Download citation
Download citation
link to html
The title compound, [Mo2(C13H9Cl2N2)4], is a tetra-chelate `paddle wheel' complex of quadruply bonded dimolybdenum(II). Coordination of the four chloro-substituted formamidinate ligands occurs through the ligand N atoms. The centroid of the Mo—Mo bond is located on an inversion center. The Mo—Mo bond length is 2.0899 (12) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536800021139/ob6009sup1.cif
Contains datablocks I, One

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536800021139/ob6009Isup2.hkl
Contains datablock I

CCDC reference: 159703

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.024
  • wR factor = 0.064
  • Data-to-parameter ratio = 14.2

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry




Comment top

Metal–metal interactions are central to the behavior of a wide variety of molecules, clusters, interfaces, and materials. Our interest in the bonding of metal atoms to each other has led us to examine the electronic structures of numerous such systems via gas-phase photoelectron spectroscopy (Lichtenberger et al., 1999, 2000). Part of this effort has been focused on understanding the effect of substitution of functional groups at the phenyl rings of the diphenylformamidinate ligand on the electronic structure of metal–metal bonded systems as a whole. As we intend to report shortly, the use of various substituents on the formamidine ligand set affects the relative ease of the gas-phase oxidation of the various components of the Mo—Mo quadruple bond of Mo2(form)4 [form = N,N'-bis(4-X-phenyl)formamidinate] and makes for an interesting comparison with the solution-phase oxidation potentials reported by Ren and coworkers (Lin et al., 1995, 1996). The crystal structure of the 3-Cl—Ph derivative related closely to the title 4-Cl—Ph complex, (I), was determined by Lin et al. (1996).

Experimental top

The substituted formamidines and the Mo2(form)4 systems were prepared according to published syntheses (Cotton et al., 1989). Crystals were grown by the diffusion of hexanes into dichloromethane solution.

Refinement top

H atoms were added at idealized positions, constrained to ride on the atom to which they are bonded and given displacement parameters equal to 1.2 or 1.5Uiso of that bonded atom.

Computing details top

Data collection: CAD-4 Operations Manual (Enraf-Nonius, 1977); cell refinement: CAD-4 Operations Manual; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

tetrakis-(N,N-di-(4-Cl-phenyl)formamidinato)dimolybdenum(II) top
Crystal data top
[Mo2(C13H9Cl2N2)4]Z = 1
Mr = 1248.37F(000) = 624
Triclinic, P1Dx = 1.616 Mg m3
a = 10.347 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.496 (2) ÅCell parameters from 25 reflections
c = 12.569 (3) Åθ = 20–23°
α = 106.61 (3)°µ = 0.95 mm1
β = 92.04 (3)°T = 296 K
γ = 114.55 (3)°Block, yellow
V = 1282.7 (4) Å30.33 × 0.33 × 0.20 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
4196 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 25.0°, θmin = 1.7°
ω–2θ scansh = 012
Absorption correction: ψ scan
(North et al., 1968)
k = 1312
Tmin = 0.744, Tmax = 0.833l = 1414
4498 measured reflections3 standard reflections every 60 min
4498 independent reflections intensity decay: 0.1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.033P)2 + 0.5743P]
where P = (Fo2 + 2Fc2)/3
4498 reflections(Δ/σ)max = 0.001
316 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.50 e Å3
0 constraints
Crystal data top
[Mo2(C13H9Cl2N2)4]γ = 114.55 (3)°
Mr = 1248.37V = 1282.7 (4) Å3
Triclinic, P1Z = 1
a = 10.347 (2) ÅMo Kα radiation
b = 11.496 (2) ŵ = 0.95 mm1
c = 12.569 (3) ÅT = 296 K
α = 106.61 (3)°0.33 × 0.33 × 0.20 mm
β = 92.04 (3)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
4196 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.744, Tmax = 0.8333 standard reflections every 60 min
4498 measured reflections intensity decay: 0.1%
4498 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.064H-atom parameters constrained
S = 1.08Δρmax = 0.44 e Å3
4498 reflectionsΔρmin = 0.50 e Å3
316 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.090740 (17)0.440239 (17)0.063783 (13)0.03207 (7)
Cl10.30161 (11)0.18371 (9)0.54433 (7)0.0947 (3)
Cl30.24097 (15)0.16068 (11)0.66765 (7)0.1148 (4)
N30.02354 (19)0.49800 (18)0.19250 (14)0.0392 (4)
N10.04335 (19)0.26818 (18)0.10847 (15)0.0398 (4)
C20.1618 (2)0.5846 (2)0.16174 (18)0.0415 (5)
H20.21600.60960.21590.050*
C10.0668 (2)0.2794 (2)0.04261 (18)0.0430 (5)
H10.08750.20580.05400.052*
C110.1042 (2)0.1557 (2)0.20989 (18)0.0407 (5)
C310.0335 (2)0.4263 (2)0.30878 (17)0.0411 (5)
C120.0216 (3)0.1010 (3)0.2711 (2)0.0577 (6)
H12A0.07630.13580.24360.069*
C350.2438 (3)0.2988 (3)0.4557 (2)0.0635 (7)
H35A0.34230.26640.47910.076*
C150.3099 (3)0.0021 (3)0.3560 (2)0.0613 (7)
H15A0.40740.03670.38480.074*
C160.2492 (3)0.1013 (2)0.2538 (2)0.0521 (6)
H16A0.30700.13500.21370.063*
C130.0831 (3)0.0044 (3)0.3722 (2)0.0647 (7)
H13A0.02720.04170.41120.078*
C320.0471 (3)0.3923 (3)0.3859 (2)0.0638 (7)
H32A0.14510.42170.36300.077*
C340.1614 (4)0.2674 (3)0.5297 (2)0.0642 (8)
C330.0164 (4)0.3150 (3)0.4971 (2)0.0761 (9)
H33A0.03940.29550.54930.091*
C360.1803 (3)0.3790 (3)0.3459 (2)0.0523 (6)
H36A0.23640.40200.29550.063*
C140.2258 (3)0.0536 (3)0.4147 (2)0.0599 (7)
Cl40.84649 (7)1.02265 (7)0.06607 (7)0.0712 (2)
Cl20.56040 (8)0.40108 (10)0.38273 (7)0.0755 (2)
N40.22380 (18)0.63630 (18)0.05369 (14)0.0377 (4)
N20.14781 (19)0.39444 (18)0.03926 (15)0.0408 (4)
C410.3708 (2)0.7349 (2)0.02570 (18)0.0377 (4)
C210.2465 (2)0.3908 (2)0.11889 (18)0.0388 (5)
C430.5978 (2)0.8462 (2)0.1048 (2)0.0475 (5)
H43A0.65110.85970.17210.057*
C260.3940 (3)0.4623 (3)0.1259 (2)0.0482 (5)
H26A0.42860.50780.07490.058*
C250.4901 (3)0.4667 (3)0.2075 (2)0.0526 (6)
H25A0.58900.51560.21200.063*
C220.1980 (3)0.3224 (3)0.1944 (2)0.0541 (6)
H22A0.09930.27360.19050.065*
C420.4518 (2)0.7577 (2)0.07538 (19)0.0419 (5)
H42A0.40710.71250.12430.050*
C460.4384 (3)0.8104 (2)0.0931 (2)0.0478 (5)
H46A0.38510.80230.15820.057*
C230.2935 (3)0.3252 (3)0.2754 (2)0.0598 (7)
H23A0.25970.27780.32530.072*
C440.6622 (2)0.9136 (2)0.0326 (2)0.0468 (5)
C240.4388 (3)0.3986 (3)0.2818 (2)0.0488 (5)
C450.5837 (3)0.8974 (2)0.0648 (2)0.0532 (6)
H45A0.62850.94520.11210.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.02872 (10)0.03397 (11)0.02740 (10)0.01083 (7)0.00068 (6)0.00676 (7)
Cl10.1102 (7)0.0721 (5)0.0520 (4)0.0181 (5)0.0033 (4)0.0141 (4)
Cl30.1781 (11)0.1075 (7)0.0414 (4)0.0783 (8)0.0351 (5)0.0163 (4)
N30.0369 (9)0.0430 (10)0.0302 (9)0.0127 (8)0.0012 (7)0.0099 (8)
N10.0418 (10)0.0363 (9)0.0358 (9)0.0156 (8)0.0032 (8)0.0073 (7)
C20.0399 (12)0.0431 (12)0.0344 (11)0.0128 (10)0.0071 (9)0.0116 (9)
C10.0480 (13)0.0413 (12)0.0406 (12)0.0221 (10)0.0068 (10)0.0114 (10)
C110.0479 (12)0.0336 (11)0.0355 (11)0.0151 (10)0.0052 (9)0.0091 (9)
C310.0468 (12)0.0406 (11)0.0306 (10)0.0147 (10)0.0024 (9)0.0118 (9)
C120.0559 (15)0.0579 (15)0.0504 (14)0.0256 (13)0.0066 (12)0.0056 (12)
C350.0676 (17)0.0636 (17)0.0465 (15)0.0255 (14)0.0163 (13)0.0086 (13)
C150.0542 (15)0.0538 (15)0.0530 (15)0.0119 (12)0.0024 (12)0.0052 (12)
C160.0498 (14)0.0478 (13)0.0472 (13)0.0186 (11)0.0064 (11)0.0042 (11)
C130.078 (2)0.0611 (16)0.0506 (15)0.0344 (15)0.0167 (14)0.0054 (13)
C320.0559 (16)0.0771 (19)0.0451 (14)0.0268 (14)0.0078 (12)0.0054 (13)
C340.096 (2)0.0546 (15)0.0320 (12)0.0341 (15)0.0129 (13)0.0024 (11)
C330.096 (2)0.087 (2)0.0397 (14)0.0454 (19)0.0168 (15)0.0046 (14)
C360.0509 (14)0.0570 (15)0.0392 (12)0.0202 (12)0.0011 (10)0.0090 (11)
C140.0798 (19)0.0408 (13)0.0385 (13)0.0142 (13)0.0062 (13)0.0036 (10)
Cl40.0366 (3)0.0564 (4)0.0962 (5)0.0032 (3)0.0119 (3)0.0173 (4)
Cl20.0620 (4)0.1122 (6)0.0685 (4)0.0472 (4)0.0014 (3)0.0409 (4)
N40.0312 (9)0.0401 (9)0.0337 (9)0.0107 (7)0.0028 (7)0.0092 (7)
N20.0406 (10)0.0420 (10)0.0384 (10)0.0195 (8)0.0017 (8)0.0101 (8)
C410.0337 (10)0.0358 (11)0.0382 (11)0.0133 (9)0.0071 (9)0.0079 (9)
C210.0402 (11)0.0390 (11)0.0383 (11)0.0210 (9)0.0045 (9)0.0095 (9)
C430.0366 (12)0.0473 (13)0.0497 (13)0.0143 (10)0.0009 (10)0.0107 (11)
C260.0453 (13)0.0601 (15)0.0512 (13)0.0277 (11)0.0170 (11)0.0278 (12)
C250.0342 (11)0.0623 (15)0.0649 (16)0.0214 (11)0.0083 (11)0.0264 (13)
C220.0360 (12)0.0592 (15)0.0687 (16)0.0144 (11)0.0077 (11)0.0340 (13)
C420.0360 (11)0.0423 (12)0.0405 (12)0.0119 (9)0.0065 (9)0.0125 (10)
C460.0492 (13)0.0433 (12)0.0432 (12)0.0130 (10)0.0037 (10)0.0156 (10)
C230.0520 (15)0.0763 (18)0.0669 (17)0.0286 (14)0.0146 (12)0.0456 (15)
C440.0337 (11)0.0352 (11)0.0601 (15)0.0097 (9)0.0117 (10)0.0080 (10)
C240.0451 (13)0.0604 (15)0.0473 (13)0.0290 (11)0.0035 (10)0.0191 (11)
C450.0535 (14)0.0412 (12)0.0555 (15)0.0098 (11)0.0173 (12)0.0192 (11)
Geometric parameters (Å, º) top
Mo1—Mo1i2.0899 (12)C13—C141.366 (4)
Mo1—N32.1342 (19)C32—C331.383 (4)
Mo1—N12.1585 (18)C34—C331.365 (5)
Mo1—N2i2.1602 (18)Cl4—C441.744 (2)
Mo1—N4i2.1751 (18)Cl2—C241.741 (2)
Cl1—C141.746 (3)N4—C411.422 (3)
Cl3—C341.741 (3)N4—Mo1i2.1751 (18)
N3—C21.320 (3)N2—C211.426 (3)
N3—C311.418 (3)N2—Mo1i2.1602 (18)
N1—C11.323 (3)C41—C461.385 (3)
N1—C111.420 (3)C41—C421.392 (3)
C2—N41.330 (3)C21—C221.380 (3)
C1—N21.323 (3)C21—C261.386 (3)
C11—C161.382 (3)C43—C441.372 (3)
C11—C121.391 (3)C43—C421.387 (3)
C31—C321.378 (3)C26—C251.377 (3)
C31—C361.393 (3)C25—C241.370 (3)
C12—C131.381 (4)C22—C231.377 (3)
C35—C341.358 (4)C46—C451.377 (3)
C35—C361.376 (3)C23—C241.370 (4)
C15—C141.369 (4)C44—C451.367 (4)
C15—C161.381 (4)
Mo1i—Mo1—N393.63 (5)C33—C34—Cl3118.9 (2)
Mo1i—Mo1—N193.78 (6)C34—C33—C32119.7 (3)
N3—Mo1—N186.82 (7)C35—C36—C31121.1 (3)
Mo1i—Mo1—N2i91.62 (6)C13—C14—C15120.4 (2)
N3—Mo1—N2i89.16 (7)C13—C14—Cl1119.7 (2)
N1—Mo1—N2i173.45 (6)C15—C14—Cl1119.9 (2)
Mo1i—Mo1—N4i91.91 (5)C2—N4—C41117.33 (18)
N3—Mo1—N4i174.15 (6)C2—N4—Mo1i116.63 (14)
N1—Mo1—N4i90.92 (7)C41—N4—Mo1i126.04 (14)
N2i—Mo1—N4i92.58 (7)C1—N2—C21116.80 (19)
C2—N3—C31118.96 (19)C1—N2—Mo1i117.87 (15)
C2—N3—Mo1117.38 (14)C21—N2—Mo1i123.95 (14)
C31—N3—Mo1122.17 (14)C46—C41—C42117.8 (2)
C1—N1—C11117.59 (19)C46—C41—N4123.8 (2)
C1—N1—Mo1115.89 (15)C42—C41—N4118.39 (19)
C11—N1—Mo1125.77 (14)C22—C21—C26118.5 (2)
N3—C2—N4120.3 (2)C22—C21—N2121.1 (2)
N2—C1—N1120.5 (2)C26—C21—N2120.4 (2)
C16—C11—C12117.8 (2)C44—C43—C42118.7 (2)
C16—C11—N1119.8 (2)C25—C26—C21120.8 (2)
C12—C11—N1122.4 (2)C24—C25—C26119.4 (2)
C32—C31—C36118.0 (2)C23—C22—C21121.1 (2)
C32—C31—N3123.2 (2)C43—C42—C41121.5 (2)
C36—C31—N3118.6 (2)C45—C46—C41120.8 (2)
C13—C12—C11120.9 (3)C24—C23—C22119.3 (2)
C34—C35—C36119.4 (3)C45—C44—C43121.0 (2)
C14—C15—C16119.7 (3)C45—C44—Cl4119.39 (19)
C15—C16—C11121.3 (2)C43—C44—Cl4119.6 (2)
C14—C13—C12119.9 (3)C23—C24—C25121.0 (2)
C31—C32—C33120.7 (3)C23—C24—Cl2119.7 (2)
C35—C34—C33121.0 (2)C25—C24—Cl2119.35 (19)
C35—C34—Cl3120.1 (2)C44—C45—C46120.1 (2)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Mo2(C13H9Cl2N2)4]
Mr1248.37
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)10.347 (2), 11.496 (2), 12.569 (3)
α, β, γ (°)106.61 (3), 92.04 (3), 114.55 (3)
V3)1282.7 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.95
Crystal size (mm)0.33 × 0.33 × 0.20
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.744, 0.833
No. of measured, independent and
observed [I > 2σ(I)] reflections
4498, 4498, 4196
Rint0.000
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.064, 1.08
No. of reflections4498
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.50

Computer programs: CAD-4 Operations Manual (Enraf-Nonius, 1977), CAD-4 Operations Manual, MolEN (Fair, 1990), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
Mo1—Mo1i2.0899 (12)Mo1—N2i2.1602 (18)
Mo1—N32.1342 (19)Mo1—N4i2.1751 (18)
Mo1—N12.1585 (18)
Mo1i—Mo1—N393.63 (5)Mo1i—Mo1—N2i91.62 (6)
Mo1i—Mo1—N193.78 (6)Mo1i—Mo1—N4i91.91 (5)
Symmetry code: (i) x, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds