Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [Zn4(C7H4O3)4(C10H8N2)4]·10H2O, crystallizes as a centrosymmetric tetranuclear cyclic complex containing four ZnII atoms bridged by four carboxyl­ate groups from salicyl­ate ligands, with a syn-anti configuration. Each ZnII atom has a distorted trigonal-bipyramidal coordination geometry, formed by two N atoms of a 2,2'-bipyridine ligand and three O atoms from two salicyl­ate ligands. The complex is stabilized by intramolecular [pi]-[pi] interactions between pairs of bi­pyridine rings and a 16-membered gear-wheel-shaped cyclic framework. The hydrogen-bonding network is formed via the water mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010401950X/ob1191sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010401950X/ob1191Isup2.hkl
Contains datablock I

CCDC reference: 254895

Comment top

Zinc is an important and beneficial element for human growth. It is well known that the ZnII atom can inhibit replication of rhinoviruses (Korant et al., 1974), and ZnII complexes have antibacterial and antiviral activities; for example, the complex of zinc acetate with erythromycin is used for acne therapy (Feucht et al., 1980). A large number of ZnII complexes have been investigated (Yaghi et al., 1997; Karanovic et al., 2002; Gronlund et al., 1995). One of the best ways to understand of the effective antimicrobial species is to gain knowledge about the structure and coordination geometry of the complexes.

Our interest in the coordination chemistry of salicylic acid stems from the fact that the carboxylate group plays an important role in interactions with metals that affect biological activity. Salicylic acid, one of metabolites of aspirin, has been used in dermatology as a fungicidal treatment (Diehl, 1996), and inhibits the oxidative stress (Sagone & Husney, 1987). In recent years, ligands with carboxylate groups have been employed in the design of novel complex frameworks. Many zinc compounds of this kind have been prepared. We report here the structure of the title compound, (I), which is a ternary zinc complex of salicylic acid and 2,2'-bipyridine.

In (I), there are two independent zinc centers, namely Zn1 and Zn2, and a tetranuclear unit is formed in which these atoms are related by a center of symmetry (Fig. 1). Each ZnII atom is bonded to two N atoms from a 2,2'-bipyridine moiety, one phenolate O atom and two carboxylate O atoms from two salicylate ligands. The two independent ZnII atoms show similar coordination geometry, i.e. distorted trigonal bipyramidal. Atoms Zn1, N1, O2 and O6i [symmetry code: (i) −x, 2 − y, −z] occupy the equatorial plane, and atoms O1 and N2 are in axial positions, with an O1—Zn1—N2 bond angle of 171.73 (7)°. Around atom Zn2, atoms N4, O3 and O4 form the trigonal plane, and atoms O5 and N3 occupy the axial positions, with an O5—Zn2—N3 angle of 168.69 (7)°. In the above geometry, atoms Zn1 and Zn2 deviate from the trigonal plane by 0.017 (3) Å (toward O1) and 0.111 (3) Å (toward N5), respectively.

The Zn1—O1(phenolate) bond distance in the axial direction is longer than the Zn2—O4(phenolate) bond in the equatorial plane (Table 1). This difference may be due to the Jahn–Teller effect of the d10 metal atom. Similarly, the Zn2—O5(carboxylate) bond in the axial direction is longer than the Zn1—O2(carboxylate) bond in the equatorial plane. In its role as bridging atom, atom O3 is connected to atom Zn2 more tightly than atom O6i is to Zn1, where both atom O3 and atom O6i are in the trigonal plane. This difference may be due to the bipyridine molecules being twisted to different degrees. In the bipyridine group in which atoms N1 and N2 are bonded to atom Zn1, the two pyridine rings are nearly coplanar, with a dihedral angle of only 3.6 (3)°. In the bipyridine group with N3 and N4 bonded to Zn2, the two ring planes intersect at 13.38 (6)° to each other.

The carboxylate group in each salicylate ligand bridges neighboring ZnII atoms to form a tetrameric cyclic complex containing four Zn atoms, four 2,2'-bipyridine molecules and four salicylate ligands in a syn–anti configuration (Clegg et al., 1988). Four repeating (–Zn—O—C—O–) units construct a hexadeca gear-wheel-shaped cyclic framework, which stabilizes the complex molecule. The structure is further stabilized by intramolecular ππ interactions between bipyridine ligands, with contact distances from 3.336 (5) Å (C15···C26) to 3.592 (5) Å (C21···C31). Intermolecular ππ interactions between the salicylate ligands of adjacent complexes are also present, with a mean distance of 3.564 (2) Å.

A linear array of three metal ions bridged by carboxylate ligands in syn–anti or syn–syn configurations was mentioned by Clegg et al. (1988). They reported the crystal structures of the complexes of general formula [MZn2(crot)6(base)2] (M = Zn, Mn, Co, Ni and Cd), which contained two monodentate monoatomic crotonate bridges. Moreover, a trinuclear linear array of ZnII atoms was also described, with formula [Zn3(CH3COO)6(py)2] or [Zn3(CH3COO)6(bppz)2] [bppz is 2,5-bis(2-pyridyl)pyrazine; Singh et al., 1997; Neels et al., 1999]. However, to our knowledge, the present structure of (I) is the first report that tetranuclear ZnII atoms are circularly arrayed with aromatic ligand species.

The average Zn—O(carboxylate) bond distance of (I) was compared with the similar circular wheel-shaped zinc(II) complexes of formula [Zn2(RCOO)4L2], in which two ZnII atoms are connected by benzoate ligands in a syn–syn configuration (Zeleňák et al., 2004). The value of 2.031 (3) Å in (I) is slightly shorter than the average values of 2.048 (8) Å {RCOO is benzoate and L is [1-(3,4-dimethoxyphenyl)methyl]-6,7-dimethoxyisoquinoline}, 2.038 and 2.041 Å (RCOO is acetate and L is pyridine), and 2.034, 2.039 and 2.042 Å (RCOO is indomethacin and L is 1-methylpyrrolidinone, pyridine or dimethylacetamide), which are cited by Zeleňák et al. (2004).

The intramolecular Zn1···Zn2 [4.7249 (5) Å] and Zn1···Zn2i [4.5310 (3) Å] distances in (I) are much longer than those in the above-mentioned complexes. The longer Zn···Zn separations may be attributed to the further coordination of zinc with the phenolate O atom in each salicylate ligand. Moreover, the bridging mode of syn–anti configuration (Clegg et al., 1988) is reasonable to explain the further separation of each two zinc atoms. Compared with a previous example (Dana et al., 2003) containing the same ligand molecule (2,2'-bipyridine), the ZnII atom of this study seems to be more strongly coordinated to the N atoms, with Zn—N bond lengths ranging from 2.143 (5) to 2.185 (4) Å.

All of the water molecules participate in the formation of a characteristic hydrogen-bonding network including the O atoms of the salicylate ligands (Table 2). One of the water H atoms attached to O7, O8 and O9 were disordered over two sites, as the result of O7—H31···O7(1 − x, 2 − y, −z) and O9—H37···O9(1 − x, 1 − y, 1 − z) hydrogen bonds. The positional disorder of the water H atoms can be explained by assuming two possible configurations of the hydrogen-bonding network (Fig. 2).

Experimental top

Thin yellow prismatic crystals of (I) were obtained by slow evaporation of an aqueous methanol solution (10 ml) of a mixture of salicylic acid (5 mg), 2,2'-bipyridine and ZnCl2 (molar ratio 1:1:1) at room temperature.

Refinement top

All the H atoms, except water molecules, were located from difference Fourier maps, and were placed at idealized positions and treated as riding, with C—H distances of 0.93 Å and Uiso(H) values of 1.2Ueq(parent). Water H atoms bonded to atoms O10 and O11 were located from difference Fourier maps. One of the H atoms attached to each of atoms O7, O8 and O9 shows positional disorder over two sites, viz. H31/H33, H34/H36 and H35/H37, respectively, with occupation factors of 50% each. The positional parameters of the disordered H atoms were calculated on the basis of the positions of the other H atoms (H25, H30 and H32), which were located from difference Fourier maps, and by assuming two possible configurations of the hydrogen-bonding network (Fig. 2). The positional parameters of the water H atoms were fixed, with Uiso(H) = 0.020 Å2, the O—H distances and H—O—H bond angles being 0.71–0.96 Å and 92–116°. The short H32···H4 (which is bonded to C6) contact distance of 2.1 Å suggests that the reported position of atom H32 is slightly shifted from its true position.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2003); cell refinement: RAPID-AUTO; data reduction: Crystal Structure (Rigaku/MSC, 2004) and CRYSTALS ( Watkin et al., 1996); program(s) used to solve structure: SIR97 (Altomare et al., 1999) and DIRDIF99 (Beurskens et al., 1999); program(s) used to refine structure: SHELXL97 (Scheldrick, 1997); molecular graphics: ORTEP III (Farrugia, 1997); software used to prepare material for publication: Crystal Structure.

Figures top
[Figure 1] Fig. 1. ORTEPIII (Farrugia, 1997) drawing of (I), with the atomic numbering scheme. Displacement ellipsoids for non-H atoms are shown at the 50% probability level.
[Figure 2] Fig. 2. Two patterns, (a) and (b), of the hydrogen-bonding network formed by the water molecules. The site occupation factors of H31/H33/H34/H35/H36/H37 are 50%. Thin lines indicate hydrogen bonds. [Symmetry codes: (*) x, y, 1 + z; (**) 1 − x, 2 − y, −z; (***) 1 − x, 1 − y, 1 − z.]
(I) top
Crystal data top
[Zn4(C7H6O3)4(C10H8N2)4]·10H2OZ = 1
Mr = 1610.85F(000) = 828.00
Triclinic, P1Dx = 1.641 Mg m3
Hall symbol: -p_1Mo Kα radiation, λ = 0.7107 Å
a = 12.633 (13) ÅCell parameters from 13658 reflections
b = 12.735 (14) Åθ = 3.1–27.5°
c = 13.29 (3) ŵ = 1.54 mm1
α = 61.60 (3)°T = 296 K
β = 66.23 (4)°Prism, colorless
γ = 63.22 (3)°0.30 × 0.20 × 0.10 mm
V = 1630 (4) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5512 reflections with F2 > 2σ(F2)
Detector resolution: 10.00 pixels mm-1Rint = 0.019
ω scansθmax = 27.5°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1616
Tmin = 0.718, Tmax = 0.857k = 1616
15951 measured reflectionsl = 1717
7327 independent reflections
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.0387P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.066(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.42 e Å3
7327 reflectionsΔρmin = 0.30 e Å3
462 parameters
Crystal data top
[Zn4(C7H6O3)4(C10H8N2)4]·10H2Oγ = 63.22 (3)°
Mr = 1610.85V = 1630 (4) Å3
Triclinic, P1Z = 1
a = 12.633 (13) ÅMo Kα radiation
b = 12.735 (14) ŵ = 1.54 mm1
c = 13.29 (3) ÅT = 296 K
α = 61.60 (3)°0.30 × 0.20 × 0.10 mm
β = 66.23 (4)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
7327 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
5512 reflections with F2 > 2σ(F2)
Tmin = 0.718, Tmax = 0.857Rint = 0.019
15951 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024462 parameters
wR(F2) = 0.066H-atom parameters constrained
S = 1.00Δρmax = 0.42 e Å3
7327 reflectionsΔρmin = 0.30 e Å3
Special details top

Refinement. Refinement using all reflections. The weighted R-factor (wR), goodness of fit (S) and R-factor (gt) are based on F, with F set to zero for negative F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.12746 (2)0.75225 (2)0.08242 (2)0.01191 (7)
Zn20.13397 (2)0.85343 (2)0.21368 (2)0.01130 (7)
O10.2788 (1)0.7757 (1)0.2074 (1)0.0173 (3)
O20.1576 (1)0.8276 (1)0.0022 (1)0.0151 (3)
O30.2569 (1)0.8882 (1)0.0566 (1)0.0147 (3)
O40.1978 (1)0.8484 (1)0.3294 (1)0.0145 (3)
O50.0284 (1)1.0370 (1)0.1877 (1)0.0135 (3)
O60.0541 (1)1.2206 (1)0.2090 (1)0.0139 (3)
O70.4082 (2)0.9709 (2)0.0985 (1)0.0371 (4)
O80.4544 (1)0.7429 (1)0.2841 (1)0.0309 (4)
O90.5491 (1)0.5881 (1)0.4876 (1)0.0276 (4)
O100.2130 (1)0.6165 (1)0.5339 (1)0.0259 (4)
O110.3446 (1)0.6306 (1)0.6656 (1)0.0223 (3)
N10.1994 (1)0.5551 (1)0.0053 (1)0.0153 (3)
N20.0281 (1)0.7015 (1)0.0494 (1)0.0132 (3)
N30.2125 (1)0.6499 (1)0.2577 (1)0.0143 (3)
N40.0197 (1)0.7962 (1)0.2762 (1)0.0116 (3)
C10.3425 (2)0.8742 (2)0.1341 (1)0.0114 (4)
C20.3504 (2)0.8331 (2)0.2198 (1)0.0113 (4)
C30.4421 (2)0.8554 (2)0.3266 (2)0.0138 (4)
C40.5215 (2)0.9135 (2)0.3468 (2)0.0150 (4)
C50.5155 (2)0.9518 (2)0.2616 (2)0.0168 (4)
C60.4266 (2)0.9316 (2)0.1573 (2)0.0146 (4)
C70.2467 (2)0.8617 (2)0.0196 (1)0.0116 (4)
C80.0811 (2)1.0622 (2)0.3299 (1)0.0114 (4)
C90.1681 (2)0.9414 (2)0.3661 (1)0.0117 (4)
C100.2267 (2)0.9166 (2)0.4497 (2)0.0141 (4)
C110.1993 (2)1.0031 (2)0.4977 (2)0.0153 (4)
C120.1115 (2)1.1205 (2)0.4643 (2)0.0157 (4)
C130.0537 (2)1.1478 (2)0.3821 (2)0.0141 (4)
C140.0156 (2)1.1070 (2)0.2384 (1)0.0115 (4)
C150.1165 (2)0.4943 (2)0.0682 (1)0.0135 (4)
C160.1510 (2)0.3634 (2)0.1140 (2)0.0164 (4)
C170.2731 (2)0.2937 (2)0.0866 (2)0.0210 (4)
C180.3585 (2)0.3558 (2)0.0142 (2)0.0243 (5)
C190.3174 (2)0.4860 (2)0.0310 (2)0.0211 (5)
C200.0115 (2)0.5769 (2)0.0961 (1)0.0124 (4)
C210.1088 (2)0.5296 (2)0.1661 (2)0.0159 (4)
C220.2259 (2)0.6139 (2)0.1873 (2)0.0177 (4)
C230.2419 (2)0.7407 (2)0.1394 (2)0.0186 (4)
C240.1409 (2)0.7813 (2)0.0707 (2)0.0160 (4)
C250.1299 (2)0.5920 (2)0.2944 (1)0.0131 (4)
C260.1653 (2)0.4655 (2)0.3101 (2)0.0179 (4)
C270.2882 (2)0.3980 (2)0.2889 (2)0.0217 (5)
C280.3731 (2)0.4563 (2)0.2548 (2)0.0227 (5)
C290.3318 (2)0.5831 (2)0.2389 (2)0.0197 (4)
C300.0001 (2)0.6712 (2)0.3168 (1)0.0122 (4)
C310.0963 (2)0.6221 (2)0.3767 (2)0.0162 (4)
C320.2146 (2)0.7029 (2)0.3938 (2)0.0181 (4)
C330.2348 (2)0.8312 (2)0.3501 (2)0.0164 (4)
C340.1350 (2)0.8743 (2)0.2917 (2)0.0135 (4)
H10.44850.82990.38440.017*
H20.57990.92750.41790.018*
H30.56990.98990.27450.020*
H40.42220.95700.10030.018*
H50.28600.83880.47300.017*
H60.23960.98300.55270.018*
H70.09211.17930.49680.019*
H80.00571.22590.36030.017*
H90.45620.41150.24280.027*
H100.31380.31400.29740.026*
H110.09280.32300.16250.020*
H120.29750.20610.11640.025*
H130.44120.31100.00340.029*
H140.37410.52780.08160.025*
H150.10710.42730.33450.022*
H160.08110.53560.40510.019*
H170.31910.79870.15280.022*
H180.15240.86730.03820.019*
H190.09550.44320.19810.019*
H200.14850.96060.26210.016*
H210.31380.88740.35970.020*
H220.29230.58470.23310.021*
H230.27980.67140.43420.022*
H240.38880.62300.21440.024*
H250.49620.60960.53900.020*
H260.29160.64520.63510.020*
H270.32370.67490.69720.020*
H280.20960.68130.47150.020*
H290.26730.57260.51430.020*
H300.38130.76430.30930.020*
H310.45651.00970.03440.020*0.50
H320.35980.95190.07310.020*
H330.45490.88900.12400.020*0.50
H340.45800.79480.22230.020*0.50
H350.53070.65340.42120.020*0.50
H360.49880.69720.33860.020*0.50
H370.52320.54070.49100.020*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0141 (1)0.0132 (1)0.0107 (1)0.00781 (9)0.00370 (8)0.00215 (9)
Zn20.0121 (1)0.0116 (1)0.0111 (1)0.00527 (9)0.00236 (8)0.00380 (9)
O10.0200 (8)0.0234 (7)0.0154 (7)0.0144 (6)0.0013 (5)0.0098 (6)
O20.0152 (7)0.0212 (7)0.0135 (6)0.0110 (6)0.0011 (5)0.0068 (6)
O30.0162 (7)0.0188 (7)0.0127 (6)0.0098 (6)0.0014 (5)0.0062 (6)
O40.0165 (7)0.0131 (6)0.0162 (6)0.0036 (6)0.0069 (5)0.0056 (6)
O50.0174 (7)0.0121 (6)0.0132 (6)0.0056 (6)0.0054 (5)0.0040 (5)
O60.0170 (7)0.0109 (6)0.0143 (6)0.0036 (6)0.0076 (5)0.0026 (5)
O70.045 (1)0.053 (1)0.0291 (9)0.0343 (9)0.0048 (8)0.0123 (8)
O80.0176 (8)0.0367 (9)0.0356 (9)0.0050 (7)0.0059 (7)0.0149 (8)
O90.0200 (8)0.0342 (9)0.0260 (8)0.0088 (7)0.0008 (6)0.0128 (7)
O100.0323 (9)0.0176 (7)0.0214 (7)0.0068 (7)0.0055 (6)0.0042 (6)
O110.0259 (9)0.0222 (7)0.0219 (7)0.0050 (7)0.0061 (6)0.0125 (6)
N10.0153 (9)0.0163 (8)0.0146 (8)0.0065 (7)0.0056 (6)0.0029 (7)
N20.0173 (9)0.0132 (8)0.0115 (7)0.0071 (7)0.0047 (6)0.0029 (7)
N30.0150 (9)0.0130 (8)0.0141 (7)0.0032 (7)0.0035 (6)0.0056 (7)
N40.0134 (8)0.0117 (7)0.0113 (7)0.0035 (7)0.0047 (6)0.0044 (6)
C10.0107 (9)0.0110 (9)0.0112 (8)0.0038 (7)0.0036 (7)0.0020 (7)
C20.0099 (9)0.0086 (8)0.0129 (8)0.0014 (7)0.0044 (7)0.0022 (7)
C30.014 (1)0.0124 (9)0.0131 (9)0.0010 (8)0.0037 (7)0.0056 (8)
C40.010 (1)0.0140 (9)0.0137 (9)0.0019 (8)0.0009 (7)0.0032 (8)
C50.013 (1)0.018 (1)0.020 (1)0.0078 (8)0.0042 (8)0.0044 (8)
C60.015 (1)0.0157 (9)0.0141 (9)0.0054 (8)0.0048 (7)0.0049 (8)
C70.013 (1)0.0085 (8)0.0118 (8)0.0030 (7)0.0044 (7)0.0017 (7)
C80.012 (1)0.0135 (9)0.0093 (8)0.0069 (8)0.0016 (7)0.0023 (7)
C90.0113 (9)0.0138 (9)0.0106 (8)0.0063 (8)0.0008 (7)0.0041 (7)
C100.013 (1)0.0149 (9)0.0125 (9)0.0057 (8)0.0041 (7)0.0013 (8)
C110.017 (1)0.021 (1)0.0105 (8)0.0095 (8)0.0039 (7)0.0033 (8)
C120.020 (1)0.018 (1)0.0133 (9)0.0086 (8)0.0026 (7)0.0069 (8)
C130.015 (1)0.0139 (9)0.0124 (9)0.0071 (8)0.0027 (7)0.0024 (8)
C140.0115 (9)0.0130 (9)0.0095 (8)0.0077 (8)0.0011 (7)0.0012 (7)
C150.017 (1)0.0153 (9)0.0107 (8)0.0069 (8)0.0060 (7)0.0029 (8)
C160.021 (1)0.0152 (9)0.0152 (9)0.0080 (8)0.0065 (8)0.0029 (8)
C170.026 (1)0.0130 (9)0.022 (1)0.0035 (9)0.0108 (9)0.0030 (8)
C180.017 (1)0.021 (1)0.026 (1)0.0010 (9)0.0076 (9)0.0050 (9)
C190.015 (1)0.023 (1)0.021 (1)0.0075 (9)0.0052 (8)0.0032 (9)
C200.017 (1)0.0130 (9)0.0097 (8)0.0068 (8)0.0054 (7)0.0029 (7)
C210.022 (1)0.0145 (9)0.0124 (9)0.0102 (8)0.0047 (8)0.0016 (8)
C220.018 (1)0.022 (1)0.0147 (9)0.0114 (9)0.0007 (8)0.0059 (8)
C230.017 (1)0.018 (1)0.0176 (9)0.0043 (8)0.0027 (8)0.0068 (8)
C240.020 (1)0.0121 (9)0.0145 (9)0.0059 (8)0.0032 (8)0.0037 (8)
C250.017 (1)0.0123 (9)0.0094 (8)0.0043 (8)0.0041 (7)0.0029 (7)
C260.022 (1)0.0140 (9)0.0184 (9)0.0061 (8)0.0070 (8)0.0041 (8)
C270.026 (1)0.0119 (9)0.024 (1)0.0001 (9)0.0101 (9)0.0065 (9)
C280.016 (1)0.019 (1)0.025 (1)0.0019 (9)0.0039 (8)0.0100 (9)
C290.017 (1)0.019 (1)0.021 (1)0.0055 (9)0.0023 (8)0.0075 (9)
C300.017 (1)0.0112 (9)0.0103 (8)0.0051 (8)0.0045 (7)0.0034 (7)
C310.021 (1)0.0133 (9)0.0160 (9)0.0076 (8)0.0063 (8)0.0029 (8)
C320.018 (1)0.022 (1)0.0174 (9)0.0118 (9)0.0029 (8)0.0053 (8)
C330.013 (1)0.019 (1)0.0174 (9)0.0025 (8)0.0042 (7)0.0089 (8)
C340.016 (1)0.0119 (9)0.0143 (9)0.0034 (8)0.0054 (7)0.0051 (8)
Geometric parameters (Å, º) top
Zn1—O11.996 (5)C8—C141.487 (3)
Zn1—O22.008 (5)C9—C101.414 (4)
Zn1—N12.105 (5)C10—C111.374 (4)
Zn1—N22.154 (5)C10—H50.9300
Zn1—O6i2.052 (5)C11—C121.391 (5)
Zn2—O32.023 (5)C11—H60.9300
Zn2—O41.969 (5)C12—C131.378 (4)
Zn2—O52.040 (5)C12—H70.9300
Zn2—N32.181 (5)C13—H80.9300
Zn2—N42.095 (5)C14—O51.277 (3)
O1—C21.319 (3)C14—O61.269 (2)
O2—C71.263 (3)C14—C81.487 (3)
O3—C71.275 (3)C15—C161.390 (3)
O4—C91.335 (3)C15—C201.488 (5)
O5—C141.277 (3)C16—C171.386 (3)
O6—C141.269 (2)C16—H110.9300
O7—H310.8914C17—C181.386 (3)
O7—H320.9612C17—H120.9300
O7—H330.9063C18—C191.381 (3)
O8—H300.8061C18—H130.9300
O8—H340.7709C19—H140.9300
O8—H360.8997C20—C211.397 (3)
O9—H250.7961C21—C221.393 (5)
O9—H350.9033C21—H190.9300
O9—H370.7828C22—C231.374 (3)
O10—H280.8466C22—H220.9300
O10—H290.7065C23—C241.390 (3)
O11—H260.8250C23—H170.9300
O11—H270.7526C24—H180.9300
N1—C151.356 (3)C25—C261.395 (3)
N1—C191.344 (2)C25—C301.484 (5)
N2—C201.348 (3)C26—C271.380 (3)
N2—C241.337 (2)C26—H150.9300
N3—C251.346 (3)C27—C281.383 (4)
N3—C291.342 (2)C27—H100.9300
N4—C301.349 (3)C28—C291.389 (3)
N4—C341.342 (2)C28—H90.9300
C1—C21.418 (4)C29—H240.9300
C1—C61.407 (4)C30—N41.349 (3)
C1—C71.504 (2)C30—C251.484 (5)
C2—C31.423 (2)C30—C311.391 (3)
C3—C41.376 (4)C31—C301.391 (3)
C3—H10.9299C31—C321.380 (3)
C4—C51.395 (4)C31—H160.9300
C4—H20.9299C32—C331.383 (3)
C5—C61.384 (5)C32—H230.9299
C5—H30.9300C33—C341.386 (3)
C6—H40.9300C33—H210.9300
C8—C91.416 (5)C34—H200.9300
C8—C131.406 (4)
O1—Zn1—O289.42 (7)C11—C10—C9122.5 (2)
O1—Zn1—N196.08 (6)C11—C10—H5118.7598
O1—Zn1—N2171.73 (7)H5—C10—C9118.7674
O2—Zn1—N1107.28 (8)C12—C11—C10120.2 (2)
O2—Zn1—N297.02 (7)C12—C11—H6119.8740
N1—Zn1—N277.10 (6)H6—C11—C10119.8770
O1—Zn1—O6i88.49 (8)C13—C12—C11118.6 (2)
O2—Zn1—O6i148.42 (6)C13—C12—H7120.7043
N1—Zn1—O6i104.3 (1)H7—C12—C11120.7077
N2—Zn1—O6i88.75 (7)H8—C13—C8118.7185
O3—Zn2—O4107.50 (7)H8—C13—C12118.7267
O3—Zn2—O596.02 (5)O5—C14—C8122.8 (2)
O3—Zn2—N392.81 (5)O5—C14—O6119.3 (2)
O3—Zn2—N4133.48 (8)O6—C14—C8117.9 (2)
O4—Zn2—O591.26 (7)C16—C15—N1121.2 (2)
O4—Zn2—N392.82 (7)C16—C15—C20123.2 (2)
O4—Zn2—N4118.09 (6)C20—C15—N1115.5 (2)
O5—Zn2—N3168.69 (7)C17—C16—C15119.4 (2)
O5—Zn2—N491.91 (6)C17—C16—H11120.3126
N3—Zn2—N476.86 (7)H11—C16—C15120.3133
C2—O1—Zn1128.5 (1)C18—C17—C16119.4 (2)
C7—O2—Zn1130.5 (1)C18—C17—H12120.3040
C7—O3—Zn2115.2 (1)H12—C17—C16120.3032
C9—O4—Zn2127.2 (1)C19—C18—C17118.2 (2)
C14—O5—Zn2128.6 (1)C19—C18—H13120.8921
H31—O7—H32107.8813H13—C18—C17120.8946
H31—O7—H33105.5714H14—C19—N1118.4221
H32—O7—H3392.3286H14—C19—C18118.4160
H30—O8—H3498.8129C21—C20—N2121.7 (2)
H30—O8—H36115.8014C21—C20—C15122.7 (2)
H34—O8—H36138.0266C22—C21—C20118.9 (2)
H25—O9—H35103.6160C22—C21—H19120.5374
H25—O9—H3796.2263H19—C21—C20120.5393
H35—O9—H37101.5451C23—C22—C21118.9 (2)
H28—O10—H29101.1932C23—C22—H22120.5421
H26—O11—H27111.0059H22—C22—C21120.5380
C15—N1—Zn1115.8 (1)C24—C23—C22119.1 (2)
C15—N1—C19118.6 (2)C24—C23—H17120.4372
C19—N1—Zn1125.4 (1)H17—C23—C22120.4430
C20—N2—Zn1114.1 (1)H18—C24—N2118.6953
C20—N2—C24118.7 (2)H18—C24—C23118.6999
C24—N2—Zn1125.8 (1)C26—C25—N3121.7 (2)
C25—N3—Zn2114.0 (1)C26—C25—C30122.6 (2)
C25—N3—C29119.0 (2)C30—C25—N3115.8 (2)
C29—N3—Zn2126.5 (2)C27—C26—C25118.9 (2)
C30—N4—Zn2117.0 (1)C27—C26—H15120.5491
C30—N4—C34118.9 (2)H15—C26—C25120.5493
C34—N4—Zn2123.6 (2)C28—C27—C26119.5 (2)
C2—C1—C7123.2 (2)C28—C27—H10120.2612
C2—C1—C6118.8 (2)H10—C27—C26120.2652
C6—C1—C7118.0 (2)C29—C28—C27118.7 (2)
C3—C2—C1117.6 (2)C29—C28—H9120.6316
C3—C2—O1117.8 (2)H9—C28—C27120.6312
C4—C3—C2121.9 (2)H24—C29—N3118.9215
C4—C3—H1119.0727H24—C29—C28118.9245
H1—C3—C2119.0767N4—C30—C25115.3 (2)
C5—C4—C3120.6 (2)N4—C30—C31121.4 (2)
C5—C4—H2119.6793C25—C30—C31123.4 (2)
H2—C4—C3119.6799C30—C31—C32119.4 (2)
C6—C5—C4118.4 (2)C30—C31—H16120.2860
C6—C5—H3120.7821C32—C31—H16120.2905
H3—C5—C4120.7756C33—C32—C31119.2 (2)
H4—C6—C1118.6919C33—C32—H23120.4126
H4—C6—C5118.6844H23—C32—C31120.4136
C9—C8—C14124.5 (2)C34—C33—C32118.7 (2)
C9—C8—C13118.9 (2)C34—C33—H21120.6584
C13—C8—C14116.6 (2)H21—C33—C32120.6489
C10—C9—O4117.4 (2)H20—C34—N4118.7739
C10—C9—C8117.2 (2)H20—C34—C33118.7802
O2—Zn1—O1—C26.0 (1)C2—C3—C4—C50.7 (2)
O1—Zn1—O2—C75.3 (1)C3—C4—C5—C61.0 (2)
O1—Zn1—N1—C15164.6 (2)C4—C5—C6—C10.0 (2)
O4—Zn2—O3—C7162.1 (1)C13—C8—C9—O4175.9 (2)
O3—Zn2—O4—C998.0 (1)C9—C8—C13—C122.4 (3)
O3—Zn2—O5—C14110.1 (1)C9—C8—C14—O53.3 (3)
O3—Zn2—N3—C25130.6 (1)C9—C8—C14—O6175.4 (2)
O3—Zn2—N4—C3084.7 (2)O4—C9—C10—C11177.0 (2)
Zn1—O1—C2—C110.0 (2)C9—C10—C11—C120.3 (3)
Zn1—O2—C7—O3168.4 (1)C10—C11—C12—C130.4 (3)
Zn1—O2—C7—C112.3 (2)C11—C12—C13—C80.7 (3)
Zn2—O3—C7—O26.2 (2)N1—C15—C16—C171.8 (4)
Zn2—O3—C7—C1174.5 (1)N1—C15—C20—N23.0 (3)
Zn2—O4—C9—C81.7 (3)C15—C16—C17—C180.1 (4)
Zn2—O5—C14—O6179.2 (1)C16—C17—C18—C192.0 (4)
Zn2—O5—C14—C80.6 (3)C17—C18—C19—N12.1 (5)
Zn1—N1—C15—C16172.6 (2)N2—C20—C21—C220.4 (4)
Zn1—N1—C19—C18174.0 (2)C20—C21—C22—C230.5 (4)
Zn1—N2—C20—C1512.0 (3)C21—C22—C23—C240.5 (4)
Zn1—N2—C24—C23166.5 (2)C22—C23—C24—N20.3 (4)
Zn2—N3—C25—C26170.7 (2)N3—C25—C26—C270.9 (3)
Zn2—N3—C29—C28170.8 (2)N3—C25—C30—N412.4 (3)
Zn2—N4—C30—C259.3 (3)C25—C26—C27—C281.2 (4)
Zn2—N4—C34—C33169.6 (2)C26—C27—C28—C292.3 (4)
C6—C1—C2—O1178.5 (1)C27—C28—C29—N31.4 (4)
C2—C1—C6—C51.3 (2)N4—C30—C31—C320.8 (4)
C2—C1—C7—O28.7 (2)C30—C31—C32—C330.5 (4)
C2—C1—C7—O3172.0 (1)C31—C32—C33—C340.8 (4)
O1—C2—C3—C4179.4 (2)C32—C33—C34—N40.1 (3)
Symmetry code: (i) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H31···O7ii0.901.902.755 (7)158
O7—H32···O30.961.942.882 (4)168
O7—H33···O80.912.062.771 (7)135
O8—H30···O40.812.032.819 (7)165
O8—H34···O70.772.042.771 (7)157
O8—H36···O90.901.962.836 (7)163
O9—H35···O80.912.002.836 (7)153
O9—H37···O9iii0.782.082.855 (4)176
O9—H25···O110.801.982.756 (6)163
O10—H28···O40.852.062.902 (7)175
O10—H29···O9iii0.712.302.977 (7)161
O11—H26···O100.832.192.962 (7)155
O11—H27···O1iv0.751.972.721 (3)174
Symmetry codes: (ii) x+1, y+2, z; (iii) x+1, y+1, z+1; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Zn4(C7H6O3)4(C10H8N2)4]·10H2O
Mr1610.85
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)12.633 (13), 12.735 (14), 13.29 (3)
α, β, γ (°)61.60 (3), 66.23 (4), 63.22 (3)
V3)1630 (4)
Z1
Radiation typeMo Kα
µ (mm1)1.54
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.718, 0.857
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
15951, 7327, 5512
Rint0.019
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.066, 1.00
No. of reflections7327
No. of parameters462
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.30

Computer programs: RAPID-AUTO (Rigaku, 2003), RAPID-AUTO, Crystal Structure (Rigaku/MSC, 2004) and CRYSTALS ( Watkin et al., 1996), SIR97 (Altomare et al., 1999) and DIRDIF99 (Beurskens et al., 1999), SHELXL97 (Scheldrick, 1997), ORTEP III (Farrugia, 1997), Crystal Structure.

Selected geometric parameters (Å, º) top
Zn1—O11.996 (5)Zn2—O32.023 (5)
Zn1—O22.008 (5)Zn2—O41.969 (5)
Zn1—N12.105 (5)Zn2—O52.040 (5)
Zn1—N22.154 (5)Zn2—N32.181 (5)
Zn1—O6i2.052 (5)Zn2—N42.095 (5)
O1—Zn1—O289.42 (7)O3—Zn2—O4107.50 (7)
O1—Zn1—N196.08 (6)O3—Zn2—O596.02 (5)
O1—Zn1—N2171.73 (7)O3—Zn2—N392.81 (5)
O2—Zn1—N1107.28 (8)O3—Zn2—N4133.48 (8)
O2—Zn1—N297.02 (7)O4—Zn2—O591.26 (7)
N1—Zn1—N277.10 (6)O4—Zn2—N392.82 (7)
O1—Zn1—O6i88.49 (8)O4—Zn2—N4118.09 (6)
O2—Zn1—O6i148.42 (6)O5—Zn2—N3168.69 (7)
N1—Zn1—O6i104.3 (1)O5—Zn2—N491.91 (6)
N2—Zn1—O6i88.75 (7)N3—Zn2—N476.86 (7)
Symmetry code: (i) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H31···O7ii0.901.902.755 (7)158
O7—H32···O30.961.942.882 (4)168
O7—H33···O80.912.062.771 (7)135
O8—H30···O40.812.032.819 (7)165
O8—H34···O70.772.042.771 (7)157
O8—H36···O90.901.962.836 (7)163
O9—H35···O80.912.002.836 (7)153
O9—H37···O9iii0.782.082.855 (4)176
O9—H25···O110.801.982.756 (6)163
O10—H28···O40.852.062.902 (7)175
O10—H29···O9iii0.712.302.977 (7)161
O11—H26···O100.832.192.962 (7)155
O11—H27···O1iv0.751.972.721 (3)174
Symmetry codes: (ii) x+1, y+2, z; (iii) x+1, y+1, z+1; (iv) x, y, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds