Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [Fe(C44H8F20N4)]·2C6H6, contains a four-coordinated FeII atom, which lies on a center of symmetry. The porphyrin macrocycle is planar, and the Fe-N bond distances are in the range 1.9891 (13)-1.9982 (13) Å. The spin state of the FeII atom is intermediate (S = 1), as confirmed by NMR spectroscopy. The asymmetric unit contains two half benzene mol­ecules, each lying about an independent inversion centre; one of the benzene rings is located just below (and by inversion symmetry, another is just above) the Fe atom, where it interacts weakly with the porphyrin ring.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103028051/ob1150sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103028051/ob1150Isup2.hkl
Contains datablock I

CCDC reference: 233107

Comment top

As iron(II) porphyrin is an active site in heme proteins in biological systems, and its structural features attract chemists and biologists. Structural research on FeII porphyrins has progressed slowly because of their instability in aerobic conditions. Collman et al. (1975) prepared 5,10,15,20-tetraphenylporphinatoiron(II), (TPP)FeII, from the reduction of (TPP)FeCl by Cr(acac)2 in benzene solution and recrystallization from a benzene/ethanol solution. This four-coordinated complex has d6 unusual intermediate FeII.?? Few years later, iron(II) porphyrin in a high spin state was reported? in a biaxially tetrahydrofuran-coordinated iron(II) complex (Reed et al., 1980). We have prepared the title compound, (F20TPP)Fe.2benzene, (I), from the reduction of (F20TPP)FeCl by mercury-activated zinc powder in benzene (Landrum et al., 1980), and the crystal structure of (I) is reported here.

The porphyrin ring is essentially planar and the Fe atom is located on a center of symmetry (Fig. 1). Four pentafluorophenyl rings incline to the porphyrin plane with dihedral angles of 73.0 (1) and 75.8 (1)° (Fig. 2). The Fe—N bond distances depend on the ?ruffled amount of core?, geometry and iron spin state of the porphyrin. The mean Fe—N distance [1.994 (1) Å] in (I) is longer than that in (TPP)Fe [1.972 (4) Å; Collman et al., 1975], in which the core is quite ruffled. Similar results were reported for CoII complexes, with mean Co—N distances of 1.976 (5) Å for (F20TPP)Co and 1.949 (5) Å for the more ruffled (TPP)Co (Kadish et al., 1990). In the β-pyrrolbromonated six-coordinated iron(II) complex, (F20TPPBr8)Fe(py)2 (py = pyridine), the Fe—N distance is 1.963 (7) Å in the more distorted geometry as a result of steric hindrance between the Br and phenyl F atoms (Grinstaff et al., 1995). The average Fe—N distance in the intermediate- or low-spin state is shorter than that in high-spin six-coordinated complexes such as (TPP)FeII(THF)2 [2.057 (2) Å; Reed et al., 1980]. This difference is due to the empty dx2-y2 orbital of the FeII atom in the intermediate-spin state. The Fe—N distances for planar porphyrin complexes can give useful information about porphyrin skeleton contraction (Birnbaum et al., 1995): the more contracted the skeleton, the shorter the metal–N distances and the smaller the C—N—C angles in the pyrrole ring. The average distances between the N atoms and the porphyrin center (or metal) are 2.052, 2.036, 1.996 and 1.994 Å for (F20TPP)H2, (F20TPP)Zn, (F20TPP)Cu and (F20TPP)Fe, respectively (Birnbaum et al., 1995), and the C—N—C angles are 107.4, 106.2, 105.2 and 105.3°, respectively.

As shown in Fig. 1, there is a benzene molecule below the porphyrin ring, and there are substantial interactions [3.062 (3)– 3.416 (3) Å] between the Fe and benzene C atoms, although the benzene ring is not directly coordinated to the Fe atom. It is well known that there are definite ππ interactions between metalloporphyrin molecules and aromatic solvents, with the distances shorter than 3.3 Å (Kadish et al., 1990). In (I), the benzene ring lies sandwiched between two porphyrin rings (Fig. 3). In another sense, two benzene molecules are located at the top and bottom of the porphyrin ring. The spin state of the FeII atom in (I) is intermediate (S=1), as confirmed by NMR studies. The pyrrol H-atom signal was reported at 5.1 p.p.m. in a benzene solution of (TPP)FeII (Goff et al., 1977).

Experimental top

All reactions were carried out in a dry box filled with nitrogen gas. Solvents were purified and reagents were used without purification. The title complex was synthesized from the reduction of (F20TPP)FeCl (23.5 mmol, 0.025 g) with mercury-activated zinc powder in benzene (25 ml) at room temperature for 3 h (Landrum et al., 1980). The resulting red solution was filtered to remove residual Zn(Hg) and ZnCl2, and evaporated to one-third of its volume, at which point heptane (8 ml) was added and the precipitates were filtered off. Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of the benzene solution. The complex was assigned by NMR in non-coordinating solvent (C6D6), δpyrr, 5.1 p.p.m. (Song & Goff, 1994).

Refinement top

H atoms were postioned geometrically and constrained to ride on their attached atoms [Uiso(H) = 1.2Ueq(parent atom)]. The largest residuals in the final difference map were 0.81 Å from atom F22 (Δρmax) and 0.57 Å from the Fe atom (Δρmin).

Computing details top

Data collection: Collect (Hooft, 1998); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme and 30% probability ellipsoids.
[Figure 2] Fig. 2. A side view of (I), showing the porphyrin planarity.
[Figure 3] Fig. 3. The crystal structure of (I), viewed along the b axis.
(I) top
Crystal data top
[Fe(C44H8F20N4)]·2C6H6F(000) = 2360
Mr = 1184.61Dx = 1.629 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 10744 reflections
a = 34.136 (7) Åθ = 2.9–27.5°
b = 6.4633 (13) ŵ = 0.44 mm1
c = 26.356 (5) ÅT = 190 K
β = 123.85 (3)°Block, dark purple
V = 4829 (2) Å30.35 × 0.2 × 0.08 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
Rint = 0.025
ϕ and ω scansθmax = 27.5°, θmin = 3.2°
19916 measured reflectionsh = 044
5520 independent reflectionsk = 88
4550 reflections with I > 2σ(I)l = 3428
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0586P)2 + 3.8531P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.109(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.33 e Å3
5520 reflectionsΔρmin = 0.41 e Å3
366 parameters
Crystal data top
[Fe(C44H8F20N4)]·2C6H6V = 4829 (2) Å3
Mr = 1184.61Z = 4
Monoclinic, C2/cMo Kα radiation
a = 34.136 (7) ŵ = 0.44 mm1
b = 6.4633 (13) ÅT = 190 K
c = 26.356 (5) Å0.35 × 0.2 × 0.08 mm
β = 123.85 (3)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
4550 reflections with I > 2σ(I)
19916 measured reflectionsRint = 0.025
5520 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0372 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.03Δρmax = 0.33 e Å3
5520 reflectionsΔρmin = 0.41 e Å3
366 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe0000.02420 (10)
N10.01937 (4)0.01995 (19)0.08670 (6)0.0273 (3)
C20.00877 (6)0.0045 (3)0.10843 (7)0.0345 (4)
C30.01782 (7)0.0311 (4)0.17309 (8)0.0482 (5)
H30.00630.02520.19860.058*
C40.06238 (6)0.0747 (4)0.19074 (7)0.0449 (4)
H40.08820.10470.23110.054*
C50.06331 (5)0.0670 (3)0.13704 (7)0.0308 (3)
C60.10333 (5)0.1020 (3)0.13659 (7)0.0304 (3)
C70.10385 (5)0.1042 (3)0.08445 (7)0.0319 (3)
C80.14466 (6)0.1519 (4)0.08387 (8)0.0474 (5)
H80.17530.1840.11830.057*
C90.13142 (6)0.1427 (4)0.02539 (8)0.0502 (5)
H90.15080.16820.01060.06*
C100.08243 (6)0.0868 (3)0.01037 (7)0.0358 (4)
N110.06568 (4)0.0650 (2)0.02619 (6)0.0282 (3)
C120.05614 (6)0.0580 (3)0.07317 (7)0.0381 (4)
C210.08086 (6)0.0885 (4)0.10514 (8)0.0502 (5)
C220.07466 (9)0.2636 (5)0.13798 (10)0.0678 (7)
C230.09796 (12)0.2958 (6)0.16696 (12)0.0916 (11)
C240.12791 (12)0.1474 (7)0.16325 (14)0.0986 (13)
C250.13455 (9)0.0272 (6)0.13180 (14)0.0894 (12)
C260.11133 (8)0.0567 (5)0.10243 (11)0.0655 (7)
F220.04554 (7)0.4116 (3)0.14257 (8)0.0922 (4)
F230.09057 (10)0.4717 (4)0.19833 (11)0.1415 (10)
F240.15011 (7)0.1739 (4)0.19120 (9)0.1448 (11)
F250.16372 (7)0.1740 (4)0.12862 (11)0.1327 (9)
F260.11927 (6)0.2322 (3)0.07151 (8)0.0875 (5)
C310.14881 (5)0.1391 (3)0.19671 (7)0.0359 (4)
C320.15776 (6)0.3213 (3)0.22896 (8)0.0469 (5)
C330.19938 (8)0.3522 (4)0.28566 (9)0.0579 (6)
C340.23273 (6)0.1998 (4)0.31075 (8)0.0576 (6)
C350.22535 (6)0.0197 (4)0.27981 (9)0.0535 (6)
C360.18352 (6)0.0095 (3)0.22328 (8)0.0434 (4)
F320.12562 (5)0.4726 (2)0.20595 (6)0.0664 (4)
F330.20673 (6)0.5296 (3)0.31549 (7)0.0938 (6)
F340.27256 (4)0.2280 (3)0.36585 (5)0.0855 (5)
F350.25807 (5)0.1296 (3)0.30396 (6)0.0846 (5)
F360.17744 (4)0.1900 (2)0.19484 (6)0.0620 (3)
C1010.01181 (16)0.4841 (4)0.05893 (17)0.0962 (12)
H1010.020.47430.09970.115*
C1020.04348 (14)0.4297 (4)0.04580 (16)0.0960 (12)
H1020.07360.37970.07740.115*
C1030.03248 (14)0.4460 (4)0.01328 (19)0.0989 (11)
H1030.0550.40990.02220.119*
C1110.26264 (14)0.9060 (7)0.04029 (15)0.1082 (12)
H1110.27171.01670.06840.13*
C1120.24522 (10)0.7307 (7)0.04821 (13)0.0905 (10)
H1120.2420.7180.08160.109*
C1130.23244 (13)0.5729 (7)0.00806 (16)0.1036 (10)
H1130.22020.44850.01310.124*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe0.01988 (15)0.02780 (17)0.02125 (15)0.00103 (11)0.00918 (11)0.00077 (11)
N10.0225 (6)0.0325 (7)0.0239 (6)0.0010 (5)0.0110 (5)0.0012 (5)
C20.0295 (8)0.0469 (10)0.0263 (7)0.0040 (7)0.0151 (6)0.0027 (6)
C30.0349 (9)0.0835 (15)0.0261 (8)0.0098 (9)0.0169 (7)0.0050 (8)
C40.0319 (8)0.0732 (13)0.0241 (7)0.0067 (9)0.0121 (7)0.0031 (8)
C50.0251 (7)0.0375 (8)0.0238 (7)0.0009 (6)0.0099 (6)0.0010 (6)
C60.0230 (7)0.0360 (9)0.0241 (7)0.0005 (6)0.0082 (6)0.0008 (6)
C70.0230 (7)0.0392 (9)0.0276 (7)0.0037 (6)0.0104 (6)0.0028 (6)
C80.0270 (8)0.0772 (14)0.0333 (8)0.0164 (8)0.0139 (7)0.0106 (9)
C90.0307 (8)0.0838 (15)0.0373 (9)0.0207 (9)0.0197 (8)0.0128 (9)
C100.0278 (8)0.0485 (10)0.0316 (8)0.0082 (7)0.0168 (7)0.0058 (7)
N110.0228 (6)0.0339 (7)0.0248 (6)0.0034 (5)0.0113 (5)0.0023 (5)
C120.0306 (8)0.0546 (10)0.0306 (8)0.0083 (7)0.0180 (7)0.0054 (7)
C210.0346 (9)0.0862 (15)0.0325 (8)0.0232 (10)0.0203 (8)0.0188 (9)
C220.0659 (14)0.097 (2)0.0501 (12)0.0260 (14)0.0385 (11)0.0080 (12)
C230.100 (2)0.134 (3)0.0589 (15)0.066 (2)0.0553 (16)0.0276 (16)
C240.088 (2)0.170 (4)0.0740 (17)0.082 (2)0.0680 (17)0.065 (2)
C250.0545 (14)0.156 (3)0.0792 (18)0.0415 (17)0.0505 (14)0.065 (2)
C260.0429 (11)0.105 (2)0.0578 (13)0.0209 (12)0.0336 (11)0.0303 (14)
F220.1080.0985 (12)0.0884 (11)0.0076 (11)0.0663 (8)0.0242 (10)
F230.189 (3)0.171 (2)0.1112 (16)0.0782 (18)0.1127 (18)0.0018 (14)
F240.1322 (16)0.257 (3)0.1131 (14)0.1233 (19)0.1103 (14)0.0980 (17)
F250.0909 (13)0.203 (2)0.1528 (18)0.0302 (14)0.0980 (14)0.0807 (17)
F260.0714 (10)0.1108 (14)0.0962 (11)0.0105 (9)0.0567 (9)0.0157 (11)
C310.0229 (7)0.0541 (11)0.0250 (7)0.0041 (7)0.0098 (6)0.0012 (7)
C320.0349 (9)0.0630 (13)0.0328 (8)0.0053 (9)0.0128 (7)0.0083 (8)
C330.0464 (11)0.0820 (16)0.0350 (9)0.0206 (11)0.0162 (9)0.0207 (10)
C340.0274 (9)0.1087 (19)0.0246 (8)0.0124 (10)0.0070 (7)0.0032 (10)
C350.0252 (8)0.0934 (17)0.0333 (9)0.0096 (9)0.0111 (7)0.0128 (10)
C360.0288 (8)0.0643 (13)0.0317 (8)0.0029 (8)0.0136 (7)0.0018 (8)
F320.0580 (8)0.0587 (8)0.0545 (7)0.0029 (6)0.0140 (6)0.0177 (6)
F330.0831 (11)0.1063 (13)0.0570 (9)0.0244 (9)0.0172 (8)0.0462 (8)
F340.0377 (6)0.1633 (16)0.0277 (5)0.0202 (8)0.0010 (5)0.0094 (8)
F350.0413 (7)0.1313 (14)0.0538 (8)0.0346 (8)0.0095 (6)0.0218 (8)
F360.0487 (7)0.0664 (8)0.0532 (7)0.0178 (6)0.0174 (6)0.0014 (6)
C1010.123 (3)0.0354 (14)0.083 (2)0.0126 (16)0.028 (2)0.0051 (12)
C1020.105 (3)0.0311 (12)0.086 (2)0.0102 (15)0.0127 (19)0.0027 (13)
C1030.115 (3)0.0363 (13)0.115 (3)0.0139 (15)0.045 (2)0.0125 (15)
C1110.114 (3)0.131 (3)0.0657 (19)0.014 (3)0.042 (2)0.026 (2)
C1120.0647 (16)0.148 (3)0.0533 (14)0.0243 (19)0.0297 (13)0.0049 (18)
C1130.088 (2)0.125 (3)0.080 (2)0.002 (2)0.0356 (19)0.006 (2)
Geometric parameters (Å, º) top
Fe—N11i1.9891 (13)C23—F231.345 (4)
Fe—N111.9891 (13)C23—C241.365 (5)
Fe—N1i1.9982 (13)C24—F241.330 (3)
Fe—N11.9982 (13)C24—C251.343 (5)
Fe—C1023.062 (3)C25—F251.343 (4)
Fe—C1033.177 (3)C25—C261.396 (3)
Fe—C1013.416 (3)C26—F261.333 (3)
N1—C51.373 (2)C31—C361.376 (3)
N1—C21.374 (2)C31—C321.383 (3)
C2—C12i1.387 (2)C32—F321.337 (2)
C2—C31.435 (2)C32—C331.388 (3)
C3—C41.349 (3)C33—F331.332 (3)
C3—H30.95C33—C341.365 (4)
C4—C51.434 (2)C34—F341.338 (2)
C4—H40.95C34—C351.362 (3)
C5—C61.391 (2)C35—F351.339 (3)
C6—C71.384 (2)C35—C361.387 (3)
C6—C311.496 (2)C36—F361.339 (2)
C7—N111.375 (2)C101—C1021.353 (6)
C7—C81.435 (2)C101—C103ii1.382 (5)
C8—C91.344 (3)C101—H1010.95
C8—H80.95C102—C1031.388 (5)
C9—C101.435 (2)C102—H1020.95
C9—H90.95C103—C101ii1.382 (5)
C10—N111.374 (2)C103—H1030.95
C10—C121.387 (2)C111—C1121.348 (5)
C12—C2i1.387 (2)C111—C113iii1.382 (5)
C12—C211.501 (2)C111—H1110.95
C21—C221.368 (4)C112—C1131.355 (5)
C21—C261.373 (4)C112—H1120.95
C22—F221.336 (3)C113—C111iii1.382 (5)
C22—C231.392 (3)C113—H1130.95
N11i—Fe—N11180.00 (10)F22—C22—C21119.69 (19)
N11i—Fe—N1i89.92 (6)F22—C22—C23117.9 (3)
N11—Fe—N1i90.08 (6)C21—C22—C23122.4 (3)
N11i—Fe—N190.08 (6)F23—C23—C24121.0 (3)
N11—Fe—N189.92 (6)F23—C23—C22119.7 (4)
N1i—Fe—N1180.00 (10)C24—C23—C22119.3 (3)
N11i—Fe—C10298.65 (9)F24—C24—C25119.9 (4)
N11—Fe—C10281.35 (9)F24—C24—C23120.3 (4)
N1i—Fe—C10299.86 (9)C25—C24—C23119.8 (2)
N1—Fe—C10280.14 (9)C24—C25—F25119.8 (3)
N11i—Fe—C10399.51 (8)C24—C25—C26120.3 (3)
N11—Fe—C10380.49 (8)F25—C25—C26119.9 (4)
N1i—Fe—C10374.27 (8)F26—C26—C21120.2 (2)
N1—Fe—C103105.73 (8)F26—C26—C25118.1 (3)
C102—Fe—C10325.61 (10)C21—C26—C25121.7 (3)
N11i—Fe—C10177.82 (9)C36—C31—C32116.67 (16)
N11—Fe—C101102.18 (9)C36—C31—C6121.24 (16)
N1i—Fe—C101109.94 (7)C32—C31—C6122.08 (16)
N1—Fe—C10170.06 (7)F32—C32—C31119.97 (16)
C102—Fe—C10123.29 (10)F32—C32—C33118.18 (19)
C103—Fe—C10142.17 (11)C31—C32—C33121.8 (2)
C5—N1—C2105.30 (12)F33—C33—C34120.18 (19)
C5—N1—Fe127.35 (11)F33—C33—C32120.2 (2)
C2—N1—Fe127.32 (10)C34—C33—C32119.7 (2)
N1—C2—C12i125.04 (14)F34—C34—C35120.2 (2)
N1—C2—C3110.47 (14)F34—C34—C33119.8 (2)
C12i—C2—C3124.49 (16)C35—C34—C33120.02 (17)
C4—C3—C2106.80 (15)F35—C35—C34120.30 (18)
C4—C3—H3126.6F35—C35—C36120.0 (2)
C2—C3—H3126.6C34—C35—C36119.74 (19)
C3—C4—C5107.03 (15)F36—C36—C31120.16 (16)
C3—C4—H4126.5F36—C36—C35117.78 (18)
C5—C4—H4126.5C31—C36—C35122.06 (19)
N1—C5—C6125.25 (14)C102—C101—C103ii120.3 (4)
N1—C5—C4110.38 (14)C102—C101—Fe63.51 (16)
C6—C5—C4124.37 (15)C103ii—C101—Fe96.22 (19)
C7—C6—C5124.45 (14)C102—C101—H101119.8
C7—C6—C31118.06 (14)C103ii—C101—H101119.8
C5—C6—C31117.49 (13)Fe—C101—H101109.8
N11—C7—C6125.37 (14)C101—C102—C103120.8 (4)
N11—C7—C8110.43 (14)C101—C102—Fe93.2 (2)
C6—C7—C8124.19 (14)C103—C102—Fe81.83 (17)
C9—C8—C7107.10 (15)C101—C102—H102119.6
C9—C8—H8126.4C103—C102—H102119.6
C7—C8—H8126.4Fe—C102—H10295
C8—C9—C10106.79 (16)C101ii—C103—C102118.9 (4)
C8—C9—H9126.6C101ii—C103—Fe96.5 (2)
C10—C9—H9126.6C102—C103—Fe72.56 (17)
N11—C10—C12125.28 (14)C101ii—C103—H103120.6
N11—C10—C9110.66 (14)C102—C103—H103120.6
C12—C10—C9124.06 (16)Fe—C103—H103100.6
C10—N11—C7105.01 (12)C112—C111—C113iii121.1 (3)
C10—N11—Fe127.37 (10)C112—C111—H111119.5
C7—N11—Fe127.59 (10)C113iii—C111—H111119.5
C2i—C12—C10124.81 (16)C111—C112—C113119.3 (3)
C2i—C12—C21117.82 (15)C111—C112—H112120.4
C10—C12—C21117.37 (15)C113—C112—H112120.4
C22—C21—C26116.4 (2)C112—C113—C111iii119.6 (4)
C22—C21—C12121.8 (2)C112—C113—H113120.2
C26—C21—C12121.8 (2)C111iii—C113—H113120.2
Symmetry codes: (i) x, y, z; (ii) x, y+1, z; (iii) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formula[Fe(C44H8F20N4)]·2C6H6
Mr1184.61
Crystal system, space groupMonoclinic, C2/c
Temperature (K)190
a, b, c (Å)34.136 (7), 6.4633 (13), 26.356 (5)
β (°) 123.85 (3)
V3)4829 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.44
Crystal size (mm)0.35 × 0.2 × 0.08
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
19916, 5520, 4550
Rint0.025
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.109, 1.03
No. of reflections5520
No. of parameters366
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.41

Computer programs: Collect (Hooft, 1998), HKL SCALEPACK (Otwinowski & Minor, 1997), HKL DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Fe—N111.9891 (13)C5—C61.391 (2)
Fe—N11.9982 (13)C6—C71.384 (2)
Fe—C1023.062 (3)C6—C311.496 (2)
Fe—C1033.177 (3)C7—N111.375 (2)
Fe—C1013.416 (3)C7—C81.435 (2)
N1—C51.373 (2)C8—C91.344 (3)
N1—C21.374 (2)C9—C101.435 (2)
C2—C31.435 (2)C10—N111.374 (2)
C3—C41.349 (3)C10—C121.387 (2)
C4—C51.434 (2)C12—C2i1.387 (2)
N11—Fe—N189.92 (6)C7—C6—C5124.45 (14)
C5—N1—C2105.30 (12)N11—C7—C6125.37 (14)
N1—C2—C12i125.04 (14)N11—C7—C8110.43 (14)
N1—C2—C3110.47 (14)C9—C8—C7107.10 (15)
C4—C3—C2106.80 (15)C8—C9—C10106.79 (16)
C3—C4—C5107.03 (15)N11—C10—C12125.28 (14)
N1—C5—C6125.25 (14)N11—C10—C9110.66 (14)
Symmetry code: (i) x, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds