Download citation
Download citation
link to html
The title complex, [Co(C10H9N3)2(N3)2]ClO4, consists of discrete cations and anions. The central CoIII ion has an approximate octahedral geometry, coordinated with four N atoms of the pyridine rings of the bis(2-pyridyl)­amine ligands in a transtrans mode, and with two terminal N atoms of the azide anions. The crystal structure is stabilized by N—H...O hydrogen bonds between the amino groups and the perchlorate anions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680100263X/ob6028sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680100263X/ob6028Isup2.hkl
Contains datablock I

CCDC reference: 159826

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.045
  • wR factor = 0.120
  • Data-to-parameter ratio = 12.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Red Alert Alert Level A:
DIFF_020 Alert A _diffrn_standards_interval_count and _diffrn_standards_interval_time are missing. Number of measurements between standards or time (min) between standards.
1 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
0 Alert Level C = Please check

Comment top

Ligands containing aromatic nitrogen heterocycles play a leading role in the molecular self-assembling processes that lead to macromolecules architectures (Jones, 1998; Fujita, 1998). In recent years, bis(2-pyridyl)amine has attracted great interest in the formation of directly bonded linear chains of metal centers (Cotton et al., 1997, 1998), and three different coordination modes were found for this feasible ligand (see Scheme below). In order to systematically study the coordination behavior of this ligand, we report herein the crystal structure of the first CoIII complex of bis(2-pyridyl)amine with azide coligands, namely diazido[bis(2-pyridyl)amine-N,N']cobalt(III) perchlorate, (I).

The structure of (I) comprises a discrete [Co(C10H9N3)2(N3)2]+ cation and a ClO4- anion. The central CoIII ion is six-coordinated by four N-donors of the pyridine rings, and two terminal N-donors of the azide anions, as shown in Fig. 1. In the complex cation, the CoIII center lies on the least-squares plane defined by N1, N3, N4 and N7, which deviates by only 0.0087 (4) Å from that plane. All the bond angles within the plane are very close to 90° (Table 1), and the sum of these bond angles is 360.2°. The N2—Co1—N10 bond angle deviates from linearity (180°) by only 2.39° in this complex, which can be defined as the apex of the octahedron. The six Co—N bond distances are in the range of 1.934 (3)–1.980 (3) Å (the mean bond length is 1.957 Å).

The bidentate ligands chelate CoIII atom to form two six-membered coordination rings N1—C5—N5—C6—N2—Co1 and N3—C15—N6—C16—N4—Co1. The pyridine rings in the same ligand are in normal trans–trans mode (Gornitzka & Stalke, 1998) and the dihedral angles are 39.9 (2) and 35.5 (3)°, respectively. Both azide anions are almost linear, with bond angles of 175.1 (4) and 175.9 (4)° for N9—N8—N7 and N12—N11—N10, respectively. The N—N bond lengths in the azide anions are approximately equal to each other, and the longer bonds involve the N atom linking to the metal center. The amino groups of the ligand form N—H···O hydrogen bonds with perchlorate anions, as shown in Fig. 2 (Table 2).

Experimental top

A mixture of Co(ClO4)2.6H2O (0.37 g, 1.0 mmol) and bis(2-pyridyl)amine (0.34 g, 2.0 mmol) were dissolved in methanol (40 ml). Then, an excess of NaN3 (0.20 g, 3.0 mmol) was added to the above solution under reflux. The resulting red solution was allowed to stand at room temperature for several days and red block-shaped crystals were deposited slowly with the evaporation of the solvent. Yield: 0.23 g (40%). FT—IR data (KBr pellet, cm-1): 3448 (b), 3299 (m), 2921 (w), 2030 (versus), 1631 (versus), 1586 (versus), 1524 (m), 1473 (versus), 1104 (s), 1069 (s), 775 (s), 625 (s). Analysis calculated for the title complex: C 41.07, H 3.10, N 28.75%; found: C 40.88, H 3.34, N 28.66%.

Refinement top

H atoms were located by geometry and take part in the structure-factor calculations.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Bruker, 1998).

Figures top
[Figure 1] Fig. 1. ORTEP (XP in SHELXTL; Bruker, 1998) view of the cation in (I) with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of (I). Bloken lines show hydrogen bonds.
Diazide[bis(2-pyridyl)amine] CoIII perchlorate top
Crystal data top
[Co(C10H9N3)2(N3)2]ClO4Z = 2
Mr = 584.84F(000) = 596
Triclinic, P1Dx = 1.610 Mg m3
a = 8.554 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.201 (3) ÅCell parameters from 5012 reflections
c = 17.036 (5) Åθ = 1.3–25.0°
α = 74.903 (5)°µ = 0.88 mm1
β = 78.792 (5)°T = 298 K
γ = 69.739 (5)°Prism, red
V = 1206.5 (6) Å30.25 × 0.20 × 0.20 mm
Data collection top
Bruker SMART 1000
diffractometer
3065 reflections with I > 2σ(I)
ω scansRint = 0.025
Absorption correction: multi-scan
[SAINT (Bruker 1998) and SADABS (Sheldrick, 1997)]
θmax = 25.0°
Tmin = 0.810, Tmax = 0.844h = 910
5057 measured reflectionsk = 1010
4235 independent reflectionsl = 2019
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.0594P)2 + 0.3837P] P = (Fo2 + 2Fc2)/3
wR(F2) = 0.121(Δ/σ)max = 0.001
S = 1.01Δρmax = 0.59 e Å3
4235 reflectionsΔρmin = 0.33 e Å3
343 parameters
Crystal data top
[Co(C10H9N3)2(N3)2]ClO4γ = 69.739 (5)°
Mr = 584.84V = 1206.5 (6) Å3
Triclinic, P1Z = 2
a = 8.554 (3) ÅMo Kα radiation
b = 9.201 (3) ŵ = 0.88 mm1
c = 17.036 (5) ÅT = 298 K
α = 74.903 (5)°0.25 × 0.20 × 0.20 mm
β = 78.792 (5)°
Data collection top
Bruker SMART 1000
diffractometer
4235 independent reflections
Absorption correction: multi-scan
[SAINT (Bruker 1998) and SADABS (Sheldrick, 1997)]
3065 reflections with I > 2σ(I)
Tmin = 0.810, Tmax = 0.844Rint = 0.025
5057 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045343 parameters
wR(F2) = 0.121H-atom parameters constrained
S = 1.01Δρmax = 0.59 e Å3
4235 reflectionsΔρmin = 0.33 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Single crystal X-ray diffraction measurements were carried out on a BRUKER SMART 1000 CCD diffractometer. The structure was solved by direct and difference Fourier methods and refined by full-matrix least-squares methods.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7676 (5)0.7893 (4)0.5736 (2)0.0367 (9)
H1A0.73230.78110.52710.044*
C20.8821 (5)0.8655 (5)0.5644 (3)0.0462 (11)
H2A0.92680.90550.51230.055*
C30.9327 (5)0.8839 (5)0.6328 (3)0.0492 (11)
H3A1.00620.94140.62730.059*
C40.8720 (5)0.8156 (5)0.7087 (3)0.0398 (10)
H4A0.90330.82610.75570.048*
C50.7627 (4)0.7302 (4)0.7142 (2)0.0298 (8)
C60.6858 (4)0.5043 (4)0.8048 (2)0.0310 (8)
C70.7273 (6)0.3942 (5)0.8770 (2)0.0483 (11)
H7A0.76640.41990.91720.058*
C80.7097 (6)0.2475 (6)0.8880 (3)0.0611 (13)
H8A0.73530.17300.93610.073*
C90.6535 (6)0.2112 (5)0.8268 (3)0.0534 (12)
H9A0.64480.11090.83240.064*
C100.6112 (5)0.3248 (4)0.7584 (2)0.0361 (9)
H10A0.57510.29980.71700.043*
C110.3957 (5)0.9296 (4)0.7261 (3)0.0386 (10)
H11A0.44210.97460.67560.046*
C120.3421 (6)1.0144 (5)0.7869 (3)0.0523 (12)
H12A0.35411.11430.77800.063*
C130.2700 (6)0.9494 (6)0.8616 (3)0.0627 (14)
H13A0.23861.00250.90450.075*
C140.2450 (6)0.8062 (6)0.8718 (3)0.0536 (12)
H14A0.19210.76290.92080.064*
C150.3007 (5)0.7262 (5)0.8073 (2)0.0332 (9)
C160.2431 (4)0.5306 (4)0.7528 (2)0.0291 (8)
C170.1341 (5)0.4417 (4)0.7694 (2)0.0354 (9)
H17A0.08570.41350.82260.042*
C180.0986 (5)0.3960 (5)0.7058 (3)0.0406 (10)
H18A0.02680.33540.71550.049*
C190.1707 (5)0.4408 (5)0.6279 (2)0.0407 (10)
H19A0.14270.41660.58380.049*
C200.2836 (5)0.5212 (4)0.6157 (2)0.0341 (9)
H20A0.33460.54800.56300.041*
Cl10.80533 (15)0.73567 (13)0.97951 (6)0.0493 (3)
Co10.51255 (6)0.64637 (6)0.65952 (3)0.02589 (16)
N10.7026 (4)0.7245 (3)0.64837 (17)0.0277 (7)
N20.6196 (4)0.4735 (3)0.74800 (17)0.0272 (7)
N30.3833 (4)0.7827 (3)0.73715 (18)0.0298 (7)
N40.3242 (4)0.5633 (3)0.67755 (17)0.0280 (7)
N50.7146 (4)0.6479 (4)0.79074 (18)0.0332 (7)
H5A0.70200.68950.83220.040*
N60.2697 (4)0.5860 (4)0.81533 (18)0.0360 (8)
H6A0.26650.52750.86370.043*
N70.6284 (4)0.5224 (4)0.57756 (18)0.0336 (7)
N80.7596 (4)0.4174 (4)0.58621 (19)0.0354 (8)
N90.8830 (5)0.3143 (5)0.5897 (2)0.0600 (11)
N100.4035 (4)0.8227 (4)0.57553 (19)0.0386 (8)
N110.4306 (4)0.8115 (4)0.5044 (2)0.0378 (8)
N120.4501 (5)0.8100 (4)0.4356 (2)0.0607 (11)
O10.8988 (5)0.6877 (6)0.9072 (2)0.0985 (15)
O20.6778 (7)0.8716 (6)0.9598 (4)0.176 (3)
O30.7394 (6)0.6141 (6)1.0232 (3)0.1150 (16)
O40.9175 (6)0.7542 (6)1.0247 (3)0.1151 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.045 (2)0.036 (2)0.030 (2)0.0189 (19)0.0011 (18)0.0038 (18)
C20.052 (3)0.047 (3)0.036 (2)0.026 (2)0.005 (2)0.002 (2)
C30.054 (3)0.047 (3)0.055 (3)0.033 (2)0.006 (2)0.001 (2)
C40.044 (2)0.039 (2)0.043 (2)0.019 (2)0.0093 (19)0.007 (2)
C50.030 (2)0.027 (2)0.030 (2)0.0081 (16)0.0000 (16)0.0070 (16)
C60.031 (2)0.036 (2)0.024 (2)0.0098 (17)0.0032 (16)0.0049 (17)
C70.064 (3)0.055 (3)0.031 (2)0.026 (2)0.017 (2)0.002 (2)
C80.083 (4)0.053 (3)0.045 (3)0.030 (3)0.027 (3)0.018 (2)
C90.069 (3)0.036 (2)0.059 (3)0.025 (2)0.021 (2)0.006 (2)
C100.041 (2)0.030 (2)0.040 (2)0.0134 (18)0.0070 (18)0.0062 (18)
C110.043 (2)0.028 (2)0.043 (2)0.0080 (18)0.0048 (19)0.0089 (18)
C120.060 (3)0.039 (3)0.064 (3)0.012 (2)0.006 (2)0.027 (2)
C130.075 (4)0.062 (3)0.060 (3)0.019 (3)0.007 (3)0.042 (3)
C140.063 (3)0.068 (3)0.038 (3)0.028 (3)0.008 (2)0.027 (2)
C150.031 (2)0.038 (2)0.031 (2)0.0101 (18)0.0011 (16)0.0118 (18)
C160.027 (2)0.029 (2)0.030 (2)0.0068 (16)0.0031 (16)0.0062 (16)
C170.035 (2)0.039 (2)0.030 (2)0.0141 (18)0.0014 (17)0.0043 (18)
C180.034 (2)0.044 (2)0.050 (3)0.0174 (19)0.0017 (19)0.016 (2)
C190.040 (2)0.051 (3)0.041 (2)0.018 (2)0.0056 (19)0.021 (2)
C200.033 (2)0.043 (2)0.027 (2)0.0112 (18)0.0036 (16)0.0113 (18)
Cl10.0636 (7)0.0466 (6)0.0366 (6)0.0180 (6)0.0047 (5)0.0065 (5)
Co10.0290 (3)0.0274 (3)0.0211 (3)0.0094 (2)0.00143 (19)0.0051 (2)
N10.0306 (17)0.0269 (16)0.0237 (16)0.0093 (13)0.0006 (13)0.0033 (13)
N20.0296 (16)0.0265 (16)0.0245 (16)0.0100 (13)0.0058 (13)0.0001 (13)
N30.0328 (17)0.0268 (17)0.0292 (17)0.0072 (14)0.0039 (14)0.0075 (14)
N40.0287 (17)0.0308 (17)0.0265 (17)0.0098 (13)0.0029 (13)0.0090 (14)
N50.0442 (19)0.0375 (18)0.0243 (17)0.0189 (16)0.0020 (14)0.0100 (14)
N60.048 (2)0.043 (2)0.0212 (16)0.0224 (16)0.0007 (14)0.0055 (15)
N70.0323 (18)0.0387 (19)0.0275 (17)0.0053 (16)0.0029 (14)0.0116 (15)
N80.035 (2)0.047 (2)0.0335 (19)0.0177 (19)0.0010 (15)0.0197 (16)
N90.041 (2)0.071 (3)0.067 (3)0.003 (2)0.011 (2)0.038 (2)
N100.044 (2)0.0376 (19)0.0293 (19)0.0069 (16)0.0087 (15)0.0030 (15)
N110.041 (2)0.0298 (18)0.037 (2)0.0082 (15)0.0104 (16)0.0021 (16)
N120.094 (3)0.050 (2)0.031 (2)0.015 (2)0.017 (2)0.0002 (18)
O10.105 (3)0.181 (5)0.049 (2)0.086 (3)0.018 (2)0.056 (3)
O20.134 (5)0.077 (3)0.257 (8)0.016 (3)0.055 (5)0.024 (4)
O30.149 (4)0.108 (3)0.081 (3)0.073 (3)0.009 (3)0.022 (3)
O40.126 (4)0.172 (5)0.087 (3)0.064 (3)0.011 (3)0.072 (3)
Geometric parameters (Å, º) top
C1—C21.354 (5)C16—N41.346 (4)
C1—N11.359 (4)C16—N61.380 (4)
C2—C31.387 (6)C16—C171.388 (5)
C3—C41.370 (6)C17—C181.378 (5)
C4—C51.391 (5)C18—C191.373 (5)
C5—N11.342 (4)C19—C201.364 (5)
C5—N51.391 (4)C20—N41.352 (4)
C6—N21.343 (4)Cl1—O21.358 (4)
C6—N51.379 (5)Cl1—O31.402 (4)
C6—C71.392 (5)Cl1—O41.418 (4)
C7—C81.370 (6)Cl1—O11.418 (3)
C8—C91.385 (6)Co1—N71.934 (3)
C9—C101.360 (5)Co1—N101.952 (3)
C10—N21.358 (4)Co1—N11.953 (3)
C11—N31.354 (5)Co1—N41.953 (3)
C11—C121.371 (5)Co1—N31.970 (3)
C12—C131.383 (7)Co1—N21.980 (3)
C13—C141.368 (6)N7—N81.206 (4)
C14—C151.397 (5)N8—N91.149 (4)
C15—N31.342 (5)N10—N111.213 (4)
C15—N61.373 (5)N11—N121.154 (5)
C2—C1—N1122.4 (4)N7—Co1—N1090.59 (13)
C1—C2—C3119.9 (4)N7—Co1—N190.33 (13)
C4—C3—C2118.5 (4)N10—Co1—N192.46 (13)
C3—C4—C5119.0 (4)N7—Co1—N491.45 (13)
N1—C5—N5119.0 (3)N10—Co1—N490.41 (13)
N1—C5—C4122.2 (3)N1—Co1—N4176.60 (12)
N5—C5—C4118.7 (3)N7—Co1—N3175.82 (13)
N2—C6—N5119.1 (3)N10—Co1—N385.42 (13)
N2—C6—C7121.5 (4)N1—Co1—N391.08 (12)
N5—C6—C7119.3 (3)N4—Co1—N387.34 (12)
C8—C7—C6119.0 (4)N7—Co1—N291.77 (13)
C7—C8—C9119.5 (4)N10—Co1—N2177.61 (13)
C10—C9—C8118.8 (4)N1—Co1—N287.10 (12)
N2—C10—C9122.7 (4)N4—Co1—N289.95 (12)
N3—C11—C12122.2 (4)N3—Co1—N292.23 (12)
C11—C12—C13119.1 (4)C5—N1—C1117.6 (3)
C14—C13—C12119.5 (4)C5—N1—Co1121.3 (2)
C13—C14—C15118.7 (4)C1—N1—Co1120.8 (2)
N3—C15—N6118.7 (3)C6—N2—C10118.1 (3)
N3—C15—C14122.0 (4)C6—N2—Co1120.6 (2)
N6—C15—C14119.3 (4)C10—N2—Co1120.9 (2)
N4—C16—N6119.3 (3)C15—N3—C11118.1 (3)
N4—C16—C17121.8 (3)C15—N3—Co1121.4 (2)
N6—C16—C17118.9 (3)C11—N3—Co1119.9 (3)
C18—C17—C16118.8 (4)C16—N4—C20118.0 (3)
C19—C18—C17119.2 (4)C16—N4—Co1121.4 (2)
C20—C19—C18119.4 (4)C20—N4—Co1120.2 (2)
N4—C20—C19122.4 (4)C6—N5—C5124.6 (3)
O2—Cl1—O3109.5 (4)C15—N6—C16125.8 (3)
O2—Cl1—O4112.3 (4)N8—N7—Co1122.8 (2)
O3—Cl1—O4110.7 (3)N9—N8—N7175.1 (4)
O2—Cl1—O1109.8 (4)N11—N10—Co1120.3 (3)
O3—Cl1—O1106.8 (3)N12—N11—N10175.9 (4)
O4—Cl1—O1107.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O10.862.302.922 (5)130
N6—H6A···O3i0.862.032.888 (5)179
Symmetry code: (i) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Co(C10H9N3)2(N3)2]ClO4
Mr584.84
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.554 (3), 9.201 (3), 17.036 (5)
α, β, γ (°)74.903 (5), 78.792 (5), 69.739 (5)
V3)1206.5 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.88
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART 1000
diffractometer
Absorption correctionMulti-scan
[SAINT (Bruker 1998) and SADABS (Sheldrick, 1997)]
Tmin, Tmax0.810, 0.844
No. of measured, independent and
observed [I > 2σ(I)] reflections
5057, 4235, 3065
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.121, 1.01
No. of reflections4235
No. of parameters343
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.33

Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP in SHELXTL (Bruker, 1998).

Selected geometric parameters (Å, º) top
Co1—N71.934 (3)Co1—N21.980 (3)
Co1—N101.952 (3)N7—N81.206 (4)
Co1—N11.953 (3)N8—N91.149 (4)
Co1—N41.953 (3)N10—N111.213 (4)
Co1—N31.970 (3)N11—N121.154 (5)
N7—Co1—N1090.59 (13)N4—Co1—N387.34 (12)
N7—Co1—N190.33 (13)N7—Co1—N291.77 (13)
N10—Co1—N192.46 (13)N10—Co1—N2177.61 (13)
N7—Co1—N491.45 (13)N1—Co1—N287.10 (12)
N10—Co1—N490.41 (13)N4—Co1—N289.95 (12)
N1—Co1—N4176.60 (12)N3—Co1—N292.23 (12)
N7—Co1—N3175.82 (13)N8—N7—Co1122.8 (2)
N10—Co1—N385.42 (13)N11—N10—Co1120.3 (3)
N1—Co1—N391.08 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O1.8602.2952.922 (5)129.9
N6—H6A···O3i.8602.0282.888 (5)179.0
Symmetry code: (i) x+1, y+1, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds