Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C22H30N2O2·H2O, is an 18-membered di­aza-crown ether ligand containing two ether O and two aza N atoms. In the macrocyclic ring, the mean N...O distance is 4.526 (4) Å. The macrocyclic inner-hole size, estimated as twice the mean distance of the donor atoms from their centroid, is ~2.29 Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104004949/ob1170sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104004949/ob1170Isup2.hkl
Contains datablock I

CCDC reference: 237948

Comment top

Macrocyclic multidentate ligands, such as the 16-, 17-, 18- and 19-membered ring containing the –OxNy-donor type (where x = 2 and 3, and y = 2 and 3), have been the subject of structural studies as potential metal-ion selective reagents for transition metal-ion recognition (Goodwin et al., 1982; Adam, Leong et al., 1983; Lindoy, 1987; Lindoy et al., 1993; Esteban et al., 2000). Particular metal-ion binding applications (e.g. selective extraction of heavy and precious metals) are of great interest in environmental, inorganic, organic, bio- and coordination chemistry (Esteban et al., 2000; Hökelek, Kaya & Kılıç, 2001; Lindoy, 1997; Hayvalı et al., 1999; Vicente et al., 2000).

Some of the macrocyclic ligands may act as capping ligands, favouring both the blocking of transition metal coordination sites and the formation of discrete metal complexes in inorganic chemistry (Blake & Schröder, 1990; Blake et al., 2000; Nunes et al., 2003). On the other hand, the azamacrocycles, crown ethers and cryptates also play a part in forming host–guest-type inclusion complexes with neutral polar molecules and onium salts (Byriel et al., 2003; Lehn, 1985; Newcomb et al., 1977).

Many investigations have been devoted to the synthetic, thermodynamic and/or structural properties of selective complex formation of a range of transition metal ions and neutral molecules (Adam, Lindoy et al., 1979; Adam, Clarkson et al., 1994; Fenton et al., 1987). However, there are only a limited number of reports concerning the structures of the free macrocyclic multidentate N2O2 and N2O3 donor-type ligands and neutral molecular complexes (Hökelek et al., 1999a,b, 2000; Hökelek, Akduran et al., 2001a,b; Hökelek, Bilge et al., 2001; Hökelek, Kaya & Kılıç, 2001; Hökelek, Bilge & Kılıç, 2002, 2003). The title compound, (I), may be a potential cation selective reagent for transition metal ions. Its dionium salt may also be a potential anion selective reagent. The structure determination of (I) was carried out in order to estimate the macrocyclic ring hole size.

Fig. 1 shows the molecular structure of (I), with the atomic numbering scheme. The macrocyclic ring comprises two ether O and two N atoms and crystallizes with one water molecule. The ligand cavity plays an important role in metal-ion selectivity. The intramolecular O2···N15 [6.877 (3) Å], O7···N20 [5.113 (4) Å], O2···C14 [6.988 (3) Å], O7···C21 [6.118 (4) Å], C3···C16 [7.611 (4) Å] C5···C18 [4.109 (3) Å] and C13···C22 [8.711 (4) Å] distances may indicate the hole size of the macrocyclic ring. When only the N and O atoms are taken into account, the average value of the four N···O distances in the ring is 4.526 (4) Å [O2···N20 = 2.985 (4) Å and O7···N15 = 3.130 (4) Å]. The deviations from the least-squares plane defined by atoms O2, O7, N15 andN 20 are −0.009 (2) Å (O2), 0.012 (2) Å (O7), −0.021 (2) Å (N15) and 0.017 (2) Å (N20).

The macrocyclic inner-hole size, estimated as twice the mean distance of the donor atoms from their centroid, is approximately 2.29 Å, using the 'modified covalent radii' of the Nsp2 (0.66 Å) and Osp3 (0.76 Å) atoms as in the literature method (Goodwin et al., 1982; Adam, Leong et al., 1983; Drummond et al., 1982). The inner hole size of (I) (2.29 Å), which is an 18-membered macrocycle, can be compared with the 16- (1.57 Å; Hökelek et al., 2000), 17- [1.29 (Hökelek et al., 2003) and 2.08 Å (Hökelek, Kaya & Kılıç, 2001)], 18- [1.63 and 1.87 Å (Hökelek, Akduran et al., 2001a), 2.15 Å (Hökelek, Akduran et al., 2001b), and 2.28 Å (Hökelek, Bilge et al., 2001)] and 19-membered (2.53 Å: Hökelek et al., 1999b) multidentate ligand hole sizes. The 15- and 17-membered rings containing the N2O2 and N3O2-donor type ligands afford the NiII and PdII complexes (Bilge et al., 2004). The title ligand, (I), may also give similar complexes with NiII, PdII and other transition metal cations.

In (I), the intermolecular O—H···N hydrogen bonds (Table 2) between the water molecule and atoms N15 and N20 of the macrocycle, and the intramolecular N—H···O close contacts, seem to affect? the macrocyclic ring conformation and, therefore, the macrocyclic inner-hole size. The conformation of the macrocyclic ring is given by the torsion angles. The optimum values of the torsion angles in the macrocyclic ring must be 180° (anti) or 60° (gauche), and in (I), eleven are anti and five are gauche (Table 1). As can be seen from the packing diagram (Fig. 2), the macrocyclic ligands are elongated approximately parallel to the c axis and are stacked along the a axis. The intermolecular hydrogen bonds between the water molecules and the N atoms of the macrocycles result in the formation of zigzag polymeric chains (supramolecules; Lindoy & Atkinson, 2000) parallel to the c axis.

Experimental top

The title compound, (I), was obtained from the reaction of 1,4-bis(salicyloxy)butane (0.5 g, 1.65 mmol; Hökelek, Kaya & Kılıç, 2001) in methanol (100 ml) and 1,4-diaminobutane (0.26 ml, 2.47 mmol) in methanol (50 ml). Argon was passed over the reaction mixture, and the mixture was refluxed for 1 h, after which excess amounts of borax (2.51 g, 6.60 mmol) and sodium borohydride (0.25 g, 6.60 mmol) were partially added. The reduction was completed after 2 h. The solvent was then evaporated under reduced pressure. The residue was dissolved in chloroform and extracted with water, and the chloroform layers were collected and evaporated under reduced pressure. The oily residue was crystallized from n-heptane (yield 0.58 g, 56%; m.p. 352 K).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The broken lines show hydrogen bonds.
[Figure 2] Fig. 2. Packing diagram of (I). The broken lines show hydrogen bonds.
1,14-Dioxa-5,10-diaza-2,3:12,13-dibenzocyclooctadeca-2,12-diene monohydrate top
Crystal data top
C22H30N2O2·H2OF(000) = 808
Mr = 372.50Dx = 1.183 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 8.6247 (12) Åθ = 10–18°
b = 14.7854 (10) ŵ = 0.08 mm1
c = 16.6181 (14) ÅT = 293 K
β = 99.352 (12)°Block, colourless
V = 2091.0 (4) Å30.40 × 0.25 × 0.25 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.024
Radiation source: fine-focus sealed tubeθmax = 26.3°, θmin = 2.4°
Graphite monochromatorh = 010
non–profiled ω scansk = 180
4475 measured reflectionsl = 2020
4190 independent reflections3 standard reflections every 120 min
2237 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0633P)2 + 0.5446P]
where P = (Fo2 + 2Fc2)/3
4190 reflections(Δ/σ)max < 0.001
356 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C22H30N2O2·H2OV = 2091.0 (4) Å3
Mr = 372.50Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.6247 (12) ŵ = 0.08 mm1
b = 14.7854 (10) ÅT = 293 K
c = 16.6181 (14) Å0.40 × 0.25 × 0.25 mm
β = 99.352 (12)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.024
4475 measured reflections3 standard reflections every 120 min
4190 independent reflections intensity decay: 1%
2237 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.41 e Å3
4190 reflectionsΔρmin = 0.19 e Å3
356 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O0.3867 (3)0.31760 (17)0.14114 (17)0.0969 (7)
C10.2804 (3)0.61633 (15)0.14932 (14)0.0553 (6)
O20.24524 (18)0.63035 (10)0.22599 (9)0.0602 (4)
C30.3435 (4)0.69184 (19)0.27798 (17)0.0669 (7)
C40.2975 (4)0.68882 (18)0.36109 (17)0.0675 (7)
C50.2965 (4)0.59452 (18)0.39728 (16)0.0638 (7)
C60.3203 (3)0.59607 (18)0.48886 (16)0.0630 (7)
O70.2752 (2)0.51010 (11)0.51630 (10)0.0708 (5)
C80.2822 (3)0.49612 (16)0.59858 (15)0.0576 (6)
C90.3633 (3)0.5513 (2)0.65858 (17)0.0668 (7)
C100.3682 (3)0.5292 (2)0.73964 (18)0.0724 (8)
C110.2921 (4)0.4537 (2)0.76098 (19)0.0761 (8)
C120.2099 (3)0.4007 (2)0.70109 (18)0.0720 (7)
C130.2023 (3)0.41994 (16)0.61892 (15)0.0596 (6)
C140.1114 (3)0.3611 (2)0.55346 (19)0.0713 (7)
N150.2147 (3)0.30138 (15)0.51556 (13)0.0683 (6)
C160.1311 (4)0.2409 (2)0.45236 (17)0.0866 (9)
C170.0518 (4)0.2830 (2)0.37635 (17)0.0840 (9)
C180.1595 (4)0.3358 (2)0.32873 (18)0.0706 (7)
C190.0730 (3)0.3814 (2)0.25617 (18)0.0693 (7)
N200.1778 (2)0.43240 (14)0.21247 (13)0.0594 (5)
C210.0927 (3)0.48672 (19)0.14543 (17)0.0668 (7)
C220.2024 (3)0.54426 (16)0.10655 (14)0.0592 (6)
C230.2339 (4)0.5267 (2)0.02881 (17)0.0775 (9)
C240.3384 (4)0.5790 (2)0.0057 (2)0.0875 (10)
C250.4126 (4)0.6486 (2)0.03730 (18)0.0779 (8)
C260.3862 (3)0.66828 (19)0.11481 (16)0.0659 (7)
H10.332 (3)0.279 (2)0.0999 (18)0.089 (10)*
H20.328 (5)0.351 (3)0.169 (2)0.145 (16)*
H150.286 (4)0.338 (2)0.4960 (17)0.092 (10)*
H16A0.20610.19720.43820.104*
H16B0.05290.20760.47620.104*
H17A0.02870.32370.38960.101*
H17B0.00050.23600.34130.101*
H200.236 (3)0.4676 (16)0.2468 (14)0.064 (8)*
H310.455 (3)0.6725 (17)0.2787 (14)0.071 (8)*
H320.325 (3)0.7528 (19)0.2511 (15)0.082 (8)*
H410.375 (3)0.729 (2)0.3962 (17)0.096 (9)*
H420.200 (4)0.719 (2)0.3577 (18)0.111 (12)*
H510.383 (3)0.5566 (18)0.3796 (16)0.086 (8)*
H520.195 (3)0.5659 (18)0.3783 (15)0.078 (8)*
H610.261 (3)0.6439 (16)0.5101 (13)0.060 (7)*
H620.433 (3)0.6059 (17)0.5135 (14)0.075 (8)*
H910.418 (3)0.6011 (19)0.6423 (15)0.081 (9)*
H1010.426 (3)0.5683 (18)0.7837 (16)0.085 (8)*
H1110.296 (3)0.4386 (17)0.8163 (16)0.072 (8)*
H1210.156 (3)0.3486 (17)0.7137 (15)0.076 (8)*
H1410.038 (3)0.3211 (18)0.5780 (15)0.083 (8)*
H1420.048 (3)0.4016 (19)0.5102 (17)0.094 (9)*
H1810.248 (2)0.2955 (13)0.3217 (10)0.031 (5)*
H1820.213 (3)0.3833 (18)0.3664 (15)0.079 (8)*
H1910.008 (4)0.423 (2)0.2754 (18)0.103 (10)*
H1920.018 (3)0.3336 (19)0.2150 (16)0.089 (8)*
H2110.040 (3)0.4423 (17)0.1045 (15)0.078 (8)*
H2120.007 (3)0.5243 (16)0.1653 (14)0.068 (7)*
H2310.186 (4)0.477 (2)0.0036 (18)0.094 (10)*
H2410.360 (3)0.566 (2)0.0599 (19)0.102 (10)*
H2510.483 (4)0.683 (2)0.0150 (18)0.100 (11)*
H2610.443 (3)0.7167 (16)0.1457 (14)0.065 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O0.0697 (14)0.0952 (16)0.1222 (19)0.0128 (13)0.0053 (14)0.0249 (15)
C10.0541 (13)0.0553 (14)0.0554 (14)0.0112 (12)0.0057 (11)0.0064 (11)
O20.0618 (10)0.0579 (9)0.0614 (10)0.0066 (8)0.0113 (8)0.0065 (8)
C30.080 (2)0.0562 (15)0.0659 (17)0.0142 (15)0.0170 (14)0.0059 (13)
C40.080 (2)0.0538 (15)0.0720 (18)0.0115 (15)0.0221 (15)0.0084 (13)
C50.0676 (17)0.0560 (15)0.0700 (17)0.0017 (14)0.0177 (14)0.0048 (12)
C60.0601 (16)0.0580 (15)0.0710 (17)0.0070 (14)0.0113 (14)0.0023 (13)
O70.0838 (13)0.0605 (10)0.0671 (11)0.0139 (9)0.0096 (9)0.0006 (8)
C80.0518 (14)0.0614 (15)0.0593 (15)0.0056 (12)0.0081 (11)0.0012 (12)
C90.0609 (16)0.0659 (17)0.0731 (19)0.0007 (14)0.0095 (13)0.0053 (14)
C100.0660 (18)0.081 (2)0.0662 (18)0.0136 (15)0.0003 (14)0.0124 (16)
C110.085 (2)0.082 (2)0.0623 (19)0.0187 (17)0.0124 (15)0.0041 (16)
C120.0736 (18)0.0679 (17)0.076 (2)0.0059 (16)0.0173 (15)0.0087 (16)
C130.0517 (14)0.0587 (14)0.0683 (16)0.0067 (12)0.0094 (12)0.0043 (12)
C140.0565 (16)0.0691 (17)0.086 (2)0.0116 (14)0.0047 (15)0.0068 (16)
N150.0714 (15)0.0669 (14)0.0667 (14)0.0137 (12)0.0116 (12)0.0034 (11)
C160.104 (2)0.0714 (18)0.082 (2)0.0320 (17)0.0081 (17)0.0023 (15)
C170.086 (2)0.0807 (19)0.083 (2)0.0352 (16)0.0059 (16)0.0011 (16)
C180.0724 (19)0.0649 (17)0.0731 (18)0.0212 (16)0.0074 (15)0.0017 (14)
C190.0672 (17)0.0681 (17)0.0729 (18)0.0138 (15)0.0123 (14)0.0030 (15)
N200.0591 (13)0.0573 (12)0.0600 (12)0.0072 (10)0.0046 (10)0.0037 (10)
C210.0633 (17)0.0633 (16)0.0688 (17)0.0003 (14)0.0040 (14)0.0057 (14)
C220.0596 (15)0.0571 (14)0.0575 (15)0.0112 (12)0.0011 (12)0.0041 (12)
C230.098 (2)0.0717 (19)0.0588 (18)0.0161 (17)0.0004 (16)0.0011 (15)
C240.108 (3)0.096 (2)0.0608 (19)0.023 (2)0.0191 (18)0.0117 (18)
C250.082 (2)0.085 (2)0.068 (2)0.0112 (18)0.0170 (16)0.0241 (17)
C260.0686 (17)0.0646 (16)0.0639 (17)0.0019 (14)0.0086 (14)0.0114 (14)
Geometric parameters (Å, º) top
O—H20.89 (4)C3—H321.01 (3)
O—H10.96 (3)C5—C41.519 (4)
O2—C11.373 (3)C5—H511.02 (3)
O2—C31.433 (3)C5—H520.98 (3)
O7—C81.375 (3)C26—C251.375 (4)
O7—C61.426 (3)C26—H2610.97 (2)
C13—C121.386 (4)C9—C101.380 (4)
C13—C81.390 (3)C9—H910.94 (3)
C13—C141.509 (4)C18—C171.529 (4)
C8—C91.386 (4)C18—H1810.991 (19)
N15—C141.467 (3)C18—H1821.00 (3)
N15—C161.475 (3)C25—C241.354 (4)
N15—H150.92 (3)C25—H2510.92 (3)
C1—C261.386 (3)C10—C111.370 (4)
C1—C221.392 (3)C10—H1011.00 (3)
C22—C231.387 (4)C23—C241.382 (5)
C22—C211.495 (4)C23—H2310.91 (3)
N20—C191.458 (3)C11—C121.371 (4)
N20—C211.470 (3)C11—H1110.94 (2)
N20—H200.87 (2)C17—C161.473 (4)
C6—C51.502 (4)C17—H17A0.9700
C6—H621.00 (3)C17—H17B0.9700
C6—H610.97 (2)C12—H1210.94 (3)
C21—H2121.02 (2)C16—H16A0.9700
C21—H2111.00 (3)C16—H16B0.9700
C19—C181.474 (4)C4—H420.95 (3)
C19—H1921.04 (3)C4—H411.00 (3)
C19—H1911.02 (3)C24—H2410.97 (3)
C3—C41.498 (4)C14—H1421.02 (3)
C3—H311.00 (3)C14—H1411.00 (3)
H2—O—H1117 (3)C1—C26—H261120.0 (14)
C1—O2—C3117.21 (19)C10—C9—C8119.7 (3)
C8—O7—C6118.83 (19)C10—C9—H91122.0 (16)
C12—C13—C8117.4 (2)C8—C9—H91118.2 (16)
C12—C13—C14121.8 (3)C19—C18—C17112.8 (2)
C8—C13—C14120.8 (2)C19—C18—H181118.4 (11)
O7—C8—C9124.2 (2)C17—C18—H181107.4 (11)
O7—C8—C13114.9 (2)C19—C18—H182108.1 (14)
C9—C8—C13120.9 (2)C17—C18—H182106.9 (15)
C14—N15—C16114.2 (2)H181—C18—H182102.1 (18)
C14—N15—H15106.4 (18)C24—C25—C26121.3 (3)
C16—N15—H15112.7 (18)C24—C25—H251119.8 (19)
O2—C1—C26124.1 (2)C26—C25—H251119 (2)
O2—C1—C22115.3 (2)C11—C10—C9120.3 (3)
C26—C1—C22120.6 (2)C11—C10—H101118.8 (15)
C23—C22—C1117.9 (3)C9—C10—H101120.8 (16)
C23—C22—C21122.0 (3)C24—C23—C22121.5 (3)
C1—C22—C21120.2 (2)C24—C23—H231122.3 (19)
C19—N20—C21112.7 (2)C22—C23—H231116.1 (19)
C19—N20—H20108.9 (16)C10—C11—C12119.4 (3)
C21—N20—H20109.6 (16)C10—C11—H111120.2 (16)
O7—C6—C5108.1 (2)C12—C11—H111120.3 (16)
O7—C6—H62107.2 (15)C16—C17—C18115.0 (3)
C5—C6—H62112.4 (14)C16—C17—H17A108.5
O7—C6—H61110.3 (13)C18—C17—H17A108.5
C5—C6—H61112.7 (13)C16—C17—H17B108.5
H62—C6—H61106.1 (19)C18—C17—H17B108.5
N20—C21—C22111.4 (2)H17A—C17—H17B107.5
N20—C21—H212110.5 (14)C11—C12—C13122.3 (3)
C22—C21—H212111.8 (13)C11—C12—H121121.5 (16)
N20—C21—H211105.8 (14)C13—C12—H121116.3 (16)
C22—C21—H211109.1 (14)C17—C16—N15117.4 (2)
H212—C21—H211108 (2)C17—C16—H16A108.0
N20—C19—C18111.8 (2)N15—C16—H16A108.0
N20—C19—H192105.9 (15)C17—C16—H16B108.0
C18—C19—H192109.9 (15)N15—C16—H16B108.0
N20—C19—H191111.2 (17)H16A—C16—H16B107.2
C18—C19—H191107.5 (17)C3—C4—C5114.3 (2)
H192—C19—H191111 (2)C3—C4—H42107.4 (19)
O2—C3—C4108.5 (2)C5—C4—H42113 (2)
O2—C3—H31107.4 (14)C3—C4—H41105.4 (16)
C4—C3—H31112.1 (14)C5—C4—H41110.8 (16)
O2—C3—H32105.3 (15)H42—C4—H41105 (2)
C4—C3—H32112.8 (15)C25—C24—C23119.4 (3)
H31—C3—H32110 (2)C25—C24—H241119.7 (18)
C6—C5—C4112.2 (2)C23—C24—H241120.9 (18)
C6—C5—H51108.4 (15)N15—C14—C13112.1 (2)
C4—C5—H51109.9 (15)N15—C14—H142110.1 (16)
C6—C5—H52107.6 (15)C13—C14—H142108.9 (16)
C4—C5—H52109.4 (15)N15—C14—H141106.8 (15)
H51—C5—H52109 (2)C13—C14—H141109.6 (15)
C25—C26—C1119.4 (3)H142—C14—H141109 (2)
C25—C26—H261120.6 (14)
C6—O7—C8—C915.6 (4)O7—C8—C9—C10177.4 (2)
C6—O7—C8—C13165.3 (2)C13—C8—C9—C101.6 (4)
C12—C13—C8—O7177.8 (2)N20—C19—C18—C17179.2 (2)
C14—C13—C8—O72.2 (3)C1—C26—C25—C240.6 (4)
C12—C13—C8—C91.3 (3)C8—C9—C10—C110.6 (4)
C14—C13—C8—C9178.7 (2)C1—C22—C23—C240.3 (4)
C3—O2—C1—C2611.2 (3)C21—C22—C23—C24178.4 (3)
C3—O2—C1—C22168.4 (2)C9—C10—C11—C120.6 (4)
O2—C1—C22—C23179.8 (2)C19—C18—C17—C16176.2 (3)
C26—C1—C22—C230.1 (3)C10—C11—C12—C130.9 (4)
O2—C1—C22—C211.7 (3)C8—C13—C12—C110.1 (4)
C26—C1—C22—C21177.9 (2)C14—C13—C12—C11180.0 (3)
C8—O7—C6—C5178.0 (2)C18—C17—C16—N1559.9 (4)
C19—N20—C21—C22175.0 (2)C14—N15—C16—C1767.9 (4)
C23—C22—C21—N20109.3 (3)O2—C3—C4—C553.4 (4)
C1—C22—C21—N2068.7 (3)C6—C5—C4—C3155.0 (3)
C21—N20—C19—C18173.5 (2)C26—C25—C24—C230.1 (5)
C1—O2—C3—C4173.3 (2)C22—C23—C24—C250.4 (4)
O7—C6—C5—C4164.3 (2)C16—N15—C14—C13178.7 (2)
O2—C1—C26—C25179.8 (2)C12—C13—C14—N15102.2 (3)
C22—C1—C26—C250.6 (4)C8—C13—C14—N1577.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O—H1···N15i0.96 (3)1.98 (3)2.940 (3)179 (3)
O—H2···N200.89 (4)1.99 (4)2.868 (3)170 (4)
N15—H15···O70.92 (3)2.57 (3)3.130 (3)120 (2)
N20—H20···O20.87 (2)2.43 (2)2.985 (3)122 (2)
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC22H30N2O2·H2O
Mr372.50
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.6247 (12), 14.7854 (10), 16.6181 (14)
β (°) 99.352 (12)
V3)2091.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.40 × 0.25 × 0.25
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4475, 4190, 2237
Rint0.024
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.158, 1.01
No. of reflections4190
No. of parameters356
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.19

Computer programs: CAD-4 EXPRESS (Enraf Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX publication routines (Farrugia, 1999).

Selected torsion angles (º) top
C6—O7—C8—C13165.3 (2)O7—C6—C5—C4164.3 (2)
C14—C13—C8—O72.2 (3)N20—C19—C18—C17179.2 (2)
C3—O2—C1—C22168.4 (2)C19—C18—C17—C16176.2 (3)
O2—C1—C22—C211.7 (3)C18—C17—C16—N1559.9 (4)
C8—O7—C6—C5178.0 (2)C14—N15—C16—C1767.9 (4)
C19—N20—C21—C22175.0 (2)O2—C3—C4—C553.4 (4)
C1—C22—C21—N2068.7 (3)C6—C5—C4—C3155.0 (3)
C21—N20—C19—C18173.5 (2)C16—N15—C14—C13178.7 (2)
C1—O2—C3—C4173.3 (2)C8—C13—C14—N1577.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O—H1···N15i0.96 (3)1.98 (3)2.940 (3)179 (3)
O—H2···N200.89 (4)1.99 (4)2.868 (3)170 (4)
N15—H15···O70.92 (3)2.57 (3)3.130 (3)120 (2)
N20—H20···O20.87 (2)2.43 (2)2.985 (3)122 (2)
Symmetry code: (i) x, y+1/2, z1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds