Download citation
Download citation
link to html
In 2-chloro­phenyl 3-nitro­benzene­sulfonate, C12H8ClNO5S, and 2,4-di­chloro­phenyl 3-nitro­benzene­sulfonate, C12H7Cl2NO5S, weak C-H...O interactions generate S(5), S(6) and R_2^2(7) rings. The supramolecular aggregation is completed by the presence of [pi]-[pi] interactions and intermolecular van der Waals short contacts.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103027380/ob1154sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103027380/ob1154Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103027380/ob1154IIsup3.hkl
Contains datablock II

CCDC references: 231078; 231079

Comment top

Aromatic sulfonates are used in monitoring the merging of lipids (Yachi et al., 1989) and in many other fields (Narayanan & Krakow, 1983; Jiang et al., 1990; Alford et al., 1991; Spungin et al., 1992; Tharakan et al., 1992). The molecular and crystal structure of 3-nitrobenzenesulfonyl chloride (Vembu, Nallu, Spencer & Howard, 2003c) and a few of its derivatives (Vembu, Nallu, Spencer & Howard, 2003 d,e,f,g,h) have been reported recently. An X-ray study of the title compounds, (I) and (II), was undertaken in order to determine their crystal and molecular structures, This study may serve as a forerunner both for the assessment of the biological significance of these compounds and for a study of the quantitative structure–activity relationship of aromatic sulfonates?.

The molecular structure of (I) is shown in Fig. 1 and selected geometric parameters are given in Table 1. Atoms N, O1 and O2 deviate from the mean plane formed by atoms C1–C6 by +0.087 (2), +0.360 (3) and −0.125 (2) Å, respectively. The Cl atom deviates 0.009 (2) Å from the C7–C12 plane. The molecular structure of (II) is shown in Fig. 2 and selected geometric parameters are given in Table 3. Atoms N1, O1 and O2 lie on the same side of the mean plane formed by atoms C1–C6, deviating by 0.075 (3), 0.043 (4) and 0.152 (4) Å, respectively. Atoms Cl1 and Cl2 deviate 0.018 (3) and 0.043 (3) Å, respectively, from the mean plane formed by the atoms C7–C12. The dihedral angle between the planes of the two aromatic rings is 53.03 (4)° in (I) and 50.0 (6)° in (II). These rings thus have a non-coplanar orientation, similar to that reported for other aromatic sulfonates (Vembu, Nallu, Garrison & Youngs, 2003b,c,d,e; Vembu, Nallu, Spencer & Howard, 2003a,b,d,e,g,h) and in contrast to the near coplanar orientation found in 2,4-dinitrophenyl 4-toluenesulfonate (Vembu, Nallu, Garrison & Youngs, 2003a), 4-methoxyphenyl 4-toluenesulfonate (Vembu, Nallu, Garrison, Hindi & Youngs, 2003) and 8-quinolyl 3-nitrobenzenesulfonate (Vembu, Nallu, Spencer & Howard, 2003f). In these compounds, the antiperiplanar/anticlinal (Ar)C—S—O—C(O—Ar) conformation leads to the two aromatic rings adopting a free coplanar orientation. The C—S—O—C torsion angle is 162.5 (2)° in 4-methoxyphenyl 4-toluenesulfonate, for example. The antiperiplanar/anticlinal orientation relieves the molecule from steric strain, thereby facilitating the adoption of a coplanar orientation. In (I) and (II), the C—S—O—C torsion angles (Tables 1 and 3) are synclinal and therefore the two aromatic rings are non-coplanar.

The crystal structures of (I) and (II) are stabilized by weak C—H···O interactions (Tables 2 and 4). The H···O distances found in (I) and (II) agree with those found for weak C—H···O bonds (Desiraju & Steiner, 1999). In (I), each of the C2—H2···O1, C4—H4···O4, C6—H6···O2 and C6—H6···O3 interactions generates an S(5) graph-set motif (Etter, 1990; Bernstein et al., 1995). The C6—H6···O2 and C6—H6···O3 interactions constitute a pair of bifurcated donor bonds. The S(5) rings generated by the C2—H2···O1, C4—H4···O4, C6—H6···O2 and C6—H6···O3 interactions in (I) are non-planar, with atoms O1, O4, O2 and O3 deviating by 0.27 (1), 0.548 (8), 0.22 (1) and 0.49 (2) Å, respectively, from the corresponding mean planes formed by the other four atoms in the ring. The non-planar orientation of these rings can best be described as an envelope conformation, similar to that observed in cyclopentane derivatives. The C8—H8···O4 interaction generates an S(6) motif. The C4—H4···O2ii and C3—H3···O1ii interactions generate a nitro fork motif of graph-set motif R22(7). There are several other weak C—H···O interactions, which contribute for the supramolecular aggregation of (I). In the crystal structure of (I), the molecules are stacked in layers held together by a ππ interaction with a centroid–centroid separation of 3.746 Å between the inversion-related chlorophenyl rings (2 − x, −y, −z) as obtained from PLATON (Spek, 1998). There is an intermolecular short contact, C1···O3(1 − x, 2 − y, 1 − z), of 3.212 (2) Å.

In (II), each of the C1—H1···O4, C3—H3···O2, C3—H3···O3 and C5—H5···O1 interactions generates an S(5) graph-set motif. The C3—H3···O2 and C3—H3···O3 interactions constitute a pair of bifurcated donor bonds. The S(5) rings generated by the C3—H3···O2 and C5—H5···O1 interactions in (II) are planar, whereas the S(5) rings formed by the C1—H1···O4 and C3—H3···O3 interactions are non-planar, with atoms O4 and O3 deviating by 0.53 (2) and 0.52 (2) Å from the corresponding mean planes formed by the other four atoms in the ring. The non-planar orientation of these rings can best be decribed as an envelope conformation. The C8—H8···O3 interaction generates an S(6) motif. The C3—H3···O3 and C8—H8···O3 interactions together constitute a pair of bifurcated acceptor bonds. The C6—H6···O5i and C1—H1···O4i interactions generate a fork motif of graph-set motif R22(7). There are several other weak C—H···O interactions that contribute to the supramolecular aggregation of (II). In the crystal structure of (II), the molecules are stacked in layers held together by a pair of ππ interactions with a centroid–centroid separation of 3.873 Å between the symmetry-related aromatic rings [Cg1···Cg2(1/2 − x, −y, 1/2 + z) and Cg2···Cg1(1/2 − x, −y, z − 1/2), where Cg1 and Cg2 are the centroids of the C1–C6 and C7–C12 rings, respectively] as obtained from PLATON (Spek, 1998). Other short intermolecular contacts are Cl1···O2(x − 1/2, 3/2 − y, 2 − z) of 3.143 (2) Å, N1···O3(x − 1, y, z) of 3.022 (3) Å, O1···O3(x − 1, y, z) of 3.016 (3) Å, O1···O5(3/2 − x, 1 − y, z − 1/2) of 2.930 (3) Å and C5···O4(x − 1, y, z) of 3.119 (3) Å.

Experimental top

For the preparation of (I), 3-nitrobenzenesulfonyl chloride (5 mmol) dissolved in acetone (5 ml) was added to 2-chlorophenol (5 mmol) dissolved in NaOH (4 ml, 5%) and the mixture was shaken well. The precipitated solid product, (I) (2 mmol, yield 40%), was recrystallized from a 1:1 mixture of petroleum ether and acetone. For the preparation of (II), 3-nitrobenzenesulfonyl chloride (5 mmol) dissolved in acetone (5 ml) was added to 2,4-dichlorophenol (5.5 mmol) dissolved in NaOH (4 ml, 5%) and the mixture was shaken well. The precipitated solid product, (II) (2.9 mmol, yield 58%), was recrystallized from a 1:1 mixture of petroleum ether and acetone.

Refinement top

All H atoms were located from difference Fourier maps and their positional coordinates and isotropic displacement paramaters were refined. The C—H bond lengths in (I) and (II) are in the range 0.90 (2)–0.95 (2) and 0.81 (3)–0.98 (2) Å, respectively.

Computing details top

For both compounds, data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The molecular structure of (II), showing 50% probability displacement ellipsoids.
[Figure 3] Fig. 3. The packing of (I) in the unit cell.
[Figure 4] Fig. 4. The packing of (II) in the unit cell along b axis.
(I) 2-chlorophenyl 3-nitrobenzenesulfonate top
Crystal data top
C12H8ClNO5SZ = 2
Mr = 313.70F(000) = 320
Triclinic, P1Dx = 1.643 Mg m3
Hall symbol: -P 1Melting point = 367–369 K
a = 7.4315 (18) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.474 (2) ÅCell parameters from 3667 reflections
c = 10.991 (3) Åθ = 2.6–28.3°
α = 67.889 (4)°µ = 0.48 mm1
β = 85.220 (4)°T = 100 K
γ = 81.617 (4)°Block, colorless
V = 634.1 (3) Å30.40 × 0.20 × 0.10 mm
Data collection top
Bruker CCD area-detector
diffractometer
2918 independent reflections
Radiation source: fine-focus sealed tube2723 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick 1996)
h = 99
Tmin = 0.830, Tmax = 0.953k = 1111
5585 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.045P)2 + 0.2748P]
where P = (Fo2 + 2Fc2)/3
2918 reflections(Δ/σ)max = 0.001
213 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C12H8ClNO5Sγ = 81.617 (4)°
Mr = 313.70V = 634.1 (3) Å3
Triclinic, P1Z = 2
a = 7.4315 (18) ÅMo Kα radiation
b = 8.474 (2) ŵ = 0.48 mm1
c = 10.991 (3) ÅT = 100 K
α = 67.889 (4)°0.40 × 0.20 × 0.10 mm
β = 85.220 (4)°
Data collection top
Bruker CCD area-detector
diffractometer
2918 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick 1996)
2723 reflections with I > 2σ(I)
Tmin = 0.830, Tmax = 0.953Rint = 0.017
5585 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.083All H-atom parameters refined
S = 1.06Δρmax = 0.46 e Å3
2918 reflectionsΔρmin = 0.29 e Å3
213 parameters
Special details top

Experimental. The Tmin and Tmax values obtained from the SIZE instruction are listed above. The absorption correction was applied using SADABS and it gives 0.914178 ratio of min/max transmission. The _diffrn_measured_ fraction_theta_full is low as the diffraction geometry does not allow us to go beyond this value.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

The sign of the shift of atoms N1 O1 and O2 from C1—C6 mean plane is verified. The details of Least Squares Plane calculation is provided below for the perusal of the co-editor. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 3.5178 (0.0055) x + 0.8025 (0.0116) y + 12.8496 (0.0113) z =8.8861 (0.0120)

* 0.0168 (0.0015) C1 * −0.0084 (0.0014) C2 * −0.0087 (0.0013) C3 * 0.0175 (0.0014) C4 * −0.0087 (0.0015) C5 * −0.0085 (0.0015) C6 0.0753 (0.0030) N1 0.0425 (0.0037) O1 0.1523 (0.0036) O2

Rms deviation of fitted atoms = 0.0121

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.29719 (5)0.66746 (5)0.98950 (3)0.02174 (11)
S0.27292 (5)1.07006 (4)0.65534 (3)0.01723 (10)
O10.84645 (17)0.45138 (14)0.66643 (12)0.0295 (3)
O20.87646 (15)0.65177 (14)0.73869 (11)0.0239 (2)
O30.42172 (15)1.16492 (13)0.64187 (10)0.0225 (2)
O40.11846 (15)1.14406 (14)0.57491 (10)0.0237 (2)
O50.21211 (14)1.02345 (13)0.80643 (10)0.0186 (2)
N0.78593 (18)0.57706 (16)0.69393 (12)0.0207 (3)
C10.5925 (2)0.64352 (18)0.67160 (14)0.0183 (3)
C20.4783 (2)0.5454 (2)0.64478 (15)0.0221 (3)
C30.2981 (2)0.6138 (2)0.61748 (16)0.0241 (3)
C40.2351 (2)0.7772 (2)0.61631 (15)0.0213 (3)
C50.3538 (2)0.86894 (18)0.64705 (13)0.0169 (3)
C60.5345 (2)0.80422 (18)0.67521 (13)0.0170 (3)
C70.0559 (2)0.94153 (18)0.85969 (14)0.0173 (3)
C80.1164 (2)1.03057 (19)0.82988 (14)0.0205 (3)
C90.2665 (2)0.9519 (2)0.89670 (15)0.0228 (3)
C100.2429 (2)0.7882 (2)0.99190 (15)0.0222 (3)
C110.0701 (2)0.6991 (2)1.02059 (14)0.0199 (3)
C120.08009 (19)0.77585 (19)0.95335 (14)0.0173 (3)
H20.521 (3)0.436 (2)0.6453 (18)0.021 (4)*
H30.221 (3)0.553 (3)0.600 (2)0.030 (5)*
H40.115 (3)0.825 (2)0.5971 (19)0.026 (5)*
H60.612 (2)0.863 (2)0.6956 (18)0.020 (4)*
H80.127 (3)1.144 (3)0.767 (2)0.030 (5)*
H90.379 (3)1.011 (3)0.8785 (19)0.027 (5)*
H100.345 (3)0.739 (2)1.0401 (19)0.027 (5)*
H110.054 (2)0.593 (2)1.0845 (18)0.021 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.01686 (18)0.02233 (19)0.02012 (18)0.00041 (13)0.00189 (13)0.00192 (14)
S0.02130 (19)0.01569 (17)0.01299 (17)0.00208 (13)0.00070 (13)0.00342 (13)
O10.0313 (6)0.0213 (6)0.0329 (6)0.0034 (5)0.0014 (5)0.0096 (5)
O20.0217 (5)0.0254 (6)0.0216 (5)0.0035 (4)0.0025 (4)0.0047 (4)
O30.0287 (6)0.0181 (5)0.0196 (5)0.0069 (4)0.0016 (4)0.0045 (4)
O40.0258 (6)0.0236 (5)0.0171 (5)0.0023 (4)0.0037 (4)0.0035 (4)
O50.0222 (5)0.0198 (5)0.0141 (5)0.0044 (4)0.0004 (4)0.0059 (4)
N0.0234 (6)0.0175 (6)0.0159 (6)0.0013 (5)0.0013 (5)0.0011 (5)
C10.0205 (7)0.0185 (7)0.0136 (6)0.0027 (5)0.0011 (5)0.0036 (5)
C20.0286 (8)0.0188 (7)0.0196 (7)0.0058 (6)0.0040 (6)0.0079 (6)
C30.0253 (8)0.0259 (8)0.0264 (8)0.0106 (6)0.0021 (6)0.0136 (6)
C40.0197 (7)0.0259 (8)0.0190 (7)0.0053 (6)0.0006 (6)0.0086 (6)
C50.0207 (7)0.0169 (6)0.0124 (6)0.0037 (5)0.0020 (5)0.0048 (5)
C60.0204 (7)0.0183 (7)0.0124 (6)0.0060 (5)0.0004 (5)0.0044 (5)
C70.0204 (7)0.0190 (7)0.0141 (6)0.0027 (5)0.0006 (5)0.0081 (5)
C80.0252 (8)0.0190 (7)0.0169 (7)0.0029 (6)0.0027 (6)0.0077 (6)
C90.0190 (7)0.0297 (8)0.0222 (7)0.0032 (6)0.0043 (6)0.0140 (6)
C100.0191 (7)0.0303 (8)0.0209 (7)0.0056 (6)0.0016 (6)0.0133 (6)
C110.0219 (7)0.0211 (7)0.0162 (7)0.0036 (6)0.0007 (6)0.0061 (6)
C120.0171 (7)0.0195 (7)0.0154 (6)0.0007 (5)0.0027 (5)0.0072 (5)
Geometric parameters (Å, º) top
Cl—C121.7334 (15)C4—C51.394 (2)
S—O31.4259 (12)C4—H40.93 (2)
S—O41.4263 (11)C5—C61.388 (2)
S—O51.5972 (11)C6—H60.909 (19)
S—C51.7560 (15)C7—C81.385 (2)
O1—N1.2279 (17)C7—C121.390 (2)
O2—N1.2285 (17)C8—C91.393 (2)
O5—C71.4099 (17)C8—H80.95 (2)
N—C11.471 (2)C9—C101.385 (2)
C1—C61.381 (2)C9—H90.90 (2)
C1—C21.389 (2)C10—C111.387 (2)
C2—C31.389 (2)C10—H100.94 (2)
C2—H20.931 (19)C11—C121.388 (2)
C3—C41.392 (2)C11—H110.910 (19)
C3—H30.90 (2)
O3—S—O4120.68 (7)C6—C5—S118.36 (11)
O3—S—O5102.60 (6)C4—C5—S119.61 (12)
O4—S—O5109.87 (6)C1—C6—C5116.92 (14)
O3—S—C5109.71 (7)C1—C6—H6120.7 (11)
O4—S—C5109.31 (7)C5—C6—H6122.4 (11)
O5—S—C5103.13 (6)C8—C7—C12121.09 (14)
C7—O5—S121.60 (9)C8—C7—O5120.59 (13)
O1—N—O2124.34 (14)C12—C7—O5117.96 (13)
O1—N—C1118.10 (13)C7—C8—C9118.80 (14)
O2—N—C1117.55 (13)C7—C8—H8118.6 (12)
C6—C1—C2123.19 (14)C9—C8—H8122.6 (12)
C6—C1—N117.62 (13)C10—C9—C8120.30 (14)
C2—C1—N119.16 (13)C10—C9—H9121.1 (12)
C3—C2—C1118.40 (14)C8—C9—H9118.6 (12)
C3—C2—H2120.8 (12)C9—C10—C11120.64 (15)
C1—C2—H2120.8 (12)C9—C10—H10119.3 (12)
C2—C3—C4120.36 (14)C11—C10—H10120.0 (12)
C2—C3—H3120.3 (13)C10—C11—C12119.40 (14)
C4—C3—H3119.4 (13)C10—C11—H11120.6 (12)
C3—C4—C5119.08 (15)C12—C11—H11120.0 (12)
C3—C4—H4121.2 (12)C11—C12—C7119.76 (13)
C5—C4—H4119.7 (12)C11—C12—Cl120.00 (11)
C6—C5—C4122.01 (14)C7—C12—Cl120.21 (12)
O3—S—O5—C7174.16 (10)O5—S—C5—C491.47 (12)
O4—S—O5—C744.62 (12)C2—C1—C6—C51.6 (2)
C5—S—O5—C771.82 (11)N—C1—C6—C5176.66 (12)
O1—N—C1—C6166.26 (13)C4—C5—C6—C10.1 (2)
O2—N—C1—C613.55 (19)S—C5—C6—C1178.13 (10)
O1—N—C1—C212.1 (2)S—O5—C7—C873.02 (15)
O2—N—C1—C2168.09 (13)S—O5—C7—C12113.84 (13)
C6—C1—C2—C31.4 (2)C12—C7—C8—C90.7 (2)
N—C1—C2—C3176.83 (13)O5—C7—C8—C9172.21 (13)
C1—C2—C3—C40.5 (2)C7—C8—C9—C100.6 (2)
C2—C3—C4—C52.1 (2)C8—C9—C10—C111.1 (2)
C3—C4—C5—C61.9 (2)C9—C10—C11—C120.3 (2)
C3—C4—C5—S176.31 (12)C10—C11—C12—C70.9 (2)
O3—S—C5—C621.99 (13)C10—C11—C12—Cl179.15 (11)
O4—S—C5—C6156.39 (11)C8—C7—C12—C111.5 (2)
O5—S—C5—C686.76 (12)O5—C7—C12—C11171.64 (12)
O3—S—C5—C4159.78 (11)C8—C7—C12—Cl179.69 (11)
O4—S—C5—C425.38 (14)O5—C7—C12—Cl6.57 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O10.931 (19)2.472 (18)2.740 (2)96.6 (13)
C4—H4···O40.93 (2)2.626 (19)2.973 (2)102.8 (13)
C6—H6···O20.909 (19)2.404 (18)2.6968 (19)98.8 (13)
C6—H6···O30.909 (19)2.615 (18)2.9396 (19)101.9 (13)
C8—H8···O40.95 (2)2.67 (2)3.0772 (19)106.4 (14)
C2—H2···O3i0.931 (19)2.531 (19)3.324 (2)143.2 (15)
C4—H4···O2ii0.93 (2)2.511 (19)3.033 (2)115.7 (14)
C3—H3···O1ii0.90 (2)2.99 (2)3.733 (2)141.9 (16)
C9—H9···O3ii0.90 (2)2.86 (2)3.539 (2)132.8 (15)
C4—H4···O4iii0.93 (2)2.59 (2)3.335 (2)137.6 (15)
C8—H8···O1iv0.95 (2)2.40 (2)3.316 (2)162.5 (16)
C11—H11···O2v0.910 (19)2.532 (19)3.3726 (19)153.8 (15)
Symmetry codes: (i) x, y1, z; (ii) x1, y, z; (iii) x, y+2, z+1; (iv) x1, y+1, z; (v) x+1, y+1, z+2.
(II) 2,4-Dichlorophenyl 3-nitrobenzenesulfonate top
Crystal data top
C12H7Cl2NO5SDx = 1.683 Mg m3
Mr = 348.15Melting point = 366–367 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7544 reflections
a = 6.878 (5) Åθ = 2.7–28.3°
b = 13.33 (1) ŵ = 0.64 mm1
c = 14.990 (11) ÅT = 100 K
V = 1374.3 (17) Å3Block, colorless
Z = 40.50 × 0.30 × 0.30 mm
F(000) = 704
Data collection top
Bruker CCD area-detector
diffractometer
3268 independent reflections
Radiation source: fine-focus sealed tube3158 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 28.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick 1996)
h = 99
Tmin = 0.739, Tmax = 0.830k = 1717
11316 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032All H-atom parameters refined
wR(F2) = 0.081
S = 1.08(Δ/σ)max = 0.001
3268 reflectionsΔρmax = 0.38 e Å3
218 parametersΔρmin = 0.28 e Å3
0 restraintsAbsolute structure: Flack (1983), 1283 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (6)
Crystal data top
C12H7Cl2NO5SV = 1374.3 (17) Å3
Mr = 348.15Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.878 (5) ŵ = 0.64 mm1
b = 13.33 (1) ÅT = 100 K
c = 14.990 (11) Å0.50 × 0.30 × 0.30 mm
Data collection top
Bruker CCD area-detector
diffractometer
3268 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick 1996)
3158 reflections with I > 2σ(I)
Tmin = 0.739, Tmax = 0.830Rint = 0.037
11316 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032All H-atom parameters refined
wR(F2) = 0.081Δρmax = 0.38 e Å3
S = 1.08Δρmin = 0.28 e Å3
3268 reflectionsAbsolute structure: Flack (1983), 1283 Friedel pairs
218 parametersAbsolute structure parameter: 0.02 (6)
0 restraints
Special details top

Experimental. The Tmin and Tmax values obtained from the SIZE instruction are listed above. The absorption correction was applied using SADABS and it gives 0.613377 ratio of min/max transmission. The _diffrn_measured_ fraction_theta_full is low as the diffraction geometry does not allow us to go beyond this value. No _chemical_absolute_configuration info is given as we have not determined the same.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.37528 (8)0.72585 (4)1.16297 (4)0.03515 (14)
Cl20.70015 (8)0.36113 (4)1.12658 (4)0.03054 (13)
S11.11206 (7)0.46106 (4)0.96706 (3)0.02198 (12)
N10.4809 (3)0.53990 (16)0.79536 (12)0.0313 (4)
O10.3376 (3)0.51043 (15)0.75540 (11)0.0438 (5)
O20.5212 (3)0.62900 (13)0.80680 (12)0.0405 (4)
O31.1685 (2)0.55771 (11)0.93622 (10)0.0288 (3)
O41.2483 (2)0.38069 (11)0.97053 (11)0.0312 (3)
O51.0425 (2)0.47127 (10)1.06854 (9)0.0226 (3)
C10.8539 (3)0.32184 (16)0.90651 (14)0.0268 (4)
C20.9000 (3)0.42355 (14)0.91084 (12)0.0215 (4)
C30.7817 (3)0.49665 (14)0.87385 (13)0.0224 (4)
C40.6136 (3)0.46416 (16)0.83191 (13)0.0247 (4)
C50.5673 (4)0.36347 (18)0.82348 (14)0.0299 (5)
C60.6883 (4)0.29243 (16)0.86107 (15)0.0313 (5)
C70.8835 (3)0.53413 (14)1.08739 (12)0.0197 (4)
C80.8992 (3)0.63802 (15)1.08168 (14)0.0241 (4)
C90.7417 (3)0.69705 (15)1.10415 (15)0.0258 (4)
C100.5719 (3)0.65118 (15)1.13297 (14)0.0245 (4)
C110.5549 (3)0.54799 (15)1.13981 (13)0.0236 (4)
C120.7131 (3)0.48969 (13)1.11678 (13)0.0205 (4)
H10.935 (4)0.2748 (18)0.9338 (16)0.025 (6)*
H30.813 (4)0.5681 (18)0.8779 (15)0.029 (6)*
H50.470 (4)0.3520 (19)0.7947 (16)0.028 (7)*
H60.656 (4)0.225 (2)0.8561 (17)0.042 (8)*
H80.999 (4)0.6661 (17)1.0625 (15)0.022 (6)*
H90.755 (4)0.7601 (19)1.1020 (15)0.026 (6)*
H110.447 (4)0.526 (2)1.1590 (16)0.031 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0228 (2)0.0310 (2)0.0517 (3)0.0073 (2)0.0069 (2)0.0040 (2)
Cl20.0280 (3)0.0203 (2)0.0434 (3)0.00461 (19)0.0014 (2)0.0053 (2)
S10.0146 (2)0.0221 (2)0.0292 (2)0.00210 (18)0.00254 (19)0.00104 (18)
N10.0225 (9)0.0479 (11)0.0235 (8)0.0066 (9)0.0022 (7)0.0036 (8)
O10.0269 (9)0.0703 (12)0.0342 (9)0.0097 (8)0.0102 (7)0.0110 (8)
O20.0254 (8)0.0397 (9)0.0563 (11)0.0052 (7)0.0003 (8)0.0170 (8)
O30.0212 (7)0.0282 (7)0.0370 (8)0.0039 (6)0.0043 (6)0.0035 (6)
O40.0205 (7)0.0319 (7)0.0411 (9)0.0096 (6)0.0034 (6)0.0020 (7)
O50.0174 (7)0.0238 (6)0.0265 (7)0.0040 (6)0.0013 (5)0.0013 (5)
C10.0290 (11)0.0219 (9)0.0294 (10)0.0013 (9)0.0031 (9)0.0013 (8)
C20.0187 (9)0.0227 (8)0.0229 (9)0.0005 (8)0.0042 (8)0.0023 (7)
C30.0209 (10)0.0232 (8)0.0230 (9)0.0006 (8)0.0045 (8)0.0013 (7)
C40.0197 (9)0.0331 (10)0.0214 (9)0.0035 (9)0.0039 (8)0.0010 (8)
C50.0252 (11)0.0410 (12)0.0234 (10)0.0080 (10)0.0025 (9)0.0083 (9)
C60.0348 (12)0.0252 (9)0.0338 (11)0.0040 (9)0.0039 (10)0.0063 (9)
C70.0157 (8)0.0221 (8)0.0213 (9)0.0019 (8)0.0003 (7)0.0023 (7)
C80.0165 (9)0.0236 (9)0.0323 (11)0.0053 (8)0.0009 (8)0.0002 (8)
C90.0233 (10)0.0182 (8)0.0359 (11)0.0022 (8)0.0004 (8)0.0039 (8)
C100.0169 (9)0.0263 (9)0.0303 (10)0.0047 (7)0.0004 (8)0.0042 (8)
C110.0167 (9)0.0265 (9)0.0276 (10)0.0035 (8)0.0024 (8)0.0006 (8)
C120.0198 (9)0.0188 (8)0.0230 (9)0.0022 (7)0.0024 (8)0.0008 (7)
Geometric parameters (Å, º) top
Cl1—C101.739 (2)C3—H30.98 (2)
Cl2—C121.722 (2)C4—C51.385 (3)
S1—O31.4229 (17)C5—C61.381 (4)
S1—O41.4240 (16)C5—H50.81 (3)
S1—O51.6006 (18)C6—H60.93 (3)
S1—C21.757 (2)C7—C121.385 (3)
N1—O11.219 (3)C7—C81.392 (3)
N1—O21.232 (3)C8—C91.381 (3)
N1—C41.467 (3)C8—H80.84 (3)
O5—C71.406 (2)C9—C101.387 (3)
C1—C61.384 (3)C9—H90.85 (2)
C1—C21.394 (3)C10—C111.384 (3)
C1—H10.94 (3)C11—C121.381 (3)
C2—C31.386 (3)C11—H110.85 (3)
C3—C41.385 (3)
O3—S1—O4120.90 (10)C6—C5—H5125.8 (18)
O3—S1—O5108.26 (9)C4—C5—H5114.9 (18)
O4—S1—O5103.06 (9)C5—C6—C1120.2 (2)
O3—S1—C2109.18 (10)C5—C6—H6119.2 (18)
O4—S1—C2110.45 (10)C1—C6—H6120.6 (18)
O5—S1—C2103.41 (9)C12—C7—C8120.72 (18)
O1—N1—O2124.1 (2)C12—C7—O5117.84 (17)
O1—N1—C4117.7 (2)C8—C7—O5121.34 (18)
O2—N1—C4118.16 (19)C9—C8—C7119.4 (2)
C7—O5—S1118.30 (12)C9—C8—H8118.4 (16)
C6—C1—C2119.1 (2)C7—C8—H8122.1 (16)
C6—C1—H1121.2 (16)C8—C9—C10119.03 (19)
C2—C1—H1119.7 (16)C8—C9—H9118.3 (18)
C3—C2—C1122.1 (2)C10—C9—H9122.6 (18)
C3—C2—S1118.65 (16)C11—C10—C9122.17 (19)
C1—C2—S1119.22 (16)C11—C10—Cl1118.93 (17)
C4—C3—C2116.87 (18)C9—C10—Cl1118.89 (16)
C4—C3—H3121.1 (15)C12—C11—C10118.28 (19)
C2—C3—H3122.0 (15)C12—C11—H11125.5 (18)
C3—C4—C5122.4 (2)C10—C11—H11116.2 (18)
C3—C4—N1118.3 (2)C11—C12—C7120.37 (18)
C5—C4—N1119.3 (2)C11—C12—Cl2119.85 (16)
C6—C5—C4119.2 (2)C7—C12—Cl2119.77 (15)
O3—S1—O5—C760.59 (16)C3—C4—C5—C62.6 (3)
O4—S1—O5—C7170.24 (14)N1—C4—C5—C6177.40 (19)
C2—S1—O5—C755.15 (16)C4—C5—C6—C10.1 (3)
C6—C1—C2—C32.4 (3)C2—C1—C6—C52.4 (3)
C6—C1—C2—S1179.05 (16)S1—O5—C7—C12112.47 (17)
O3—S1—C2—C322.82 (18)S1—O5—C7—C871.1 (2)
O4—S1—C2—C3158.06 (15)C12—C7—C8—C91.1 (3)
O5—S1—C2—C392.26 (16)O5—C7—C8—C9177.47 (18)
O3—S1—C2—C1158.59 (16)C7—C8—C9—C100.8 (3)
O4—S1—C2—C123.35 (19)C8—C9—C10—C110.1 (3)
O5—S1—C2—C186.33 (17)C8—C9—C10—Cl1178.94 (16)
C1—C2—C3—C40.0 (3)C9—C10—C11—C120.1 (3)
S1—C2—C3—C4178.54 (14)Cl1—C10—C11—C12179.22 (15)
C2—C3—C4—C52.5 (3)C10—C11—C12—C70.2 (3)
C2—C3—C4—N1177.46 (17)C10—C11—C12—Cl2178.58 (16)
O1—N1—C4—C3177.05 (19)C8—C7—C12—C110.9 (3)
O2—N1—C4—C32.9 (3)O5—C7—C12—C11177.33 (17)
O1—N1—C4—C53.0 (3)C8—C7—C12—Cl2177.94 (15)
O2—N1—C4—C5177.12 (19)O5—C7—C12—Cl21.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O40.94 (3)2.63 (3)2.982 (3)102.8 (17)
C3—H3···O20.98 (2)2.41 (2)2.708 (3)96.7 (17)
C3—H3···O30.98 (2)2.60 (3)2.935 (3)100.2 (17)
C5—H5···O10.81 (3)2.37 (3)2.716 (3)106 (2)
C8—H8···O30.84 (3)2.65 (2)3.055 (3)111.3 (18)
C6—H6···O5i0.93 (3)2.95 (3)3.805 (3)153 (2)
C1—H1···O4i0.94 (3)2.83 (2)3.349 (3)116.1 (19)
C9—H9···O2ii0.85 (2)2.72 (2)3.294 (3)126 (2)
C9—H9···O3iii0.85 (2)2.56 (3)3.362 (3)158 (2)
C11—H11···O1iv0.85 (3)2.48 (3)3.301 (3)163 (2)
Symmetry codes: (i) x1/2, y+1/2, z+2; (ii) x+1/2, y+3/2, z+2; (iii) x1/2, y+3/2, z+2; (iv) x+1/2, y+1, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC12H8ClNO5SC12H7Cl2NO5S
Mr313.70348.15
Crystal system, space groupTriclinic, P1Orthorhombic, P212121
Temperature (K)100100
a, b, c (Å)7.4315 (18), 8.474 (2), 10.991 (3)6.878 (5), 13.33 (1), 14.990 (11)
α, β, γ (°)67.889 (4), 85.220 (4), 81.617 (4)90, 90, 90
V3)634.1 (3)1374.3 (17)
Z24
Radiation typeMo KαMo Kα
µ (mm1)0.480.64
Crystal size (mm)0.40 × 0.20 × 0.100.50 × 0.30 × 0.30
Data collection
DiffractometerBruker CCD area-detector
diffractometer
Bruker CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick 1996)
Multi-scan
(SADABS; Sheldrick 1996)
Tmin, Tmax0.830, 0.9530.739, 0.830
No. of measured, independent and
observed [I > 2σ(I)] reflections
5585, 2918, 2723 11316, 3268, 3158
Rint0.0170.037
(sin θ/λ)max1)0.6670.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.083, 1.06 0.032, 0.081, 1.08
No. of reflections29183268
No. of parameters213218
H-atom treatmentAll H-atom parameters refinedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.46, 0.290.38, 0.28
Absolute structure?Flack (1983), 1283 Friedel pairs
Absolute structure parameter?0.02 (6)

Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1998), SHELXTL (Sheldrick, 1998), SHELXTL.

Selected geometric parameters (Å, º) for (I) top
Cl—C121.7334 (15)O1—N1.2279 (17)
S—O31.4259 (12)O2—N1.2285 (17)
S—O41.4263 (11)O5—C71.4099 (17)
S—O51.5972 (11)N—C11.471 (2)
S—C51.7560 (15)
O3—S—O4120.68 (7)O5—S—C5103.13 (6)
O3—S—O5102.60 (6)C7—O5—S121.60 (9)
O4—S—O5109.87 (6)O1—N—O2124.34 (14)
O3—S—C5109.71 (7)O1—N—C1118.10 (13)
O4—S—C5109.31 (7)O2—N—C1117.55 (13)
C5—S—O5—C771.82 (11)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O10.931 (19)2.472 (18)2.740 (2)96.6 (13)
C4—H4···O40.93 (2)2.626 (19)2.973 (2)102.8 (13)
C6—H6···O20.909 (19)2.404 (18)2.6968 (19)98.8 (13)
C6—H6···O30.909 (19)2.615 (18)2.9396 (19)101.9 (13)
C8—H8···O40.95 (2)2.67 (2)3.0772 (19)106.4 (14)
C2—H2···O3i0.931 (19)2.531 (19)3.324 (2)143.2 (15)
C4—H4···O2ii0.93 (2)2.511 (19)3.033 (2)115.7 (14)
C3—H3···O1ii0.90 (2)2.99 (2)3.733 (2)141.9 (16)
C9—H9···O3ii0.90 (2)2.86 (2)3.539 (2)132.8 (15)
C4—H4···O4iii0.93 (2)2.59 (2)3.335 (2)137.6 (15)
C8—H8···O1iv0.95 (2)2.40 (2)3.316 (2)162.5 (16)
C11—H11···O2v0.910 (19)2.532 (19)3.3726 (19)153.8 (15)
Symmetry codes: (i) x, y1, z; (ii) x1, y, z; (iii) x, y+2, z+1; (iv) x1, y+1, z; (v) x+1, y+1, z+2.
Selected geometric parameters (Å, º) for (II) top
Cl1—C101.739 (2)S1—C21.757 (2)
Cl2—C121.722 (2)N1—O11.219 (3)
S1—O31.4229 (17)N1—O21.232 (3)
S1—O41.4240 (16)N1—C41.467 (3)
S1—O51.6006 (18)O5—C71.406 (2)
O3—S1—O4120.90 (10)O5—S1—C2103.41 (9)
O3—S1—O5108.26 (9)O1—N1—O2124.1 (2)
O4—S1—O5103.06 (9)O1—N1—C4117.7 (2)
O3—S1—C2109.18 (10)O2—N1—C4118.16 (19)
O4—S1—C2110.45 (10)C7—O5—S1118.30 (12)
C2—S1—O5—C755.15 (16)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O40.94 (3)2.63 (3)2.982 (3)102.8 (17)
C3—H3···O20.98 (2)2.41 (2)2.708 (3)96.7 (17)
C3—H3···O30.98 (2)2.60 (3)2.935 (3)100.2 (17)
C5—H5···O10.81 (3)2.37 (3)2.716 (3)106 (2)
C8—H8···O30.84 (3)2.65 (2)3.055 (3)111.3 (18)
C6—H6···O5i0.93 (3)2.95 (3)3.805 (3)153 (2)
C1—H1···O4i0.94 (3)2.83 (2)3.349 (3)116.1 (19)
C9—H9···O2ii0.85 (2)2.72 (2)3.294 (3)126 (2)
C9—H9···O3iii0.85 (2)2.56 (3)3.362 (3)158 (2)
C11—H11···O1iv0.85 (3)2.48 (3)3.301 (3)163 (2)
Symmetry codes: (i) x1/2, y+1/2, z+2; (ii) x+1/2, y+3/2, z+2; (iii) x1/2, y+3/2, z+2; (iv) x+1/2, y+1, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds