Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, ([eta]5-cyclo­penta­dienyl)(4-nitro­benzo­nitrile-[kappa]N)(trimethyl­phosphine-[kappa]P)(triphenyl­phosphite-[kappa]P)iron(II) hexa­fluoro­phosphate, [Fe(C5H5)(C7H4N2O2)(C18H15O3P)(C3H9P)]PF6, has been characterized by spectroscopic and X-ray diffraction in order to evaluate the tuning of the electron density at the metal centre and the extension of the [pi] delocalization on the mol­ecule due to the presence of phosphite and phosphine co-ligands. The compound crystallizes in the centrosymmetric space group P21/c, which destroys the possibility of exhibiting any quadratic non-linear optical properties. The packing shows a supramolecular zigzag chain of antiparallel cations connected via the PF6- anions through C-H...F[delta]- inter­actions, with H...F distances ranging from 2.39 to 2.67 Å. Each zigzag chain is composed of isomeric organometallic fragments containing either R or S mol­ecules. These chains are connected through weak inter­molecular C-H...C inter­actions, forming a two-dimensional plane parallel to (101).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105021281/ob1231sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105021281/ob1231Isup2.hkl
Contains datablock I

CCDC reference: 282178

Comment top

The design of new monocyclopentadienyl metal derivatives for application in materials science has engrossed scientists in recent years. Our interest in these compounds stems from their use as building blocks in a three-dimensional network, which would allow us to explore new variables for the engineering and development of new solids with potential nonlinear optical (NLO) applications. It is well known that molecular polarization is responsible for high values of molecular hyperpolarizability, so tailoring the building blocks by modifying either the metal centre or the ligand environment will change and possibly enhance the molecular polarization (Whittall et al., 1998; Nalwa, 1991; Goovaerts et al., 2001). With the aim of modifying the electronic richness of the metallic centre, we have recently studied a family of iron(II) complexes [Fe(Cp)(L)(L')(p-NCR)]BF4 [Cp is η5-cyclopentadienyl; L and L' are CO, P(OPh)3 or PPh3; R is C6H4NMe2, C6H4NO2, (E)-CHCHC6H4NMe2 or (E)-CHCHC6H4NO2], where the organometallic fragment has been systematically enriched or depleted by changing the ligands L and L' or substituting the η5-cyclopentadienyl ligand with η5-indenyl (Garcia, Robalo, Teixeira et al., 2001). Within these studies, we have synthesized and characterized the title novel complex, [Fe(Cp)(PMe3)(P(OPh)3)(4-NCC6H4NO2)]PF6, (I), and present its structural analysis here.

Complex (I) was synthesized by treatment of the precursor [Fe(Cp)(P(OPh)3)(PMe3)(I)] with TlPF6 and a slight excess of 4-nitrobenzonitrile in dichloromethane at room temperature. After work-up and recrystallization with dichloromethane–diethyl ether, complex (I) was obtained as dark-red crystals, fairly stable towards oxidation in air and moisture in both the solid state and solution. The formulation is supported by analytical data and IR and 1H, 13C and 31P NMR spectra. In the IR spectrum, the typical band ν(CN) at 2220 cm-1 showed a negative shift of 12 cm-1 compared with the uncoordinated nitrile, as observed previously for other analogous FeII compounds (Garcia, Robalo, Dias et al., 2001). Concerning the NMR data, we observed a doublet signal at 8.05 p.p.m. for the aromatic ortho H atoms of the nitrile ligand, which is slightly shielded when compared with the corresponding signal for the uncoordinated nitrile (8.13 p.p.m., in the same solvent). These spectroscopic data are consistent with a metal–nitrile interaction, described by a nitrile σ-type coordination with a small π back-donation contribution, owing to p-bonding between the metal d orbitals and the π* orbital of the CN group. The complex shows an intense broad visible absorption band at λmax = 435 nm in chloroform. This absorption could be attributable to dπ* metal-to-ligand charge-transfer (MLCT) transition from the Fe centre to the nitrile ligand. Such low-energy MLCT bands are typically associated with large molecular quadratic NLO responses (Garcia, Robalo, Dias et al., 2001; Garcia et al., 2002).

In the solid state, complex (I) crystallizes in the monoclinic centrosymmetric space group P21/c, thus destroying our hopes of obtaining dipole supramolecular alignment. The molecular structure of the cation is presented in Fig. 1. The coordination geometry can be described as a pseudo-octahedral three-legged piano stool, on the assumption that the cyclopentadienyl group takes up three coordination sites. This geometry, similar to that of other compounds of the same family (Garcia, Robalo, Teixeira et al., 2001), is confirmed by the angles around the metal centre, which are all close to 90° (Table 1), as well as by the remaining X—Fe—Cp(centroid) angles [P1—Fe1—Cp(centroid) 124.62 (6)°, P2—Fe1—Cp(centroid) 122.67 (6)°, N1—Fe1—Cp(centroid) 123.4 (1)°]. As expected, all angles involving the Cp centroid are considerably larger than those involving the phosphite, phosphine and nitrile ligands.

In this molecule, we can observe the well known contraction of the Fe—P bond when using a phosphite ligand instead of the phosphine. Thus, the observed value of 2.1206 (14) Å, shorter than that of the trimethylphosphine ligand [2.2332 (15) Å], can be attributed to the presence of the O as the α atom of the pendent groups on the triphenylphosphite. This value agrees with the values observed for Fe(phosphine) and Fe(phosphite) derivatives in the Cambridge Structural Database (CSD, Version?; Allen, 2002), presented in Table 3, where Fe—N and NC distances are also included for comparison.

The Fe—N distance [1.871 (4) Å] in (I) is somewhat shorter than that found in [Fe(Cp)(CO)(P(OPh)3)(4-NCC6H4NO2)]BF4 [1.878 (10) Å Garcia, Robalo, Teixeira et al., 2001], while it is very similar to that observed in [Fe(Cp)(dppe)(4-NCC6H4NO2)]PF6 [1.874 (11) Å; dppe is diphenylphosphphinoethane; Garcia, Robalo, Dias et al., 2001]. However, the NC bond [1.147 (6) Å] presents the same structural features as in the free nitrile [1.155 (15) Å; Higashi & Osaki, 1977], being somewhat longer [Please check amended text] than the equivalent bonds found in the complexes listed in Table 3. These values, altogether with the bond angles Fe1—N1C1 and N1C1—C2 [175.4 (4) and 173.7 (5)°], show that, in the solid state, the nitrile group departs somewhat from the expected linear geometry, and there is no evidence of any appreciable π back-donation contribution. These results confirm the spectroscopic data found for (I), since only a small π back-donation effect was noticed. According to this behaviour, which can be correlated with the donor ability of the metal centre, we can identify the [Fe(Cp)(PMe3)(P(OPh)3)]+ fragment as a weak π-donor towards the nitrile ligand when compared with other fragments (Table 3).

In recent publications, the importance of intermolecular interactions involving halogens, in particular F atoms, as a possible tool in crystal engineering has been studied in great detail (Chopra et al., 2005). The three-dimensional packing of (I) shows a supramolecular organometallic zigzag chain of aligned cations (of the same conformational isomer) in an up–down configuration, obtained via a network of C—H···Fδ- interactions (Table 2) involving the F atoms of the anions and H atoms of the nitrile [H7···F6i; symmetry code (i) 1 - x, -y, 1 - z], phosphine (H33A···F6i) and phosphite [H42···F5ii; symmetry code (ii) x, 1/2 - y, z - 1/2] (Fig. 2), generating in this way a one-dimensional chain along the b axis. We have taken into account the criteria used by Reichenbacher et al. (2005), where H···F distances up to 2.9 Å can be considered as weak intermolecular interactions. These interactions organize the complex cations in pairs through the spherical anion, in such a way that their dipole moments and second-order polarizabilities cancel. A weaker interaction of the type C—H···C(π), between a C atom of the phenyl attached to the nitrile and a phenyl H atom of the phosphite ligand [C34—H34···C4iii; symmetry code (iii) x, 1/2 - y, z + 1/2], gives rise to the formation of a two-dimensional aggregation of chains of different optical isomers of the complex cation parallel to the (101) plane.

Experimental top

TlPF6 (0.40 mmol) was added to a solution of [Fe(Cp)(P(OPh)3)(PMe3)(I)] (0.40 mmol) and 4-nitrobenzonitrile (0.72 mmol) in dichloromethane (40 ml) at room temperature. The mixture was stirred at room temperature for 22 h. A change was observed from dark brown to red, with simultaneous precipitation of thallium iodide. The red solution was filtered, evaporated under vacuum to dryness, and washed several times with diethyl ether and n-hexane to remove the excess of nitrile. The dark-red residue was further purified by vapour diffusion of diethyl ether into a concentrated dichloromethane solution, affording dark-red crystals of (I) (yield 47%; m.p. 435–436 K). Analysis, calculated for C33H33F6N2O5P3Fe: C 49.49, H 4.16, N 3.50%; found: C, 49.44, H 4.12, N 3.31%. Spectroscopic analysis: IR (KBr, cm-1): ν(N C) 2221, ν(NO2) 1526 and 1345; 1H NMR (300 MHz, CD3COCD3, δ, p.p.m.): 1.85 (d, 9H, J = 9.0 Hz, PMe3), 4.64 (s, 5H, η5-C5H5), 7.23 [m, 3H, P(OPh)3:H-para], 7.34–7.42 [m, 12H, P(OPh)3:H-ortho and H-meta], 8.05 (d, 2H, J = 9.0 Hz, H2, H6), 8.41 (d, 2H, J = 9.0 Hz, H3, H5); 13C{1H} NMR (75 MHz, CD3COCD3, δ, p.p.m.): 18.85 (d, JCP = -29.8 Hz, PMe3), 81.69 (η5-C5H5), 118.29 (C1), 121.70 [d, JCP = 6.8 Hz, P(OPh)3:C-ortho], 125.28 (C3, C5), 126.17 [P(OPh)3:C-para], 131.00 [P(OPh)3:C-meta], 132.81 (NC), 135.00 (C2, C6), 152.44 [P(OPh)3:C-ipso], 152.59 (C4); 31P{1H} NMR (75 MHz, CD3COCD3, δ, p.p.m.): -144.05 (h, JPF = 704.4 Hz, PF6), 27.93 (d, JPP = 100.3 Hz, PMe3), 167.93 [d, JPP = 100.3 Hz, P(OPh)3]. During the NMR experiment, no sign of nitrile-ligand dissociation was found in deutero-acetone.

Refinement top

Methyl H atoms were positioned geometrically, with C—H = 0.96 Å and with torsion angles taken from the electron density, and were constrained. The H atoms of the Ph and Cp rings were also positioned geometrically, with C—H = 0.93 Å. For all H atoms, Uiso(H) = 1.2Ueq(C).

Structure description top

The design of new monocyclopentadienyl metal derivatives for application in materials science has engrossed scientists in recent years. Our interest in these compounds stems from their use as building blocks in a three-dimensional network, which would allow us to explore new variables for the engineering and development of new solids with potential nonlinear optical (NLO) applications. It is well known that molecular polarization is responsible for high values of molecular hyperpolarizability, so tailoring the building blocks by modifying either the metal centre or the ligand environment will change and possibly enhance the molecular polarization (Whittall et al., 1998; Nalwa, 1991; Goovaerts et al., 2001). With the aim of modifying the electronic richness of the metallic centre, we have recently studied a family of iron(II) complexes [Fe(Cp)(L)(L')(p-NCR)]BF4 [Cp is η5-cyclopentadienyl; L and L' are CO, P(OPh)3 or PPh3; R is C6H4NMe2, C6H4NO2, (E)-CHCHC6H4NMe2 or (E)-CHCHC6H4NO2], where the organometallic fragment has been systematically enriched or depleted by changing the ligands L and L' or substituting the η5-cyclopentadienyl ligand with η5-indenyl (Garcia, Robalo, Teixeira et al., 2001). Within these studies, we have synthesized and characterized the title novel complex, [Fe(Cp)(PMe3)(P(OPh)3)(4-NCC6H4NO2)]PF6, (I), and present its structural analysis here.

Complex (I) was synthesized by treatment of the precursor [Fe(Cp)(P(OPh)3)(PMe3)(I)] with TlPF6 and a slight excess of 4-nitrobenzonitrile in dichloromethane at room temperature. After work-up and recrystallization with dichloromethane–diethyl ether, complex (I) was obtained as dark-red crystals, fairly stable towards oxidation in air and moisture in both the solid state and solution. The formulation is supported by analytical data and IR and 1H, 13C and 31P NMR spectra. In the IR spectrum, the typical band ν(CN) at 2220 cm-1 showed a negative shift of 12 cm-1 compared with the uncoordinated nitrile, as observed previously for other analogous FeII compounds (Garcia, Robalo, Dias et al., 2001). Concerning the NMR data, we observed a doublet signal at 8.05 p.p.m. for the aromatic ortho H atoms of the nitrile ligand, which is slightly shielded when compared with the corresponding signal for the uncoordinated nitrile (8.13 p.p.m., in the same solvent). These spectroscopic data are consistent with a metal–nitrile interaction, described by a nitrile σ-type coordination with a small π back-donation contribution, owing to p-bonding between the metal d orbitals and the π* orbital of the CN group. The complex shows an intense broad visible absorption band at λmax = 435 nm in chloroform. This absorption could be attributable to dπ* metal-to-ligand charge-transfer (MLCT) transition from the Fe centre to the nitrile ligand. Such low-energy MLCT bands are typically associated with large molecular quadratic NLO responses (Garcia, Robalo, Dias et al., 2001; Garcia et al., 2002).

In the solid state, complex (I) crystallizes in the monoclinic centrosymmetric space group P21/c, thus destroying our hopes of obtaining dipole supramolecular alignment. The molecular structure of the cation is presented in Fig. 1. The coordination geometry can be described as a pseudo-octahedral three-legged piano stool, on the assumption that the cyclopentadienyl group takes up three coordination sites. This geometry, similar to that of other compounds of the same family (Garcia, Robalo, Teixeira et al., 2001), is confirmed by the angles around the metal centre, which are all close to 90° (Table 1), as well as by the remaining X—Fe—Cp(centroid) angles [P1—Fe1—Cp(centroid) 124.62 (6)°, P2—Fe1—Cp(centroid) 122.67 (6)°, N1—Fe1—Cp(centroid) 123.4 (1)°]. As expected, all angles involving the Cp centroid are considerably larger than those involving the phosphite, phosphine and nitrile ligands.

In this molecule, we can observe the well known contraction of the Fe—P bond when using a phosphite ligand instead of the phosphine. Thus, the observed value of 2.1206 (14) Å, shorter than that of the trimethylphosphine ligand [2.2332 (15) Å], can be attributed to the presence of the O as the α atom of the pendent groups on the triphenylphosphite. This value agrees with the values observed for Fe(phosphine) and Fe(phosphite) derivatives in the Cambridge Structural Database (CSD, Version?; Allen, 2002), presented in Table 3, where Fe—N and NC distances are also included for comparison.

The Fe—N distance [1.871 (4) Å] in (I) is somewhat shorter than that found in [Fe(Cp)(CO)(P(OPh)3)(4-NCC6H4NO2)]BF4 [1.878 (10) Å Garcia, Robalo, Teixeira et al., 2001], while it is very similar to that observed in [Fe(Cp)(dppe)(4-NCC6H4NO2)]PF6 [1.874 (11) Å; dppe is diphenylphosphphinoethane; Garcia, Robalo, Dias et al., 2001]. However, the NC bond [1.147 (6) Å] presents the same structural features as in the free nitrile [1.155 (15) Å; Higashi & Osaki, 1977], being somewhat longer [Please check amended text] than the equivalent bonds found in the complexes listed in Table 3. These values, altogether with the bond angles Fe1—N1C1 and N1C1—C2 [175.4 (4) and 173.7 (5)°], show that, in the solid state, the nitrile group departs somewhat from the expected linear geometry, and there is no evidence of any appreciable π back-donation contribution. These results confirm the spectroscopic data found for (I), since only a small π back-donation effect was noticed. According to this behaviour, which can be correlated with the donor ability of the metal centre, we can identify the [Fe(Cp)(PMe3)(P(OPh)3)]+ fragment as a weak π-donor towards the nitrile ligand when compared with other fragments (Table 3).

In recent publications, the importance of intermolecular interactions involving halogens, in particular F atoms, as a possible tool in crystal engineering has been studied in great detail (Chopra et al., 2005). The three-dimensional packing of (I) shows a supramolecular organometallic zigzag chain of aligned cations (of the same conformational isomer) in an up–down configuration, obtained via a network of C—H···Fδ- interactions (Table 2) involving the F atoms of the anions and H atoms of the nitrile [H7···F6i; symmetry code (i) 1 - x, -y, 1 - z], phosphine (H33A···F6i) and phosphite [H42···F5ii; symmetry code (ii) x, 1/2 - y, z - 1/2] (Fig. 2), generating in this way a one-dimensional chain along the b axis. We have taken into account the criteria used by Reichenbacher et al. (2005), where H···F distances up to 2.9 Å can be considered as weak intermolecular interactions. These interactions organize the complex cations in pairs through the spherical anion, in such a way that their dipole moments and second-order polarizabilities cancel. A weaker interaction of the type C—H···C(π), between a C atom of the phenyl attached to the nitrile and a phenyl H atom of the phosphite ligand [C34—H34···C4iii; symmetry code (iii) x, 1/2 - y, z + 1/2], gives rise to the formation of a two-dimensional aggregation of chains of different optical isomers of the complex cation parallel to the (101) plane.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: XCAD4 (Harms & Wocadlo, 1995); data reduction: XCAD4; program(s) used to solve structure: SIR99 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Bruno et al., 2002); software used to prepare material for publication: WinGX (Farrugia, 1999), PLATON (Spek, 2003) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. A view of the complex cation in (I), showing 30% probability displacement ellipsoids and the atomic labelling scheme.
[Figure 2] Fig. 2. A view of the two-dimensional layer of zigzag chains formed by different optical isomers of the complex cation. H atoms not involved in hydrogen bonding have been omitted. Broken lines indicate C—H···F and C—H···C(π) interactions.
(η5-cyclopentadienyl)(4-nitrobenzonitrile-κN)(trimethylphosphine- κP)(triphenylphosphite-κP)iron(II) hexafluorophosphate top
Crystal data top
[Fe(C5H5)(C7H4N2O2)(C3H9P)(C18H15O3P)]PF6F(000) = 1640
Mr = 800.37Dx = 1.510 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
a = 10.4938 (6) ÅCell parameters from 25 reflections
b = 18.9715 (7) Åθ = 16–21°
c = 17.8707 (11) ŵ = 5.39 mm1
β = 98.221 (5)°T = 293 K
V = 3521.2 (3) Å3Plate, red
Z = 40.3 × 0.14 × 0.1 mm
Data collection top
Enraf–Nonius Turbo CAD-4
diffractometer
3926 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 69.8°, θmin = 3.4°
ω/2θ scansh = 1212
Absorption correction: part of the refinement model (ΔF)
(Parkin et al., 1995)
k = 023
Tmin = 0.276, Tmax = 0.583l = 021
6598 measured reflections3 standard reflections every 400 reflections
6598 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0514P)2 + 1.6778P]
where P = (Fo2 + 2Fc2)/3
6598 reflections(Δ/σ)max = 0.013
451 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Fe(C5H5)(C7H4N2O2)(C3H9P)(C18H15O3P)]PF6V = 3521.2 (3) Å3
Mr = 800.37Z = 4
Monoclinic, P21/cCu Kα radiation
a = 10.4938 (6) ŵ = 5.39 mm1
b = 18.9715 (7) ÅT = 293 K
c = 17.8707 (11) Å0.3 × 0.14 × 0.1 mm
β = 98.221 (5)°
Data collection top
Enraf–Nonius Turbo CAD-4
diffractometer
3926 reflections with I > 2σ(I)
Absorption correction: part of the refinement model (ΔF)
(Parkin et al., 1995)
Rint = 0.000
Tmin = 0.276, Tmax = 0.5833 standard reflections every 400 reflections
6598 measured reflections intensity decay: none
6598 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.08Δρmax = 0.41 e Å3
6598 reflectionsΔρmin = 0.27 e Å3
451 parameters
Special details top

Experimental. In the absorption correction, cubic fit to sin(theta)/lambda - 24 parameters.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Dark-red crystals of {Fe(η5-cyclopentadienyl)(PMe3) [P(OPh)3](4-NCC6H4 NO2)}[PF6] crystallized in the monoclinic space group P21/c. All non hydrogen atoms were refined anisotropically. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.14412 (7)0.04980 (4)0.32461 (4)0.0475 (2)
P10.02079 (11)0.12905 (7)0.27107 (7)0.0488 (3)
P20.06863 (12)0.03216 (7)0.24005 (7)0.0546 (3)
N10.2777 (4)0.0668 (2)0.2679 (2)0.0561 (10)
C10.3578 (5)0.0730 (3)0.2310 (3)0.0586 (13)
C20.4488 (4)0.0763 (3)0.1788 (3)0.0534 (12)
C30.4541 (5)0.1347 (3)0.1338 (3)0.0682 (15)
H30.40620.17460.14160.082*
C40.5308 (5)0.1342 (3)0.0769 (3)0.0715 (15)
H40.53490.17330.04600.086*
C50.5994 (5)0.0756 (3)0.0674 (3)0.0661 (15)
C60.6018 (6)0.0177 (4)0.1134 (3)0.0811 (17)
H60.65350.02090.10670.097*
C70.5252 (5)0.0185 (3)0.1700 (3)0.0756 (16)
H70.52500.02000.20220.091*
N20.6767 (6)0.0729 (4)0.0042 (4)0.103 (2)
O10.6596 (6)0.1191 (3)0.0426 (3)0.139 (2)
O20.7481 (7)0.0230 (4)0.0013 (4)0.177 (3)
O210.1314 (3)0.11250 (17)0.25229 (18)0.0558 (8)
C210.2235 (4)0.1292 (3)0.2994 (3)0.0560 (12)
C220.2608 (5)0.0789 (3)0.3462 (3)0.0672 (14)
H220.22360.03430.34870.081*
C230.3561 (5)0.0957 (4)0.3906 (3)0.0799 (18)
H230.38230.06210.42300.096*
C240.4112 (6)0.1615 (4)0.3866 (4)0.099 (2)
H240.47310.17300.41700.119*
C250.3737 (6)0.2100 (4)0.3370 (5)0.101 (2)
H250.41230.25430.33310.122*
C260.2799 (5)0.1943 (3)0.2932 (4)0.0803 (18)
H260.25520.22750.25980.096*
O310.0058 (3)0.20486 (16)0.3086 (2)0.0609 (9)
C310.0997 (5)0.2466 (2)0.3494 (3)0.0552 (12)
C320.2205 (5)0.2550 (3)0.3286 (4)0.0718 (16)
H320.24400.23100.28730.086*
C330.3058 (6)0.3004 (4)0.3711 (5)0.090 (2)
H330.38790.30700.35850.108*
C340.2696 (9)0.3349 (4)0.4309 (5)0.110 (3)
H340.32870.36420.45950.132*
C350.1506 (10)0.3282 (4)0.4504 (4)0.107 (3)
H350.12780.35340.49110.128*
C360.0622 (6)0.2831 (3)0.4090 (3)0.0755 (16)
H360.02030.27790.42150.091*
O410.0521 (3)0.14788 (17)0.18845 (18)0.0579 (9)
C410.0018 (4)0.2036 (3)0.1419 (3)0.0531 (12)
C420.0772 (5)0.2565 (3)0.1250 (3)0.0601 (13)
H420.16320.25710.14670.072*
C430.0298 (6)0.3085 (3)0.0761 (3)0.0680 (14)
H430.08360.34470.06460.082*
C440.0966 (5)0.3078 (3)0.0439 (3)0.0659 (14)
H440.12800.34310.01010.079*
C450.1762 (5)0.2557 (3)0.0611 (3)0.0776 (17)
H450.26250.25600.04000.093*
C460.1289 (5)0.2020 (3)0.1102 (3)0.0757 (17)
H460.18230.16550.12140.091*
C110.2058 (6)0.0242 (3)0.4098 (3)0.0687 (15)
H110.23440.06970.40190.082*
C120.2812 (6)0.0354 (3)0.4221 (3)0.0719 (16)
H120.37010.03660.42370.086*
C130.2037 (6)0.0939 (3)0.4319 (3)0.0739 (16)
H130.23100.14010.44090.089*
C140.0767 (6)0.0689 (3)0.4253 (3)0.0726 (16)
H140.00420.09600.42940.087*
C150.0776 (6)0.0034 (3)0.4115 (3)0.0703 (15)
H150.00590.03270.40460.084*
C3110.0922 (5)0.0656 (3)0.2423 (3)0.0821 (18)
H31A0.15190.02700.23870.099*
H31B0.09470.09040.28890.099*
H31C0.11520.09720.20060.099*
C3120.0599 (7)0.0093 (4)0.1406 (3)0.097 (2)
H32A0.01150.03340.13070.116*
H32B0.01830.04670.11010.116*
H32C0.14530.00270.12850.116*
C3130.1621 (6)0.1120 (3)0.2461 (4)0.109 (3)
H33A0.25100.10070.24490.131*
H33B0.13150.14200.20410.131*
H33C0.15370.13590.29250.131*
P40.44533 (14)0.14138 (9)0.63252 (9)0.0706 (4)
F10.5735 (3)0.1836 (2)0.6412 (3)0.1420 (18)
F20.3157 (4)0.1000 (2)0.6222 (3)0.1456 (18)
F30.4887 (5)0.0968 (3)0.5679 (3)0.162 (2)
F40.3815 (4)0.1950 (2)0.5720 (3)0.1400 (17)
F50.3971 (5)0.1901 (4)0.6915 (3)0.191 (3)
F60.5094 (5)0.0868 (3)0.6888 (3)0.182 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0443 (4)0.0547 (4)0.0441 (4)0.0006 (4)0.0081 (3)0.0025 (4)
P10.0414 (6)0.0522 (7)0.0539 (7)0.0031 (5)0.0103 (5)0.0010 (6)
P20.0525 (7)0.0583 (8)0.0523 (7)0.0007 (6)0.0054 (6)0.0067 (6)
N10.047 (2)0.068 (3)0.054 (2)0.001 (2)0.008 (2)0.001 (2)
C10.048 (3)0.067 (3)0.061 (3)0.002 (2)0.006 (2)0.001 (3)
C20.041 (3)0.067 (3)0.051 (3)0.001 (2)0.006 (2)0.001 (2)
C30.053 (3)0.069 (4)0.084 (4)0.000 (3)0.013 (3)0.003 (3)
C40.067 (3)0.080 (4)0.069 (4)0.007 (3)0.017 (3)0.011 (3)
C50.051 (3)0.094 (4)0.056 (3)0.006 (3)0.018 (3)0.006 (3)
C60.077 (4)0.091 (5)0.078 (4)0.021 (3)0.023 (3)0.003 (4)
C70.076 (4)0.084 (4)0.071 (4)0.015 (3)0.024 (3)0.009 (3)
N20.098 (5)0.141 (6)0.078 (4)0.018 (4)0.043 (4)0.008 (4)
O10.174 (6)0.164 (6)0.093 (4)0.024 (4)0.066 (4)0.015 (4)
O20.183 (6)0.220 (8)0.151 (5)0.069 (6)0.111 (5)0.018 (5)
O210.0412 (17)0.064 (2)0.063 (2)0.0083 (15)0.0112 (15)0.0087 (17)
C210.032 (2)0.069 (3)0.067 (3)0.002 (2)0.007 (2)0.002 (3)
C220.054 (3)0.076 (4)0.073 (4)0.003 (3)0.011 (3)0.010 (3)
C230.056 (3)0.117 (5)0.070 (4)0.020 (4)0.017 (3)0.002 (4)
C240.063 (4)0.125 (6)0.118 (6)0.004 (4)0.041 (4)0.039 (5)
C250.064 (4)0.090 (5)0.158 (7)0.017 (4)0.045 (4)0.006 (5)
C260.059 (3)0.071 (4)0.116 (5)0.012 (3)0.031 (3)0.019 (4)
O310.0465 (18)0.050 (2)0.087 (2)0.0023 (15)0.0090 (17)0.0117 (18)
C310.061 (3)0.044 (3)0.058 (3)0.002 (2)0.001 (2)0.000 (2)
C320.054 (3)0.058 (3)0.100 (4)0.003 (3)0.001 (3)0.002 (3)
C330.059 (4)0.088 (5)0.116 (6)0.006 (3)0.011 (4)0.020 (4)
C340.128 (7)0.090 (5)0.093 (6)0.025 (5)0.044 (5)0.015 (5)
C350.189 (9)0.073 (5)0.055 (4)0.013 (6)0.003 (5)0.007 (3)
C360.109 (5)0.060 (3)0.061 (3)0.002 (3)0.025 (3)0.003 (3)
O410.0516 (19)0.065 (2)0.061 (2)0.0074 (16)0.0186 (16)0.0125 (17)
C410.052 (3)0.061 (3)0.048 (3)0.003 (2)0.014 (2)0.004 (2)
C420.051 (3)0.071 (3)0.059 (3)0.007 (3)0.013 (2)0.010 (3)
C430.078 (4)0.067 (4)0.062 (3)0.005 (3)0.021 (3)0.008 (3)
C440.076 (4)0.067 (4)0.057 (3)0.016 (3)0.017 (3)0.012 (3)
C450.057 (3)0.103 (5)0.072 (4)0.004 (3)0.007 (3)0.020 (4)
C460.055 (3)0.095 (5)0.075 (4)0.013 (3)0.002 (3)0.026 (3)
C110.088 (4)0.059 (3)0.060 (3)0.014 (3)0.012 (3)0.013 (3)
C120.064 (3)0.092 (5)0.054 (3)0.003 (3)0.009 (3)0.007 (3)
C130.106 (5)0.057 (3)0.052 (3)0.002 (3)0.011 (3)0.007 (3)
C140.070 (4)0.103 (5)0.046 (3)0.021 (3)0.013 (3)0.008 (3)
C150.077 (4)0.087 (4)0.048 (3)0.019 (3)0.010 (3)0.001 (3)
C3110.074 (4)0.080 (4)0.093 (4)0.021 (3)0.015 (3)0.027 (3)
C3120.141 (6)0.096 (5)0.057 (4)0.034 (4)0.026 (4)0.020 (3)
C3130.099 (5)0.076 (4)0.140 (6)0.030 (4)0.024 (5)0.045 (4)
P40.0552 (8)0.0793 (11)0.0773 (10)0.0055 (8)0.0089 (7)0.0028 (8)
F10.072 (2)0.148 (4)0.198 (5)0.031 (3)0.008 (3)0.022 (4)
F20.080 (3)0.131 (4)0.224 (5)0.031 (3)0.012 (3)0.024 (4)
F30.156 (4)0.186 (5)0.152 (4)0.048 (4)0.049 (3)0.053 (4)
F40.137 (4)0.121 (3)0.148 (4)0.016 (3)0.031 (3)0.039 (3)
F50.158 (4)0.277 (7)0.147 (4)0.015 (5)0.048 (4)0.103 (5)
F60.135 (4)0.212 (5)0.181 (5)0.001 (4)0.033 (4)0.129 (4)
Geometric parameters (Å, º) top
Fe1—N11.871 (4)C32—H320.9300
Fe1—C152.055 (5)C33—C341.354 (10)
Fe1—C142.057 (5)C33—H330.9300
Fe1—C132.102 (5)C34—C351.350 (10)
Fe1—C112.104 (5)C34—H340.9300
Fe1—C122.112 (5)C35—C361.393 (9)
Fe1—P12.1206 (14)C35—H350.9300
Fe1—P22.2332 (15)C36—H360.9300
P1—O411.598 (3)O41—C411.412 (5)
P1—O311.604 (3)C41—C421.362 (6)
P1—O211.615 (3)C41—C461.373 (6)
P2—C3131.800 (6)C42—C431.365 (7)
P2—C3111.809 (5)C42—H420.9300
P2—C3121.819 (6)C43—C441.368 (7)
N1—C11.147 (6)C43—H430.9300
C1—C21.429 (7)C44—C451.357 (7)
C2—C31.375 (7)C44—H440.9300
C2—C71.381 (7)C45—C461.390 (7)
C3—C41.383 (7)C45—H450.9300
C3—H30.9300C46—H460.9300
C4—C51.348 (7)C11—C121.380 (7)
C4—H40.9300C11—C151.407 (7)
C5—C61.371 (8)C11—H110.9300
C5—N21.483 (7)C12—C131.401 (7)
C6—C71.378 (7)C12—H120.9300
C6—H60.9300C13—C141.403 (7)
C7—H70.9300C13—H130.9300
N2—O11.208 (8)C14—C151.393 (8)
N2—O21.213 (8)C14—H140.9300
O21—C211.407 (5)C15—H150.9300
C21—C221.362 (7)C311—H31A0.9600
C21—C261.367 (7)C311—H31B0.9600
C22—C231.399 (7)C311—H31C0.9600
C22—H220.9300C312—H32A0.9600
C23—C241.374 (9)C312—H32B0.9600
C23—H230.9300C312—H32C0.9600
C24—C251.373 (9)C313—H33A0.9600
C24—H240.9300C313—H33B0.9600
C25—C261.375 (8)C313—H33C0.9600
C25—H250.9300P4—F61.531 (4)
C26—H260.9300P4—F51.542 (5)
O31—C311.387 (5)P4—F31.551 (4)
C31—C361.374 (7)P4—F11.554 (4)
C31—C321.381 (7)P4—F21.559 (4)
C32—C331.387 (8)P4—F41.564 (4)
N1—Fe1—C15148.8 (2)C35—C34—C33122.1 (7)
N1—Fe1—C14145.2 (2)C35—C34—H34118.9
C15—Fe1—C1439.6 (2)C33—C34—H34118.9
N1—Fe1—C13106.1 (2)C34—C35—C36119.5 (7)
C15—Fe1—C1366.1 (2)C34—C35—H35120.3
C14—Fe1—C1339.4 (2)C36—C35—H35120.3
N1—Fe1—C11109.3 (2)C31—C36—C35118.6 (6)
C15—Fe1—C1139.5 (2)C31—C36—H36120.7
C14—Fe1—C1166.0 (2)C35—C36—H36120.7
C13—Fe1—C1165.5 (2)C41—O41—P1126.4 (3)
N1—Fe1—C1289.7 (2)C42—C41—C46120.7 (5)
C15—Fe1—C1265.1 (2)C42—C41—O41118.5 (4)
C14—Fe1—C1265.2 (2)C46—C41—O41120.6 (4)
C13—Fe1—C1238.8 (2)C41—C42—C43119.8 (5)
C11—Fe1—C1238.2 (2)C41—C42—H42120.1
N1—Fe1—P195.12 (13)C43—C42—H42120.1
C15—Fe1—P1115.94 (18)C42—C43—C44120.3 (5)
C14—Fe1—P190.34 (17)C42—C43—H43119.8
C13—Fe1—P1102.25 (16)C44—C43—H43119.8
C11—Fe1—P1154.76 (17)C45—C44—C43120.2 (5)
C12—Fe1—P1139.77 (18)C45—C44—H44119.9
N1—Fe1—P288.55 (13)C43—C44—H44119.9
C15—Fe1—P292.48 (17)C44—C45—C46120.0 (5)
C14—Fe1—P2125.53 (19)C44—C45—H45120.0
C13—Fe1—P2157.55 (17)C46—C45—H45120.0
C11—Fe1—P293.86 (17)C41—C46—C45118.8 (5)
C12—Fe1—P2127.01 (18)C41—C46—H46120.6
P1—Fe1—P293.08 (5)C45—C46—H46120.6
O41—P1—O31103.40 (19)C12—C11—C15107.1 (5)
O41—P1—O21100.32 (17)C12—C11—Fe171.2 (3)
O31—P1—O2196.22 (17)C15—C11—Fe168.4 (3)
O41—P1—Fe1112.49 (13)C12—C11—H11126.4
O31—P1—Fe1122.45 (14)C15—C11—H11126.4
O21—P1—Fe1118.52 (13)Fe1—C11—H11125.5
C313—P2—C311101.9 (3)C11—C12—C13109.8 (5)
C313—P2—C312102.1 (3)C11—C12—Fe170.6 (3)
C311—P2—C312100.9 (3)C13—C12—Fe170.2 (3)
C313—P2—Fe1114.1 (2)C11—C12—H12125.1
C311—P2—Fe1118.09 (19)C13—C12—H12125.1
C312—P2—Fe1117.3 (2)Fe1—C12—H12125.7
C1—N1—Fe1175.4 (4)C12—C13—C14106.5 (5)
N1—C1—C2173.7 (5)C12—C13—Fe171.0 (3)
C3—C2—C7120.1 (5)C14—C13—Fe168.5 (3)
C3—C2—C1120.3 (5)C12—C13—H13126.8
C7—C2—C1119.5 (5)C14—C13—H13126.8
C2—C3—C4120.0 (5)Fe1—C13—H13125.3
C2—C3—H3120.0C15—C14—C13108.5 (5)
C4—C3—H3120.0C15—C14—Fe170.2 (3)
C5—C4—C3118.4 (5)C13—C14—Fe172.0 (3)
C5—C4—H4120.8C15—C14—H14125.7
C3—C4—H4120.8C13—C14—H14125.7
C4—C5—C6123.3 (5)Fe1—C14—H14123.7
C4—C5—N2119.1 (6)C14—C15—C11108.1 (5)
C6—C5—N2117.6 (6)C14—C15—Fe170.3 (3)
C5—C6—C7118.0 (6)C11—C15—Fe172.1 (3)
C5—C6—H6121.0C14—C15—H15125.9
C7—C6—H6121.0C11—C15—H15125.9
C6—C7—C2120.0 (6)Fe1—C15—H15123.3
C6—C7—H7120.0P2—C311—H31A109.5
C2—C7—H7120.0P2—C311—H31B109.5
O1—N2—O2124.7 (7)H31A—C311—H31B109.5
O1—N2—C5117.2 (7)P2—C311—H31C109.5
O2—N2—C5118.0 (7)H31A—C311—H31C109.5
C21—O21—P1125.2 (3)H31B—C311—H31C109.5
C22—C21—C26121.6 (5)P2—C312—H32A109.5
C22—C21—O21119.5 (5)P2—C312—H32B109.5
C26—C21—O21118.8 (5)H32A—C312—H32B109.5
C21—C22—C23118.6 (6)P2—C312—H32C109.5
C21—C22—H22120.7H32A—C312—H32C109.5
C23—C22—H22120.7H32B—C312—H32C109.5
C24—C23—C22120.5 (6)P2—C313—H33A109.5
C24—C23—H23119.7P2—C313—H33B109.5
C22—C23—H23119.7H33A—C313—H33B109.5
C25—C24—C23119.0 (6)P2—C313—H33C109.5
C25—C24—H24120.5H33A—C313—H33C109.5
C23—C24—H24120.5H33B—C313—H33C109.5
C24—C25—C26121.0 (6)F6—P4—F596.5 (4)
C24—C25—H25119.5F6—P4—F388.4 (3)
C26—C25—H25119.5F5—P4—F3175.1 (3)
C21—C26—C25119.1 (6)F6—P4—F189.5 (3)
C21—C26—H26120.4F5—P4—F189.3 (3)
C25—C26—H26120.4F3—P4—F190.8 (3)
C31—O31—P1128.9 (3)F6—P4—F291.7 (3)
C36—C31—C32121.8 (5)F5—P4—F290.9 (3)
C36—C31—O31115.8 (5)F3—P4—F288.9 (3)
C32—C31—O31122.3 (5)F1—P4—F2178.7 (3)
C31—C32—C33118.0 (6)F6—P4—F4177.4 (3)
C31—C32—H32121.0F5—P4—F486.1 (3)
C33—C32—H32121.0F3—P4—F489.0 (3)
C34—C33—C32120.1 (7)F1—P4—F490.7 (3)
C34—C33—H33120.0F2—P4—F488.1 (2)
C32—C33—H33120.0
N1—Fe1—P1—O4123.85 (19)O31—C31—C36—C35177.5 (5)
C15—Fe1—P1—O41159.2 (2)C34—C35—C36—C310.2 (10)
C14—Fe1—P1—O41169.4 (2)O31—P1—O41—C4138.0 (4)
C13—Fe1—P1—O41131.5 (2)O21—P1—O41—C4161.0 (4)
C11—Fe1—P1—O41170.8 (4)Fe1—P1—O41—C41172.1 (3)
C12—Fe1—P1—O41119.4 (3)P1—O41—C41—C42115.0 (4)
P2—Fe1—P1—O4164.97 (15)P1—O41—C41—C4669.6 (6)
N1—Fe1—P1—O31100.2 (2)C46—C41—C42—C430.2 (8)
C15—Fe1—P1—O3176.7 (2)O41—C41—C42—C43175.6 (4)
C14—Fe1—P1—O3145.3 (2)C41—C42—C43—C440.2 (8)
C13—Fe1—P1—O317.4 (2)C42—C43—C44—C450.8 (8)
C11—Fe1—P1—O3165.1 (4)C43—C44—C45—C461.5 (9)
C12—Fe1—P1—O314.7 (3)C42—C41—C46—C450.8 (8)
P2—Fe1—P1—O31170.94 (16)O41—C41—C46—C45176.1 (5)
N1—Fe1—P1—O21140.31 (19)C44—C45—C46—C411.4 (9)
C15—Fe1—P1—O2142.8 (2)N1—Fe1—C11—C1263.0 (4)
C14—Fe1—P1—O2174.1 (2)C15—Fe1—C11—C12118.0 (5)
C13—Fe1—P1—O21112.0 (2)C14—Fe1—C11—C1279.8 (4)
C11—Fe1—P1—O2154.3 (4)C13—Fe1—C11—C1236.4 (4)
C12—Fe1—P1—O21124.1 (3)P1—Fe1—C11—C12101.6 (5)
P2—Fe1—P1—O2151.49 (15)P2—Fe1—C11—C12152.8 (3)
N1—Fe1—P2—C31373.7 (3)N1—Fe1—C11—C15179.0 (3)
C15—Fe1—P2—C31375.1 (3)C14—Fe1—C11—C1538.2 (3)
C14—Fe1—P2—C31398.6 (3)C13—Fe1—C11—C1581.6 (4)
C13—Fe1—P2—C31357.8 (6)C12—Fe1—C11—C15118.0 (5)
C11—Fe1—P2—C31335.5 (3)P1—Fe1—C11—C1516.4 (6)
C12—Fe1—P2—C31314.8 (4)P2—Fe1—C11—C1589.2 (3)
P1—Fe1—P2—C313168.8 (3)C15—C11—C12—C130.2 (6)
N1—Fe1—P2—C311166.7 (3)Fe1—C11—C12—C1359.4 (4)
C15—Fe1—P2—C31144.5 (3)C15—C11—C12—Fe159.2 (4)
C14—Fe1—P2—C31121.0 (3)N1—Fe1—C12—C11122.8 (4)
C13—Fe1—P2—C31161.7 (5)C15—Fe1—C12—C1138.3 (3)
C11—Fe1—P2—C31184.1 (3)C14—Fe1—C12—C1182.1 (4)
C12—Fe1—P2—C311104.8 (3)C13—Fe1—C12—C11120.6 (5)
P1—Fe1—P2—C31171.6 (2)P1—Fe1—C12—C11139.7 (3)
N1—Fe1—P2—C31245.6 (3)P2—Fe1—C12—C1134.8 (4)
C15—Fe1—P2—C312165.6 (3)N1—Fe1—C12—C13116.6 (4)
C14—Fe1—P2—C312142.1 (3)C15—Fe1—C12—C1382.3 (4)
C13—Fe1—P2—C312177.2 (5)C14—Fe1—C12—C1338.5 (4)
C11—Fe1—P2—C312154.8 (3)C11—Fe1—C12—C13120.6 (5)
C12—Fe1—P2—C312134.1 (3)P1—Fe1—C12—C1319.1 (5)
P1—Fe1—P2—C31249.5 (3)P2—Fe1—C12—C13155.4 (3)
C15—Fe1—N1—C173 (5)C11—C12—C13—C140.0 (6)
C14—Fe1—N1—C1149 (5)Fe1—C12—C13—C1459.6 (4)
C13—Fe1—N1—C1143 (5)C11—C12—C13—Fe159.6 (4)
C11—Fe1—N1—C174 (5)N1—Fe1—C13—C1268.5 (4)
C12—Fe1—N1—C1107 (5)C15—Fe1—C13—C1279.3 (4)
P1—Fe1—N1—C1113 (5)C14—Fe1—C13—C12117.2 (5)
P2—Fe1—N1—C120 (5)C11—Fe1—C13—C1235.8 (3)
Fe1—N1—C1—C234 (10)P1—Fe1—C13—C12167.5 (3)
N1—C1—C2—C397 (5)P2—Fe1—C13—C1260.5 (7)
N1—C1—C2—C779 (5)N1—Fe1—C13—C14174.3 (3)
C7—C2—C3—C43.5 (8)C15—Fe1—C13—C1437.9 (3)
C1—C2—C3—C4172.0 (5)C11—Fe1—C13—C1481.4 (4)
C2—C3—C4—C50.3 (8)C12—Fe1—C13—C14117.2 (5)
C3—C4—C5—C63.1 (9)P1—Fe1—C13—C1475.3 (3)
C3—C4—C5—N2176.8 (5)P2—Fe1—C13—C1456.8 (6)
C4—C5—C6—C73.2 (9)C12—C13—C14—C150.2 (6)
N2—C5—C6—C7176.8 (5)Fe1—C13—C14—C1561.0 (4)
C5—C6—C7—C20.2 (9)C12—C13—C14—Fe161.2 (4)
C3—C2—C7—C63.5 (8)N1—Fe1—C14—C15127.7 (4)
C1—C2—C7—C6172.0 (5)C13—Fe1—C14—C15118.1 (5)
C4—C5—N2—O110.7 (9)C11—Fe1—C14—C1538.1 (3)
C6—C5—N2—O1169.2 (6)C12—Fe1—C14—C1580.2 (4)
C4—C5—N2—O2172.4 (7)P1—Fe1—C14—C15132.8 (3)
C6—C5—N2—O27.6 (10)P2—Fe1—C14—C1538.7 (4)
O41—P1—O21—C21143.9 (4)N1—Fe1—C14—C139.6 (6)
O31—P1—O21—C2139.0 (4)C15—Fe1—C14—C13118.1 (5)
Fe1—P1—O21—C2193.3 (4)C11—Fe1—C14—C1380.0 (4)
P1—O21—C21—C2297.0 (5)C12—Fe1—C14—C1337.9 (3)
P1—O21—C21—C2687.4 (5)P1—Fe1—C14—C13109.1 (3)
C26—C21—C22—C232.2 (8)P2—Fe1—C14—C13156.9 (3)
O21—C21—C22—C23177.6 (4)C13—C14—C15—C110.3 (6)
C21—C22—C23—C240.3 (9)Fe1—C14—C15—C1162.5 (4)
C22—C23—C24—C251.6 (10)C13—C14—C15—Fe162.2 (4)
C23—C24—C25—C261.7 (11)C12—C11—C15—C140.3 (6)
C22—C21—C26—C252.1 (9)Fe1—C11—C15—C1461.4 (4)
O21—C21—C26—C25177.5 (5)C12—C11—C15—Fe161.0 (4)
C24—C25—C26—C210.1 (10)N1—Fe1—C15—C14119.4 (5)
O41—P1—O31—C3189.1 (4)C13—Fe1—C15—C1437.7 (3)
O21—P1—O31—C31168.7 (4)C11—Fe1—C15—C14117.6 (5)
Fe1—P1—O31—C3139.0 (5)C12—Fe1—C15—C1480.5 (4)
P1—O31—C31—C36142.9 (4)P1—Fe1—C15—C1454.7 (4)
P1—O31—C31—C3241.4 (7)P2—Fe1—C15—C14149.4 (3)
C36—C31—C32—C331.8 (8)N1—Fe1—C15—C111.8 (6)
O31—C31—C32—C33177.2 (5)C14—Fe1—C15—C11117.6 (5)
C31—C32—C33—C340.1 (9)C13—Fe1—C15—C1179.8 (4)
C32—C33—C34—C351.5 (11)C12—Fe1—C15—C1137.0 (3)
C33—C34—C35—C361.5 (12)P1—Fe1—C15—C11172.3 (3)
C32—C31—C36—C351.8 (8)P2—Fe1—C15—C1193.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···F6i0.932.393.278 (8)159
C313—H33A···F6i0.962.643.510 (8)152
C42—H42···F5ii0.932.673.546 (7)157
C34—H34···C4iii0.932.763.55 (1)143
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z1/2; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C7H4N2O2)(C3H9P)(C18H15O3P)]PF6
Mr800.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.4938 (6), 18.9715 (7), 17.8707 (11)
β (°) 98.221 (5)
V3)3521.2 (3)
Z4
Radiation typeCu Kα
µ (mm1)5.39
Crystal size (mm)0.3 × 0.14 × 0.1
Data collection
DiffractometerEnraf–Nonius Turbo CAD-4
Absorption correctionPart of the refinement model (ΔF)
(Parkin et al., 1995)
Tmin, Tmax0.276, 0.583
No. of measured, independent and
observed [I > 2σ(I)] reflections
6598, 6598, 3926
Rint0.000
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.150, 1.08
No. of reflections6598
No. of parameters451
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.27

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), XCAD4, SIR99 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and Mercury (Bruno et al., 2002), WinGX (Farrugia, 1999), PLATON (Spek, 2003) and enCIFer (Allen et al., 2004).

Selected geometric parameters (Å, º) top
Fe1—N11.871 (4)P1—O211.615 (3)
Fe1—C152.055 (5)P2—C3131.800 (6)
Fe1—C142.057 (5)P2—C3111.809 (5)
Fe1—C132.102 (5)P2—C3121.819 (6)
Fe1—C112.104 (5)N1—C11.147 (6)
Fe1—C122.112 (5)C1—C21.429 (7)
Fe1—P12.1206 (14)C5—N21.483 (7)
Fe1—P22.2332 (15)N2—O11.208 (8)
P1—O411.598 (3)N2—O21.213 (8)
P1—O311.604 (3)
N1—Fe1—P195.12 (13)C1—N1—Fe1175.4 (4)
N1—Fe1—P288.55 (13)N1—C1—C2173.7 (5)
P1—Fe1—P293.08 (5)
C4—C5—N2—O110.7 (9)C4—C5—N2—O2172.4 (7)
C6—C5—N2—O1169.2 (6)C6—C5—N2—O27.6 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···F6i0.932.393.278 (8)159
C313—H33A···F6i0.962.643.510 (8)152
C42—H42···F5ii0.932.673.546 (7)157
C34—H34···C4iii0.932.763.55 (1)143
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z1/2; (iii) x, y+1/2, z+1/2.
Comparative geometrical parameters (Å) for selected complexes top
CompoundFe—PPPhFe—PPOPhFe—NNC
[Fe(Cp)(dppe)(NCCH3)]BPh4a2.2051.8811.137
2.194
[Fe(Cp)(dppm)(NCCH3)]PF6b2.1961.8921.135
2.207
[Fe(acetyl-Cp)(dppe)(NCCH3)]PF6c2.2071.8951.126
2.232
[Fe(Cp*)(dppe)(NCCH3)]PF6d2.2181.9051.133
2.237
[Fe(Cp)(P(OPh)3)2(NCCH3)]PF6e2.1431.9181.132
2.165
[Fe(Cp)(P(OMe)3)2(NCCH3)]PF6f2.1751.9241.094
2.182
[Fe(Cp)(dppe)(NCPhNO2)]PF6, (II)2.209 (3)1.874 (11)1.129 (14)
2.210 (4)
[Fe(Cp)(CO)(P(OPh)3)(NCPhNO2)]BF4, (III)2.159 (3)1.878 (10)1.139 (14)
[Fe(Ind)(CO)(P(OPh)3)(NCPhNO2)]BF4 g2.139 (3)1.900 (8)1.155 (12)
[Fe(Cp)(dppp)(NCPhNO2)]PF6, (IV)2.211 (3)1.902 (9)1.141 (15)
2.219 (3)
[Fe(Cp)(PMe3)(P(OPh)3)(NCPhNO2)]PF6, (I)2.233 (2)2.121 (1)1.871 (4)1.147 (6)
p-NCPhNO2, (V)1.155 (15)
References: (I) this work; (II) Garcia, Robalo, Dias et al. (2001); (III) Garcia, Robalo, Teixeira et al. (2001); (IV) Wenseleers et al., 2003); (V) Higashi & Osaki (1977).

Notes: geometrical parameters taken from the Cambridge Structural Database are indicated without their s.u. values. Refcodes: (a) PEACFE, (b) VEBSIE, (c) KEJPOE, (d) KICNIT, (e) XATDUR, (f) JIPYAI, (g) QUSPOJ. Please provide references for CSD refcodes.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds