrained to the parent site using a riding model; SHELXL96 defaults, C—H = 0.93–0.97 Å and B—H = 0.96 Å. The isotropic factors, Uiso, were adjusted to 150% of the value of the parent site for methyl and B—H H atoms and 120% for other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: NRC-2 and NRC-2A (Ahmed et al., 1973); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL96 (Sheldrick, 1996); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXL96.

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the title molecule. Ellipsoids correspond to 40% probability.
(I) top
Crystal data top
C28H42B2P2Dx = 1.092 Mg m3
Mr = 462.18Cu Kα radiation, λ = 1.54056 Å
Orthorhombic, P212121Cell parameters from 25 reflections
a = 7.380 (6) Åθ = 20.0–21.0°
b = 13.515 (6) ŵ = 1.48 mm1
c = 28.189 (14) ÅT = 293 K
V = 2812 (3) Å3Block, colourless
Z = 40.83 × 0.22 × 0.14 mm
F(000) = 1000.0
Data collection top
Nonius CAD-4
diffractometer
4737 reflections with I > 2σ(I)
Radiation source: normal-focus xray tubeRint = 0.062
Graphite monochromatorθmax = 69.8°, θmin = 3.1°
ω scansh = 88
Absorption correction: integration
(ABSORP in NRCVAX; Gabe et al., 1989)
k = 1616
Tmin = 0.539, Tmax = 0.830l = 3434
30802 measured reflections5 standard reflections every 60 min
5320 independent reflections intensity decay: 21.7%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0491P)2P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.088(Δ/σ)max = 0.001
S = 0.98Δρmax = 0.21 e Å3
5320 reflectionsΔρmin = 0.22 e Å3
298 parametersExtinction correction: SHELXL96, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0028 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 2274 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.004 (18)
Crystal data top
C28H42B2P2V = 2812 (3) Å3
Mr = 462.18Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 7.380 (6) ŵ = 1.48 mm1
b = 13.515 (6) ÅT = 293 K
c = 28.189 (14) Å0.83 × 0.22 × 0.14 mm
Data collection top
Nonius CAD-4
diffractometer
4737 reflections with I > 2σ(I)
Absorption correction: integration
(ABSORP in NRCVAX; Gabe et al., 1989)
Rint = 0.062
Tmin = 0.539, Tmax = 0.8305 standard reflections every 60 min
30802 measured reflections intensity decay: 21.7%
5320 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.088Δρmax = 0.21 e Å3
S = 0.98Δρmin = 0.22 e Å3
5320 reflectionsAbsolute structure: Flack (1983), 2274 Friedel pairs
298 parametersAbsolute structure parameter: 0.004 (18)
0 restraints
Special details top

Experimental. To a solution of (-)-sparteine (0.65 ml, 2.85 mmole) and t-butylphenylphosphine-borane (I) (453 mg, 2.52 mmole) in 15 ml of ether at -78°C was added n-butyllithium (2.00 M in hexanes, 1.30 ml, 2.52 mmole). The reaction was warmed to room temperature and stirred for 1 h, then cooled back to -78°C. The α,α'-dibromo-o-xylene (300 mg, 0.84 mmole) in THF (1.5 ml) was added drop wise. The resulting mixture was warmed to room temperature and stirred for 18 h. The reaction was quenched with 5% aqueous sulfuric acid (2 ml) and extracted with dichloromethane (3 x 10 ml). The combined organic phases were washed with water (5 ml) and brine (5 ml), then dried over MgSO4. The solvent was removed under reduced pressure. The desired diphosphine-borane product (II) (194 mg, 0.45 mmole, 54%) was obtained as a white solid after flash chromatography on silica gel (50% DCM/Hexane). The enantiomeric excess was determined to be 98.5% (140:1) by chiral HPLC analysis (Chiracel OD, 1 ml/min, 20% 2-propanol/hexanes, tR 5.93 (major), 7.19 (meso) 8.06 (minor)). The compound (II) was recrystallized from DCM/Ether.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. A final verification of possible voids was performed using the VOID routine of the PLATON program (Spek, 1995).

Refinement of F2 against ALL reflections. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating R-factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8903 (3)0.47164 (17)0.10781 (7)0.0446 (5)
H10.80540.42540.09770.054*
C20.8552 (3)0.52642 (16)0.14833 (7)0.0453 (5)
C30.9813 (4)0.59595 (18)0.16291 (7)0.0574 (6)
H30.96020.63350.19000.069*
C41.1381 (4)0.6092 (2)0.13715 (8)0.0646 (7)
H41.22240.65600.14700.077*
C51.1717 (4)0.55390 (18)0.09688 (7)0.0563 (6)
H51.27800.56410.07980.068*
C61.0494 (3)0.48394 (15)0.08181 (7)0.0431 (5)
C200.6796 (3)0.51271 (18)0.17506 (7)0.0516 (5)
H20A0.58300.50300.15220.062*
H20B0.65360.57320.19230.062*
P200.67580 (7)0.40987 (4)0.216968 (17)0.03970 (13)
B200.7582 (4)0.2900 (2)0.18879 (12)0.0648 (8)
H20C0.88520.29520.18190.097*
H20D0.69260.27830.15990.097*
H20E0.73820.23610.21030.097*
C210.8065 (3)0.44666 (16)0.26799 (7)0.0421 (5)
C220.8822 (3)0.3720 (2)0.29513 (8)0.0607 (7)
H220.87120.30670.28500.073*
C230.9728 (4)0.3916 (3)0.33640 (9)0.0829 (10)
H231.01990.33990.35430.099*
C240.9937 (4)0.4859 (3)0.35108 (10)0.0893 (11)
H241.05410.49890.37930.107*
C250.9261 (4)0.5631 (3)0.32451 (10)0.0792 (10)
H250.94510.62810.33420.095*
C260.8287 (3)0.54336 (19)0.28293 (8)0.0581 (6)
H260.77930.59510.26540.070*
C270.4377 (3)0.4015 (2)0.23797 (9)0.0557 (6)
C280.3217 (4)0.3616 (3)0.19679 (11)0.0863 (9)
H28A0.19700.35890.20640.129*
H28B0.36230.29650.18840.129*
H28C0.33350.40470.16990.129*
C290.4320 (4)0.3290 (2)0.27968 (12)0.0895 (10)
H29A0.50130.35520.30560.134*
H29B0.48240.26670.27000.134*
H29C0.30870.31960.28960.134*
C300.3662 (4)0.5016 (2)0.25378 (10)0.0746 (8)
H30A0.24320.49470.26440.112*
H30B0.37070.54710.22770.112*
H30C0.43940.52620.27930.112*
C601.0864 (3)0.42163 (17)0.03827 (7)0.0457 (5)
H60A1.04680.35440.04450.055*
H60B1.21610.41990.03280.055*
P600.97502 (7)0.46565 (4)0.015697 (17)0.03986 (13)
B600.7181 (4)0.4778 (3)0.00786 (10)0.0636 (8)
H60C0.69210.53270.01260.095*
H60D0.67090.41820.00590.095*
H60E0.66250.48860.03820.095*
C611.0838 (3)0.58073 (16)0.03153 (7)0.0442 (5)
C620.9838 (4)0.65275 (19)0.05435 (9)0.0648 (7)
H620.86020.64350.05900.078*
C631.0662 (6)0.7388 (2)0.07036 (11)0.0852 (10)
H630.99760.78660.08590.102*
C641.2485 (5)0.7537 (2)0.06343 (11)0.0820 (10)
H641.30340.81140.07430.098*
C651.3482 (4)0.6839 (2)0.04072 (9)0.0665 (7)
H651.47140.69410.03580.080*
C661.2683 (3)0.59781 (18)0.02485 (7)0.0499 (5)
H661.33840.55050.00950.060*
C671.0402 (3)0.37716 (16)0.06334 (7)0.0447 (5)
C680.9210 (5)0.2850 (2)0.05950 (10)0.0796 (9)
H68A0.94660.24130.08550.119*
H68B0.79570.30400.06040.119*
H68C0.94580.25170.03010.119*
C691.0073 (4)0.42745 (19)0.11134 (7)0.0598 (6)
H69A1.09000.48170.11500.090*
H69B0.88510.45160.11260.090*
H69C1.02620.38050.13640.090*
C701.2385 (3)0.34664 (19)0.05973 (8)0.0558 (6)
H70A1.25550.30620.03210.084*
H70B1.31300.40470.05730.084*
H70C1.27200.30980.08750.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0473 (12)0.0530 (12)0.0335 (9)0.0033 (10)0.0008 (8)0.0010 (9)
C20.0496 (12)0.0528 (12)0.0335 (9)0.0067 (10)0.0027 (9)0.0050 (9)
C30.0726 (16)0.0599 (13)0.0396 (10)0.0098 (13)0.0063 (11)0.0052 (10)
C40.0705 (17)0.0733 (17)0.0499 (13)0.0224 (14)0.0036 (12)0.0090 (12)
C50.0556 (14)0.0712 (15)0.0422 (11)0.0162 (12)0.0062 (10)0.0015 (10)
C60.0487 (12)0.0498 (12)0.0308 (9)0.0016 (10)0.0007 (8)0.0053 (8)
C200.0455 (12)0.0690 (15)0.0403 (10)0.0114 (11)0.0064 (10)0.0006 (10)
P200.0344 (2)0.0479 (3)0.0368 (2)0.0008 (2)0.0011 (2)0.0072 (2)
B200.0644 (19)0.0558 (17)0.0742 (19)0.0051 (14)0.0074 (15)0.0204 (15)
C210.0358 (10)0.0539 (12)0.0366 (9)0.0056 (9)0.0049 (8)0.0021 (9)
C220.0510 (14)0.0798 (18)0.0511 (13)0.0015 (12)0.0030 (11)0.0071 (12)
C230.0578 (17)0.139 (3)0.0515 (14)0.0001 (19)0.0118 (13)0.0136 (17)
C240.0517 (17)0.170 (4)0.0460 (13)0.025 (2)0.0011 (12)0.0158 (19)
C250.0711 (19)0.103 (2)0.0631 (16)0.0409 (17)0.0220 (14)0.0383 (16)
C260.0609 (14)0.0655 (14)0.0481 (11)0.0179 (13)0.0124 (12)0.0150 (11)
C270.0352 (12)0.0746 (16)0.0574 (13)0.0025 (11)0.0030 (10)0.0075 (12)
C280.0420 (15)0.119 (3)0.098 (2)0.0135 (16)0.0068 (16)0.021 (2)
C290.0547 (17)0.108 (2)0.106 (2)0.0055 (16)0.0297 (17)0.030 (2)
C300.0514 (16)0.099 (2)0.0735 (17)0.0125 (14)0.0160 (13)0.0121 (15)
C600.0483 (12)0.0520 (12)0.0366 (10)0.0020 (10)0.0043 (8)0.0037 (9)
P600.0349 (3)0.0499 (3)0.0347 (2)0.0011 (2)0.0021 (2)0.0002 (2)
B600.0399 (15)0.093 (2)0.0583 (16)0.0019 (14)0.0024 (12)0.0090 (16)
C610.0489 (12)0.0483 (12)0.0356 (9)0.0083 (10)0.0030 (8)0.0008 (9)
C620.0614 (17)0.0651 (15)0.0680 (15)0.0198 (14)0.0039 (13)0.0121 (12)
C630.116 (3)0.0548 (16)0.085 (2)0.0280 (18)0.023 (2)0.0211 (15)
C640.117 (3)0.0529 (16)0.0760 (19)0.0072 (18)0.039 (2)0.0027 (14)
C650.074 (2)0.0641 (16)0.0614 (15)0.0187 (15)0.0171 (14)0.0017 (13)
C660.0503 (13)0.0546 (13)0.0448 (12)0.0052 (11)0.0044 (9)0.0022 (10)
C670.0454 (12)0.0503 (12)0.0383 (10)0.0038 (10)0.0043 (9)0.0018 (9)
C680.091 (2)0.0737 (18)0.0739 (18)0.0316 (17)0.0249 (16)0.0222 (15)
C690.0649 (16)0.0774 (16)0.0370 (10)0.0094 (14)0.0066 (11)0.0060 (10)
C700.0570 (15)0.0654 (15)0.0450 (12)0.0158 (12)0.0032 (10)0.0032 (11)
Geometric parameters (Å, º) top
C1—C21.385 (3)C29—H29A0.9600
C1—C61.394 (3)C29—H29B0.9600
C1—H10.9300C29—H29C0.9600
C2—C31.385 (3)C30—H30A0.9600
C2—C201.510 (3)C30—H30B0.9600
C3—C41.378 (3)C30—H30C0.9600
C3—H30.9300C60—P601.829 (2)
C4—C51.382 (3)C60—H60A0.9700
C4—H40.9300C60—H60B0.9700
C5—C61.375 (3)P60—C611.806 (2)
C5—H50.9300P60—C671.862 (2)
C6—C601.513 (3)P60—B601.916 (3)
C20—P201.824 (2)B60—H60C0.9600
C20—H20A0.9700B60—H60D0.9600
C20—H20B0.9700B60—H60E0.9600
P20—C211.802 (2)C61—C621.381 (3)
P20—C271.858 (3)C61—C661.394 (3)
P20—B201.904 (3)C62—C631.387 (4)
B20—H20C0.9600C62—H620.9300
B20—H20D0.9600C63—C641.375 (5)
B20—H20E0.9600C63—H630.9300
C21—C261.383 (3)C64—C651.357 (4)
C21—C221.384 (3)C64—H640.9300
C22—C231.368 (3)C65—C661.379 (3)
C22—H220.9300C65—H650.9300
C23—C241.349 (5)C66—H660.9300
C23—H230.9300C67—C701.524 (3)
C24—C251.378 (5)C67—C681.529 (3)
C24—H240.9300C67—C691.534 (3)
C25—C261.401 (3)C68—H68A0.9600
C25—H250.9300C68—H68B0.9600
C26—H260.9300C68—H68C0.9600
C27—C301.520 (4)C69—H69A0.9600
C27—C291.531 (4)C69—H69B0.9600
C27—C281.540 (3)C69—H69C0.9600
C28—H28A0.9600C70—H70A0.9600
C28—H28B0.9600C70—H70B0.9600
C28—H28C0.9600C70—H70C0.9600
C2—C1—C6121.8 (2)C27—C29—H29C109.5
C2—C1—H1119.1H29A—C29—H29C109.5
C6—C1—H1119.1H29B—C29—H29C109.5
C3—C2—C1118.8 (2)C27—C30—H30A109.5
C3—C2—C20120.8 (2)C27—C30—H30B109.5
C1—C2—C20120.4 (2)H30A—C30—H30B109.5
C4—C3—C2119.7 (2)C27—C30—H30C109.5
C4—C3—H3120.1H30A—C30—H30C109.5
C2—C3—H3120.1H30B—C30—H30C109.5
C3—C4—C5120.9 (2)C6—C60—P60114.37 (15)
C3—C4—H4119.6C6—C60—H60A108.7
C5—C4—H4119.6P60—C60—H60A108.7
C6—C5—C4120.5 (2)C6—C60—H60B108.7
C6—C5—H5119.7P60—C60—H60B108.7
C4—C5—H5119.7H60A—C60—H60B107.6
C5—C6—C1118.2 (2)C61—P60—C60106.62 (11)
C5—C6—C60121.0 (2)C61—P60—C67105.07 (10)
C1—C6—C60120.8 (2)C60—P60—C67105.96 (10)
C2—C20—P20115.46 (16)C61—P60—B60113.24 (13)
C2—C20—H20A108.4C60—P60—B60112.13 (12)
P20—C20—H20A108.4C67—P60—B60113.20 (12)
C2—C20—H20B108.4P60—B60—H60C109.5
P20—C20—H20B108.4P60—B60—H60D109.5
H20A—C20—H20B107.5H60C—B60—H60D109.5
C21—P20—C20107.36 (11)P60—B60—H60E109.5
C21—P20—C27105.59 (11)H60C—B60—H60E109.5
C20—P20—C27105.53 (11)H60D—B60—H60E109.5
C21—P20—B20113.39 (13)C62—C61—C66117.9 (2)
C20—P20—B20111.91 (13)C62—C61—P60119.0 (2)
C27—P20—B20112.51 (13)C66—C61—P60122.92 (18)
P20—B20—H20C109.5C61—C62—C63120.5 (3)
P20—B20—H20D109.5C61—C62—H62119.7
H20C—B20—H20D109.5C63—C62—H62119.7
P20—B20—H20E109.5C64—C63—C62120.4 (3)
H20C—B20—H20E109.5C64—C63—H63119.8
H20D—B20—H20E109.5C62—C63—H63119.8
C26—C21—C22118.2 (2)C65—C64—C63119.7 (3)
C26—C21—P20124.57 (18)C65—C64—H64120.1
C22—C21—P20117.13 (18)C63—C64—H64120.1
C23—C22—C21121.7 (3)C64—C65—C66120.5 (3)
C23—C22—H22119.1 (2)C64—C65—H65119.7
C21—C22—H22119.1C66—C65—H65119.7
C24—C23—C22120.0 (3)C65—C66—C61120.9 (2)
C24—C23—H23120.0C65—C66—H66119.5
C22—C23—H23120.0C61—C66—H66119.5
C23—C24—C25120.5 (3)C70—C67—C68109.1 (2)
C23—C24—H24119.8C70—C67—C69109.33 (19)
C25—C24—H24119.8C68—C67—C69109.4 (2)
C24—C25—C26119.8 (3)C70—C67—P60111.96 (16)
C24—C25—H25120.1C68—C67—P60108.89 (16)
C26—C25—H25120.1C69—C67—P60108.11 (15)
C21—C26—C25119.7 (3)C67—C68—H68A109.5
C21—C26—H26120.1C67—C68—H68B109.5
C25—C26—H26120.1H68A—C68—H68B109.5
C30—C27—C29109.6 (2)C67—C68—H68C109.5
C30—C27—C28109.8 (2)H68A—C68—H68C109.5
C29—C27—C28109.9 (2)H68B—C68—H68C109.5
C30—C27—P20111.56 (18)C67—C69—H69A109.5
C29—C27—P20108.05 (18)C67—C69—H69B109.5
C28—C27—P20107.87 (18)H69A—C69—H69B109.5
C27—C28—H28A109.5C67—C69—H69C109.5
C27—C28—H28B109.5H69A—C69—H69C109.5
H28A—C28—H28B109.5H69B—C69—H69C109.5
C27—C28—H28C109.5C67—C70—H70A109.5
H28A—C28—H28C109.5C67—C70—H70B109.5
H28B—C28—H28C109.5H70A—C70—H70B109.5
C27—C29—H29A109.5C67—C70—H70C109.5
C27—C29—H29B109.5H70A—C70—H70C109.5
H29A—C29—H29B109.5H70B—C70—H70C109.5
C6—C1—C2—C30.7 (3)C20—P20—C27—C29170.04 (19)
C6—C1—C2—C20178.69 (19)B20—P20—C27—C2967.7 (2)
C1—C2—C3—C40.1 (3)C21—P20—C27—C28175.3 (2)
C20—C2—C3—C4178.1 (2)C20—P20—C27—C2871.2 (2)
C2—C3—C4—C50.1 (4)B20—P20—C27—C2851.1 (2)
C3—C4—C5—C60.3 (4)C5—C6—C60—P6098.5 (2)
C4—C5—C6—C10.9 (3)C1—C6—C60—P6081.7 (2)
C4—C5—C6—C60178.9 (2)C6—C60—P60—C6168.73 (18)
C2—C1—C6—C51.1 (3)C6—C60—P60—C67179.69 (16)
C2—C1—C6—C60178.67 (19)C6—C60—P60—B6055.7 (2)
C3—C2—C20—P2098.5 (2)C60—P60—C61—C62149.02 (18)
C1—C2—C20—P2083.5 (2)C67—P60—C61—C6298.79 (19)
C2—C20—P20—C2175.01 (19)B60—P60—C61—C6225.2 (2)
C2—C20—P20—C27172.72 (17)C60—P60—C61—C6635.7 (2)
C2—C20—P20—B2050.0 (2)C67—P60—C61—C6676.5 (2)
C20—P20—C21—C2628.0 (2)B60—P60—C61—C66159.51 (18)
C27—P20—C21—C2684.3 (2)C66—C61—C62—C630.6 (4)
B20—P20—C21—C26152.1 (2)P60—C61—C62—C63174.9 (2)
C20—P20—C21—C22155.19 (17)C61—C62—C63—C640.4 (4)
C27—P20—C21—C2292.6 (2)C62—C63—C64—C650.1 (5)
B20—P20—C21—C2231.0 (2)C63—C64—C65—C660.4 (4)
C26—C21—C22—C231.8 (3)C64—C65—C66—C610.3 (4)
P20—C21—C22—C23175.3 (2)C62—C61—C66—C650.2 (3)
C21—C22—C23—C241.5 (4)P60—C61—C66—C65175.05 (17)
C22—C23—C24—C250.7 (5)C61—P60—C67—C7072.15 (18)
C23—C24—C25—C262.5 (4)C60—P60—C67—C7040.51 (19)
C22—C21—C26—C250.1 (3)B60—P60—C67—C70163.80 (18)
P20—C21—C26—C25176.87 (17)C61—P60—C67—C68167.13 (19)
C24—C25—C26—C212.2 (4)C60—P60—C67—C6880.2 (2)
C21—P20—C27—C3064.0 (2)B60—P60—C67—C6843.1 (2)
C20—P20—C27—C3049.5 (2)C61—P60—C67—C6948.34 (19)
B20—P20—C27—C30171.8 (2)C60—P60—C67—C69160.99 (16)
C21—P20—C27—C2956.5 (2)B60—P60—C67—C6975.7 (2)

Experimental details

Crystal data
Chemical formulaC28H42B2P2
Mr462.18
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)7.380 (6), 13.515 (6), 28.189 (14)
V3)2812 (3)
Z4
Radiation typeCu Kα
µ (mm1)1.48
Crystal size (mm)0.83 × 0.22 × 0.14
Data collection
DiffractometerNonius CAD-4
diffractometer
Absorption correctionIntegration
(ABSORP in NRCVAX; Gabe et al., 1989)
Tmin, Tmax0.539, 0.830
No. of measured, independent and
observed [I > 2σ(I)] reflections
30802, 5320, 4737
Rint0.062
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.088, 0.98
No. of reflections5320
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.22
Absolute structureFlack (1983), 2274 Friedel pairs
Absolute structure parameter0.004 (18)

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, NRC-2 and NRC-2A (Ahmed et al., 1973), SHELXS97 (Sheldrick, 1997), SHELXL96 (Sheldrick, 1996), SHELXTL (Bruker, 1997), SHELXL96.

Selected geometric parameters (Å, º) top
C20—P201.824 (2)C60—P601.829 (2)
P20—C211.802 (2)P60—C611.806 (2)
P20—C271.858 (3)P60—C671.862 (2)
P20—B201.904 (3)P60—B601.916 (3)
C21—P20—C20107.36 (11)C61—P60—C60106.62 (11)
C21—P20—C27105.59 (11)C61—P60—C67105.07 (10)
C20—P20—C27105.53 (11)C60—P60—C67105.96 (10)
C21—P20—B20113.39 (13)C61—P60—B60113.24 (13)
C20—P20—B20111.91 (13)C60—P60—B60112.13 (12)
C27—P20—B20112.51 (13)C67—P60—B60113.20 (12)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds