Download citation
Download citation
link to html
The title compound, C13H12Cl4N5OP3, is a phosphazene derivative with a bulky substituted spiro­cyclic ring. The C3NPO spiro­cyclic ring has a twist-boat conformation, while the phosphazene ring has a very flattened boat conformation.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104016518/ob1184sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104016518/ob1184Isup2.hkl
Contains datablock I

CCDC reference: 251311

Comment top

The structures of hexachlorocyclotriphosphazene, N3P3Cl6, derivatives with different substituents have been the subject of much interest in our laboratory, and our group has investigated some of the bulky substituted phosphazene derivatives (Tercan, Hökelek, Bilge, Özgüç et al., 2004; Tercan, Hökelek, Bilge, Natsagdorj et al., 2004; Kılıç et al., 1996). N3P3Cl6, the standard compound for trimeric phosphazene derivatives, has been used in the preparation of novel small organocyclophosphazenes and polyorganophosphazenes (Allcock et al., 1992; Olshavsky & Allcock, 1995). The structures of organic, inorganic or organometallic substituents are highly effective in determining the specific physical and chemical properties of phosphazene and polyphosphazene derivatives (Allcock et al., 1996; Dembek et al., 1991).

The reactions of N3P3Cl6 with multidentate ligands afford spiro-, ansa-, bino- and spiro-ansa phosphazene architectures (Dez et al., 1999; Mathew et al., 2000; Tercan, Hökelek, Bilge, Natsagdorj et al., 2004). Recently, the stereogenic properties of dispiro phosphazenes have been investigated crystallographically and via 31P NMR spectroscopy (Coles et al., 2004). The crystal structures of N3P3Cl6 (Bullen, 1971) and a few of its derivatives with bulky N/O groups have been reported (Tercan, Hökelek, Işıklan et al., 2004). To the best of our knowledge, until now, the reactions of N3P3Cl6 with [N-(1-(2-hydroxyphenylmethyl)amino)-6-methylpyridine] have only been investigated by our group. In contrast to our expectations, the resulting reaction led to the formation of only the novel spiro phosphazene derivative, namely the title compound, (I), instead of ansa or bino phosphazene architectures.

Fig. 1 shows the molecular structure of (I), with the atomic numbering scheme. The phosphazene ring (A) is not completely planar, having a total puckering amplitude, QT, of 0.078 (2) Å (Cremer & Pople, 1975) and a flattened boat form [Fig. 2a; ϕ = 64.3 (16)° and θ = 96.1 (16)°]. Ring A has local mirror symmetry, the axis passing through atoms N1 and P3, as can be deduced from the torsion angles (Table 1). The six-membered P3/N4/C7/C8/C13/O1 ring (B) has a total puckering amplitude of 0.480 (2) Å (Cremer & Pople, 1975) and a twist-boat form [Fig. 2 b; ϕ = 138.6 (4)° and θ = 104.4 (14)°]. The sum of the bond angles around atom N4 [359.6 (2)°] shows that its configuration is planar.

In ring A, the P—N bond lengths are in the range 1.558 (3)–1.584 (3) Å and have a regular dependence on the distance from atom P3 in the ring, such that P3—N3 P3—N2 > P1—N1 P2—N1 > P2—N2 P1—N3. The P—N bonds of the phosphazene ring (Table 1) have double-bond character. However, the exocyclic P3—N4 [1.642 (3) Å] bond is at the lower limit for a single bond. In phosphazene compounds, P—N single and double bonds are generally in the ranges 1.628–1.691 and 1.571–1.604 Å, respectively (Allen et al., 1987). The shortness of the P3—N4 [1.642 (3) Å] bond in (I) indicates that electron release has occurred, from the lone pairs of electrons of atom N4 to the phosphazene ring.

In the phosphazene ring, the endocyclic N2—P3—N3 angle [116.45 (14)°] is smaller than and the exocyclic O1—P3—N4 angle [101.66 (13)°] is almost the same as those for the `standard' compound N3P3Cl6 (Bullen, 1971), consistent? with electron donation and withdrawal by the substituents. In the latter compound, the corresponding angles are 118.3 (2)–118.5 (3) and 101.2 (1)–101.6 (1)°, respectively. The P2—N2—P3 and P3—N3—P1 bond angles are 122.13 (18)–122.24 (17)°, while the P1—N1—P2 angle [119.66 (19)°] is decreased as a result of electron donation and withdrawal by the N3P3 ring (Kılıç et al., 1996). These values are comparable to the mean value reported for N3P3Cl6, viz. 121.4 (3)°.

As can be seen from the packing diagram (Fig. 3), the molecules are elongated in parallel to the c axis and stacked along the a axis. Dipole–dipole and van der Waals interactions are also effective in the molecular packing.

Experimental top

N-[1-(2-Hydroxyphenylmethyl)amino]-6-methylpyridine (2.45 g, 11.4 mmol) in dry benzene (50 ml) was added slowly to a solution of N3P3Cl6 (3.98 g, 11.4 mmol) and triethylamine (4.78 ml, 34.5 mmol) with stirring and refluxing at 253 K. After 0.5 h, the mixture was allowed to reach ambient temperature. The mixture was refluxed for 30 h, and then the precipitated salts were filtered off and the solution was evaporated under reduced pressure. The oily residue was crystallized from THF/light petroleum (1:1) (m.p. 475 K; yield 5.58 g, 60%).

Refinement top

H atoms were positioned geometrically at distances of 0.93 (CH), 0.96 (CH2) and 0.97 Å (CH3) from the parent C atoms; a riding model was used during the refinement process. The Uiso(H) values were constrained to be 1.2 (1.5 for methyl) times Ueq of the carrier atom.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 1997) drawing of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The conformations of (a) the spirocyclic system and (b) the six-membered N/O ring in (I). The substituents have been omitted for clarity.
[Figure 3] Fig. 3. Packing diagram of (I).
4',4',6',6'-Tetrachloro-3,4-dihydro-3-(6-methylpyridin-2-yl)spiro[1,3,2- benzoxazaphosphinine-2,2'-(2λ5,4λ5,6λ5-cyclotriphosphazene)] top
Crystal data top
C13H12Cl4N5OP3Z = 2
Mr = 488.99F(000) = 492
Triclinic, P1Dx = 1.617 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 8.9834 (1) ÅCell parameters from 25 reflections
b = 9.5110 (2) Åθ = 11–23°
c = 11.9857 (2) ŵ = 7.76 mm1
α = 82.131 (2)°T = 293 K
β = 87.598 (1)°Prism, colourless
γ = 81.992 (2)°0.40 × 0.25 × 0.20 mm
V = 1004.26 (3) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
2661 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 74.2°, θmin = 7.0°
non–profiled ω scansh = 1111
Absorption correction: ψ scan
(North et al., 1968)
k = 110
Tmin = 0.146, Tmax = 0.212l = 1414
4003 measured reflections3 standard reflections every 120 min
3909 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.166 w = 1/[σ2(Fo2) + (0.1278P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3274 reflectionsΔρmax = 0.44 e Å3
236 parametersΔρmin = 0.37 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.088 (6)
Crystal data top
C13H12Cl4N5OP3γ = 81.992 (2)°
Mr = 488.99V = 1004.26 (3) Å3
Triclinic, P1Z = 2
a = 8.9834 (1) ÅCu Kα radiation
b = 9.5110 (2) ŵ = 7.76 mm1
c = 11.9857 (2) ÅT = 293 K
α = 82.131 (2)°0.40 × 0.25 × 0.20 mm
β = 87.598 (1)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2661 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.031
Tmin = 0.146, Tmax = 0.2123 standard reflections every 120 min
4003 measured reflections intensity decay: 1%
3909 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.166H-atom parameters constrained
S = 1.02Δρmax = 0.44 e Å3
3274 reflectionsΔρmin = 0.37 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. The number of the independent reflections was 3909, and the number of reflections used in the refinement was 3274. Of course that it is the standard way of the refinement by SHELXL97 to use all the independent reflections, but for reducing the R factor we eliminated the bad reflections using the OMIT facility in SHELXL97, the bad reflections were probably due to the crystal quality. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.03426 (15)0.47446 (16)0.67690 (12)0.1063 (5)
Cl20.08995 (16)0.61033 (13)0.88790 (15)0.1087 (5)
Cl30.60876 (13)0.37032 (14)0.63665 (9)0.0851 (4)
Cl40.61823 (16)0.51008 (16)0.85105 (11)0.0994 (4)
P10.18328 (10)0.45469 (9)0.79955 (9)0.0626 (3)
P20.48772 (10)0.39688 (9)0.77724 (7)0.0562 (3)
P30.32900 (9)0.19665 (8)0.89809 (6)0.0492 (3)
O10.3502 (3)0.1624 (3)1.02933 (19)0.0640 (6)
N10.3368 (4)0.4976 (3)0.7466 (3)0.0720 (9)
N20.4823 (3)0.2494 (3)0.8522 (2)0.0577 (7)
N30.1815 (3)0.3076 (3)0.8748 (2)0.0559 (6)
N40.3096 (3)0.0384 (3)0.8649 (2)0.0519 (6)
N50.3061 (3)0.1339 (3)0.6756 (2)0.0560 (6)
C10.2912 (7)0.2565 (6)0.4872 (3)0.0880 (13)
C20.3051 (4)0.1208 (4)0.5673 (3)0.0660 (9)
C30.3129 (5)0.0137 (5)0.5300 (3)0.0789 (11)
C40.3246 (6)0.1320 (5)0.6070 (4)0.0826 (12)
C50.3289 (5)0.1218 (4)0.7188 (3)0.0685 (9)
C60.3163 (4)0.0145 (3)0.7513 (3)0.0535 (7)
C70.2676 (4)0.0812 (4)0.9492 (3)0.0577 (8)
C80.2097 (3)0.0349 (3)1.0576 (3)0.0538 (7)
C90.1137 (4)0.1137 (4)1.1268 (3)0.0639 (9)
C100.0639 (4)0.0753 (6)1.2294 (4)0.0779 (12)
C110.1063 (5)0.0457 (6)1.2645 (4)0.0793 (12)
C120.2011 (5)0.1266 (5)1.1977 (3)0.0731 (10)
C130.2503 (4)0.0836 (4)1.0964 (3)0.0567 (8)
H1A0.28580.33660.52870.132*
H1B0.20150.26450.44460.132*
H1C0.37720.25570.43690.132*
H30.31020.02110.45360.095*
H40.32980.22170.58330.099*
H50.33980.20330.77190.082*
H7A0.19160.12620.91760.069*
H7B0.35530.15260.96330.069*
H90.08290.19381.10290.077*
H100.00180.13031.27540.093*
H110.07090.07281.33350.095*
H120.23060.20781.22080.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0860 (8)0.1037 (9)0.1176 (10)0.0031 (7)0.0364 (7)0.0205 (7)
Cl20.1022 (9)0.0568 (6)0.1686 (13)0.0117 (6)0.0352 (8)0.0302 (7)
Cl30.0856 (7)0.0960 (8)0.0692 (6)0.0161 (6)0.0156 (5)0.0035 (5)
Cl40.1043 (9)0.1021 (9)0.1070 (9)0.0618 (7)0.0037 (7)0.0192 (7)
P10.0596 (5)0.0433 (5)0.0816 (6)0.0066 (3)0.0018 (4)0.0032 (4)
P20.0584 (5)0.0522 (5)0.0577 (5)0.0178 (3)0.0017 (3)0.0041 (3)
P30.0537 (4)0.0444 (4)0.0496 (4)0.0146 (3)0.0085 (3)0.0041 (3)
O10.0761 (15)0.0680 (15)0.0543 (13)0.0367 (12)0.0108 (11)0.0011 (11)
N10.0681 (19)0.0495 (16)0.092 (2)0.0094 (14)0.0009 (16)0.0120 (15)
N20.0541 (14)0.0562 (15)0.0606 (15)0.0138 (12)0.0107 (11)0.0094 (12)
N30.0511 (14)0.0442 (13)0.0722 (17)0.0118 (11)0.0007 (12)0.0023 (12)
N40.0656 (15)0.0418 (13)0.0471 (13)0.0128 (11)0.0082 (11)0.0065 (10)
N50.0634 (16)0.0494 (14)0.0530 (14)0.0088 (11)0.0086 (11)0.0043 (11)
C10.116 (4)0.084 (3)0.056 (2)0.011 (3)0.009 (2)0.018 (2)
C20.073 (2)0.074 (2)0.0516 (17)0.0180 (18)0.0053 (15)0.0003 (16)
C30.097 (3)0.090 (3)0.055 (2)0.020 (2)0.0053 (19)0.018 (2)
C40.106 (3)0.065 (2)0.080 (3)0.015 (2)0.008 (2)0.023 (2)
C50.081 (2)0.0546 (19)0.069 (2)0.0104 (17)0.0050 (17)0.0050 (16)
C60.0561 (17)0.0498 (16)0.0533 (16)0.0076 (13)0.0054 (13)0.0007 (13)
C70.0644 (19)0.0484 (16)0.0580 (17)0.0136 (14)0.0096 (14)0.0096 (13)
C80.0516 (16)0.0565 (17)0.0515 (16)0.0134 (13)0.0162 (12)0.0099 (13)
C90.0577 (18)0.068 (2)0.064 (2)0.0181 (16)0.0098 (15)0.0102 (16)
C100.0493 (18)0.102 (3)0.075 (2)0.0170 (19)0.0062 (16)0.022 (2)
C110.074 (2)0.101 (3)0.060 (2)0.012 (2)0.0021 (18)0.001 (2)
C120.086 (3)0.086 (3)0.0507 (18)0.028 (2)0.0121 (17)0.0018 (17)
C130.0543 (16)0.0636 (19)0.0516 (16)0.0175 (14)0.0127 (13)0.0072 (14)
Geometric parameters (Å, º) top
O1—C131.406 (4)C9—H90.9300
O1—P31.576 (2)C6—C51.393 (5)
P3—N21.582 (3)C7—C81.479 (5)
P3—N31.584 (3)C7—H7A0.9700
P3—N41.642 (3)C7—H7B0.9700
P2—N21.565 (3)C12—C111.384 (6)
P2—N11.573 (3)C12—H120.9300
P2—Cl31.9930 (14)C2—C31.403 (6)
P2—Cl42.0039 (13)C2—C11.493 (6)
P1—N31.558 (3)C5—C41.359 (6)
P1—N11.576 (3)C5—H50.9300
P1—Cl12.0020 (16)C4—C31.349 (6)
P1—Cl22.0061 (15)C4—H40.9300
N5—C21.322 (4)C10—C111.383 (7)
N5—C61.348 (4)C10—H100.9300
C13—C121.370 (5)C3—H30.9300
C13—C81.375 (5)C11—H110.9300
N4—C61.408 (4)C1—H1A0.9600
N4—C71.494 (4)C1—H1B0.9600
C9—C101.370 (6)C1—H1C0.9600
C9—C81.394 (5)
C13—O1—P3120.0 (2)N4—C7—H7B108.9
O1—P3—N2103.82 (14)H7A—C7—H7B107.7
O1—P3—N3108.64 (16)P1—N3—P3122.24 (17)
N2—P3—N3116.45 (14)P2—N1—P1119.66 (19)
O1—P3—N4101.66 (13)P2—N2—P3122.13 (18)
N2—P3—N4112.85 (15)C13—C12—C11118.0 (4)
N3—P3—N4111.88 (14)C13—C12—H12121.0
N2—P2—N1119.49 (16)C11—C12—H12121.0
N2—P2—Cl3110.38 (13)C13—C8—C9117.0 (3)
N1—P2—Cl3109.24 (14)C13—C8—C7122.4 (3)
N2—P2—Cl4108.68 (12)C9—C8—C7120.6 (3)
N1—P2—Cl4107.29 (14)N5—C2—C3121.5 (3)
Cl3—P2—Cl499.91 (7)N5—C2—C1116.5 (4)
N3—P1—N1119.54 (15)C3—C2—C1121.9 (4)
N3—P1—Cl1109.68 (12)C4—C5—C6117.9 (4)
N1—P1—Cl1108.92 (15)C4—C5—H5121.0
N3—P1—Cl2108.55 (13)C6—C5—H5121.0
N1—P1—Cl2107.94 (14)C3—C4—C5120.8 (4)
Cl1—P1—Cl2100.51 (8)C3—C4—H4119.6
C2—N5—C6118.7 (3)C5—C4—H4119.6
C12—C13—C8123.5 (3)C9—C10—C11119.8 (4)
C12—C13—O1118.5 (3)C9—C10—H10120.1
C8—C13—O1117.9 (3)C11—C10—H10120.1
C6—N4—C7116.4 (3)C4—C3—C2118.9 (4)
C6—N4—P3120.3 (2)C4—C3—H3120.6
C7—N4—P3122.9 (2)C2—C3—H3120.6
C10—C9—C8121.2 (4)C10—C11—C12120.5 (4)
C10—C9—H9119.4C10—C11—H11119.7
C8—C9—H9119.4C12—C11—H11119.7
N5—C6—C5122.1 (3)C2—C1—H1A109.5
N5—C6—N4115.0 (3)C2—C1—H1B109.5
C5—C6—N4122.9 (3)H1A—C1—H1B109.5
C8—C7—N4113.6 (3)C2—C1—H1C109.5
C8—C7—H7A108.9H1A—C1—H1C109.5
N4—C7—H7A108.9H1B—C1—H1C109.5
C8—C7—H7B108.9
C13—O1—P3—N2166.2 (3)Cl1—P1—N1—P2131.6 (2)
C13—O1—P3—N369.3 (3)Cl2—P1—N1—P2120.1 (2)
C13—O1—P3—N448.8 (3)N1—P2—N2—P30.4 (3)
P3—O1—C13—C12138.0 (3)Cl3—P2—N2—P3127.45 (19)
P3—O1—C13—C843.3 (4)Cl4—P2—N2—P3123.92 (19)
O1—P3—N4—C6167.8 (3)O1—P3—N2—P2125.4 (2)
N2—P3—N4—C657.2 (3)N3—P3—N2—P26.0 (3)
N3—P3—N4—C676.4 (3)N4—P3—N2—P2125.4 (2)
O1—P3—N4—C719.2 (3)C8—C13—C12—C110.4 (6)
N2—P3—N4—C7129.8 (3)O1—C13—C12—C11178.1 (4)
N3—P3—N4—C796.6 (3)C12—C13—C8—C90.2 (5)
C2—N5—C6—C51.4 (5)O1—C13—C8—C9178.3 (3)
C2—N5—C6—N4177.1 (3)C12—C13—C8—C7178.3 (3)
C7—N4—C6—N5159.6 (3)O1—C13—C8—C70.2 (5)
P3—N4—C6—N513.8 (4)C10—C9—C8—C130.7 (5)
C7—N4—C6—C518.8 (5)C10—C9—C8—C7177.4 (3)
P3—N4—C6—C5167.7 (3)N4—C7—C8—C1327.2 (4)
C6—N4—C7—C8159.2 (3)N4—C7—C8—C9154.8 (3)
P3—N4—C7—C814.1 (4)C6—N5—C2—C30.6 (5)
N1—P1—N3—P31.4 (3)C6—N5—C2—C1179.1 (4)
Cl1—P1—N3—P3125.32 (18)N5—C6—C5—C42.6 (6)
Cl2—P1—N3—P3125.75 (19)N4—C6—C5—C4175.8 (4)
O1—P3—N3—P1123.2 (2)C6—C5—C4—C31.9 (7)
N2—P3—N3—P16.5 (3)C8—C9—C10—C111.5 (6)
N4—P3—N3—P1125.3 (2)C5—C4—C3—C20.1 (7)
N2—P2—N1—P15.0 (4)N5—C2—C3—C41.2 (7)
Cl3—P2—N1—P1133.4 (2)C1—C2—C3—C4179.6 (5)
Cl4—P2—N1—P1119.2 (2)C9—C10—C11—C121.3 (6)
N3—P1—N1—P24.5 (3)C13—C12—C11—C100.3 (6)

Experimental details

Crystal data
Chemical formulaC13H12Cl4N5OP3
Mr488.99
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.9834 (1), 9.5110 (2), 11.9857 (2)
α, β, γ (°)82.131 (2), 87.598 (1), 81.992 (2)
V3)1004.26 (3)
Z2
Radiation typeCu Kα
µ (mm1)7.76
Crystal size (mm)0.40 × 0.25 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.146, 0.212
No. of measured, independent and
observed [I > 2σ(I)] reflections
4003, 3909, 2661
Rint0.031
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.166, 1.02
No. of reflections3274
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.37

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
O1—C131.406 (4)P2—N11.573 (3)
O1—P31.576 (2)P1—N31.558 (3)
P3—N21.582 (3)P1—N11.576 (3)
P3—N31.584 (3)N4—C61.408 (4)
P3—N41.642 (3)N4—C71.494 (4)
P2—N21.565 (3)
C13—O1—P3120.0 (2)N3—P1—N1119.54 (15)
O1—P3—N2103.82 (14)C6—N4—C7116.4 (3)
O1—P3—N3108.64 (16)C6—N4—P3120.3 (2)
N2—P3—N3116.45 (14)C7—N4—P3122.9 (2)
O1—P3—N4101.66 (13)P1—N3—P3122.24 (17)
N2—P3—N4112.85 (15)P2—N1—P1119.66 (19)
N3—P3—N4111.88 (14)P2—N2—P3122.13 (18)
N2—P2—N1119.49 (16)
N1—P1—N3—P31.4 (3)N3—P1—N1—P24.5 (3)
N2—P3—N3—P16.5 (3)N1—P2—N2—P30.4 (3)
N2—P2—N1—P15.0 (4)N3—P3—N2—P26.0 (3)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds