Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title complex, di­aqua­di­pyridine­lithium (N-methyl-p-tert-butyl­dihomo­ammonio­calix­[4]­arene-[kappa]4O)­dioxouranium(VI) tri­pyridine solvate monohydrate, [Li(C5H5N)2(H2O)2][UO2(C46H58NO4)]·3C5H5N·H2O, contains an `internal' tetraphenoxide-coordinated uranyl complex of the macrocycle, in which the protonated N atom is involved in an intramolecular hydrogen bond with the uranyl oxo group located in the cavity. The Li+ ion is in a tetrahedral environment and its two water ligands are involved in hydrogen bonds with two phenoxide O atoms, two pyridine mol­ecules and one water mol­ecule. This arrangement is compared with those obtained previously for other homo­aza­calixarenes and also for homo­oxa­calixarenes in the presence of alkali metal hydro­xides.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103015786/ob1134sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103015786/ob1134Isup2.hkl
Contains datablock I

CCDC reference: 224487

Comment top

Homoazacalixarenes (Takemura, 2002) and homooxacalixarenes (Masci, 2001) are macrocycles that differ from usual calixarenes by the lengthening of at least one methylene bridge, as a result of its replacement by a 2-oxa- or 2-aza-1,3-propylene bridge. Such modifications of the calixarene skeleton provide the molecule with increased flexibility, novel donor atoms and, in the case of homoazacalixarenes, new sites for functionalization. We reported some years ago the synthesis and crystal structures of rare earth (Thuéry et al., 2000a,b; Thuéry, Nierlich, Vicens & Takemura, 2001) and uranyl ion (Thuéry, Nierlich, Vicens, Masci & Takemura, 2001; Thuéry, Nierlich, Harrowfield & Ogden, 2001) complexes of homoazacalixarenes. An interesting peculiarity of these ligands is their ability to complex these metal ions without addition of a base, since the protons can be transferred from the phenol to the amine groups, resulting in the formation of zwitterionic species. In the case of the uranyl ion and the ligands p-chloro-N-benzylhexahomotriazacalix[3]arene and p-methyl-N-benzyltetrahomodiazacalix[4]arene, `external' complexation results, because of the repulsion between the metallic cation and the ammonium groups in the complex. By contrast, in the presence of an extra base (triethylamine), a different `internal' coordination mode is observed in the case of p-methyl-N-benzyltetrahomodiazacalix[4]arene; this mode results from an enlargement of the cavity due to the higher deprotonation degree and removal of intramolecular phenol···phenoxide hydrogen bonds (Thuéry, Nierlich, Vicens & Takemura, 2001). We report here the crystal structure of the uranyl complex, (I), with another ligand comprising only one amine link, obtained in the presence of lithium hydroxide as a base. This result is part of an investigation of mixed uranyl/alkali metal ions complexes, which was first carried out on homooxacalixarenes (Thuéry & Masci, 2003).

The asymmetric unit in (I) contains the uranyl complex itself, which is a monoanion, and the lithium counter-ion bound to two pyridine and two water molecules, as well as one water and three pyridine solvent molecules (Fig. 1 and Table 1). As in the structure of the uranyl complex with p-methyl-N-benzyltetrahomodiazacalix[4]arene obtained in the presence of triethylamine, the cation is complexed in an `internal' mode and is bound to the four phenoxide groups in its equatorial plane, with a mean U—O distance of 2.27 (2) Å, as usual. The four donor atoms are coplanar, the maximum deviation from the plane being 0.008 (3) Å, and the U atom lies 0.106 (3) Å from this plane, on the same side as oxo atom O5. The coordination geometry of U would thus be square-planar-bipyramidal but for the distortion in the plane resulting from the presence of the longer N-containing bridge. The O1—U—O4 angle is about 15° larger than the O1—U—O2 and O3—U—O4 angles, whereas the O2—U—O3 angle is about 6° smaller. The N atom is protonated and involved in a hydrogen bond (Table 2) with the uranyl oxo group located in the macrocycle cavity. Such hydrogen bonds with uranyl oxo groups are extremely common because of the basicity of the O atom, but this case presents the particular feature of an UO6···N1 angle particularly far from linearity, with a value of 99.2 (2)°. A search of the Cambridge Structural Database (CSD; Version 5.24; Allen, 2002) for hydrogen-bonding contacts between uranyl ions and O– or N-containing donors shows that the largest number of cases correspond to UO···(O,N) angles of about 110–160° and O···(O,N) distances larger than 2.80 Å (with no straightforward correlation between angle and distance). The N1···O6 and H1···O6 distances in (I) are 3.083 (8) and 2.17 Å, which indicate a weak hydrogen bond; the UO6···N1 angle is probably small because of the geometric constraints resulting from the macrocyclic nature of the ligand. In the previous `internal' uranyl complex of an homoazacalixarene, the two diametrically located ammonium groups were involved in hydrogen bonds with the closest phenoxide groups and not with the uranyl ion. The two torsion angles defined by the ammonium-containing bridge are both anti angles [C44—N1—C45—C1 = 165.3 (6)° and C45—N1—C44—C36 − 167.2 (6) = °], the resulting conformation bringing the ammonium H atom as close as possible to atom O6. Atom N1 is located 1.895 (9) Å from the mean O4 plane and 3.808 (6) Å from the U atom. The latter distance is slightly smaller than those observed in other uranyl complexes of homoazacalixarenes (3.93–4.30 Å), which is probably related to the different macrocycle geometry and the presence of the uranyl–ammonium hydrogen bond. In the uranyl-ion complex of the related ligand p-tert-butyldihomooxacalix[4]arene, which differs from (I) by the replacement of the ammonium by an ether group, the U···Oether distance is shorter [3.534 (8) Å; Harrowfield et al., 1991], and even shorter U···Oether distances, some of them indicating bonding interactions [2.609 (8)–2.950 (4) Å] have been observed in complexes with other homooxacalixarenes (Masci et al., 2002a,b; Thuéry, Nierlich, Vicens & Masci, 2001). The larger distance with the ammonium N atom in (I) likely arises from a subtle balance between cation···cation repulsion, hydrogen-bonding interaction and macrocycle geometric requirements.

The macrocycle in (I) is in the usual cone conformation. With respect to the O4 reference plane, the four aromatic rings define dihedral angles of 46.5 (2), 64.6 (2), 58.2 (2) and 52.0 (2)°. The bowl shape thus defined accommodates a pyridine molecule, as is often observed. The O1···O2, O2···O3, O3···O4 and O1···O4 distances are 3.157 (7), 2.935 (7), 3.129 (7) and 3.576 (7) Å. A similar geometry is encountered in the uranyl complex of p-tert-butyldihomooxacalix[4]arene, in which, however, the included pyridine molecule is replaced by a triethylammonium counter-ion (Harrowfield et al., 1991).

The lithium ion is surrounded by two water and two pyridine molecules, with mean Li—O and Li—N bond lengths of 1.910 (6) and 2.08 (2) Å, respectively. The angles around Li are in the range 98.6 (7)–113.9 (8)° and the coordination geometry is that of a slightly distorted tetrahedron. The two metal complexes are linked by hydrogen bonds between water atom O7 and phenoxide atom O1, and also between atom O8 and phenoxide atom O3 of a neighbouring molecule at (1 − x, y + 1/2, 1/2 − z). The two water molecules bound to the Li atom are also hydrogen bonded to two pyridine molecules, and the solvent water molecule (containing atom O9) is hydrogen bonded to atom O8 and to a phenoxide O atom of the same neighbouring molecule at (1 − x, y + 1/2, 1/2 − z). Polymeric zigzag chains along the b axis are thus formed, in which successive macrocycles are turned upside down with respect to one another.

The only feeble, but significant, ππ-stacking interaction in (I) is between the two solvent pyridine rings containing atoms N5 and N6 [centroid–centroid distance = 3.800 Å, interplanar spacing = 3.436 Å, centroid offset = 1.622 Å, shortest interatomic contact = N6···C66 = 3.41 (1) Å and dihedral angle between the two rings = 9.6 (5)°].

We have recently reported the synthesis and crystal structure of complexes uniting uranyl and alkali metal ions in the 1:2 ratio with p-tert-butyltetrahomodioxacalix[4]arene (Thuéry & Masci, 2003). This work has evidenced different arrangements depending on the alkali ion, viz. monomeric with Li+, dimeric with Na+, and polymeric with K+ and Cs+. The uranyl/lithium stoichiometry in (I) is obviously different because of the cationic nature of the ligand, but the monomeric nature of the complex is once more encountered (considering coordination bonds only, and not hydrogen-bonding interactions). However, the uranyl/alkali metal interactions differ from those found previously. In the series of homooxacalixarene complexes, the presence of UO—M bonds (M = Li+, Na+, K+ and Cs+) is a general trend, whereas the interactions between the two moieties in (I) are indirect and are mediated through hydrogen-bonded lithium-coordinated water molecules and phenoxide groups. The UO bond lengths in (I) are larger than usual for non-oxo-coordinated ions [mean value 1.76 (4) Å for the structures contained in the CSD] and are comparable to those in the uranyl ions bound to alkali metal ions [1.797 (6)–1.813 (6) = Å].

Experimental top

N-methyl-p-tert-butyldihomoammoniocalix[4]arene LH4 was prepared as reported previously (Takemura, 2002). For the synthesis of complex (I), LH4 (22 mg, 0.032 mmol) was dissolved in CHCl3/CH3OH (2:1, 100 ml) in the presence of a large excess of LiOH·H2O (15 mg, 0.357 mmol). UO2(NO3)2·6H2O (20 mg, 0.040 mmol) in pyridine (10 ml) was then added and the resulting orange solution was refluxed for 15 min. Crystals of (I) were obtained from slow evaporation of the solution.

Refinement top

The ammonium and hydroxy H atoms were found in difference Fourier maps and were introduced as riding atoms, with isotropic displacement parameters equal to 1.2Ueq of the parent atom. All other H atoms were introduced at calculated positions as riding atoms, with C—H bond lengths of 0.93 (CH), 0.97 (CH2) and 0.96 (CH3) Å and an isotropic displacement parameter equal to 1.2Ueq (CH, CH2) or 1.5Ueq (CH3) of the parent atom. After refinement of the pyridine molecule with six C atoms, the N atom was assigned to the position with the lowest displacement factor. However, atom N2 exhibits a high displacement parameter with respect to those of its neighbours, which may indicate some rotational disorder of this pyridine molecule. The minimum and maximum residual electron-density peaks of −1.03 and 0.82 e Å−3 are located 0.97 Å from U and 1.16 Å from the solvent pyridine atom C66, respectively, which may indicate an imperfect absorption correction in the first case and some unresolved disorder in the second.

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. View of complex (I). Ammonium and water H atoms are drawn as small spheres of arbitrary radii and hydrogen bonds are shown as dashed lines. The other H atoms have been omitted. Displacement ellipsoids are drawn at the 10% probability level. [Symmetry code: (') 1 − x, y + 1/2, 1/2 − z.]
(I) top
Crystal data top
[Li(C5H5N)2(H2O)2][UO2(C46H58NO4)]·3C5H5N·H2OF(000) = 2896
Mr = 1415.45Dx = 1.384 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 45959 reflections
a = 20.8644 (16) Åθ = 2.7–25.7°
b = 16.6147 (13) ŵ = 2.45 mm1
c = 19.7150 (14) ÅT = 100 K
β = 96.321 (5)°Platelet, translucent dark orange
V = 6792.8 (9) Å30.38 × 0.12 × 0.05 mm
Z = 4
Data collection top
Nonius Kappa-CCD
diffractometer
12756 independent reflections
Radiation source: fine-focus sealed tube7934 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.096
ϕ scansθmax = 25.7°, θmin = 2.7°
Absorption correction: part of the refinement model (ΔF)
(DELABS in PLATON; Spek, 2003)
h = 2525
Tmin = 0.698, Tmax = 0.872k = 2020
45959 measured reflectionsl = 2324
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0088P)2 + 25.0468P]
where P = (Fo2 + 2Fc2)/3
12756 reflections(Δ/σ)max = 0.001
806 parametersΔρmax = 0.82 e Å3
0 restraintsΔρmin = 1.03 e Å3
Crystal data top
[Li(C5H5N)2(H2O)2][UO2(C46H58NO4)]·3C5H5N·H2OV = 6792.8 (9) Å3
Mr = 1415.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 20.8644 (16) ŵ = 2.45 mm1
b = 16.6147 (13) ÅT = 100 K
c = 19.7150 (14) Å0.38 × 0.12 × 0.05 mm
β = 96.321 (5)°
Data collection top
Nonius Kappa-CCD
diffractometer
12756 independent reflections
Absorption correction: part of the refinement model (ΔF)
(DELABS in PLATON; Spek, 2003)
7934 reflections with I > 2σ(I)
Tmin = 0.698, Tmax = 0.872Rint = 0.096
45959 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0088P)2 + 25.0468P]
where P = (Fo2 + 2Fc2)/3
12756 reflectionsΔρmax = 0.82 e Å3
806 parametersΔρmin = 1.03 e Å3
Special details top

Experimental. crystal-to-detector distance 28 mm

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Structure solved by direct methods and subsequent Fourier-difference synthesis. All non-hydrogen atoms were refined with anisotropic displacement parameters. The H atoms bound to N and O were found on a Fourier-difference map and all the other ones were introduced at calculated positions. All H atoms were treated as riding atoms with an isotropic displacement parameter equal to 1.2 (NH, OH, CH, CH2) or 1.5 (CH3) times that of the parent atom. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
U0.651574 (16)0.672095 (17)0.227819 (15)0.02890 (9)
Li0.5262 (7)0.9841 (8)0.1833 (7)0.042 (3)
N10.7243 (3)0.7300 (3)0.0658 (3)0.0298 (15)
H10.72370.71000.10910.036*
O10.6621 (3)0.8024 (3)0.1911 (3)0.0307 (13)
O20.6799 (3)0.7173 (3)0.3352 (2)0.0291 (12)
O30.6563 (2)0.5535 (3)0.2825 (2)0.0291 (12)
O40.6322 (3)0.6023 (3)0.1286 (3)0.0320 (13)
O50.5673 (3)0.6836 (3)0.2387 (3)0.0356 (13)
O60.7346 (2)0.6636 (3)0.2126 (2)0.0325 (12)
C10.7352 (4)0.8637 (4)0.1205 (4)0.0290 (18)
C20.7140 (4)0.8492 (4)0.1853 (4)0.0301 (19)
C30.7480 (4)0.8865 (4)0.2424 (4)0.0272 (17)
C40.7985 (4)0.9382 (4)0.2325 (4)0.0333 (19)
H40.81930.96430.27050.040*
C50.8202 (4)0.9534 (4)0.1685 (4)0.0337 (19)
C60.7865 (4)0.9135 (4)0.1126 (4)0.034 (2)
H60.79920.92090.06930.041*
C70.8775 (4)1.0092 (5)0.1628 (4)0.039 (2)
C80.9379 (4)0.9742 (5)0.2049 (5)0.049 (2)
H8C0.92960.96800.25160.074*
H8D0.97361.01010.20270.074*
H8E0.94800.92270.18670.074*
C90.8935 (5)1.0153 (6)0.0891 (4)0.052 (2)
H9C0.90680.96350.07410.079*
H9D0.92781.05330.08660.079*
H9E0.85601.03280.06020.079*
C100.8648 (5)1.0930 (5)0.1906 (5)0.051 (3)
H10A0.83021.11810.16200.076*
H10B0.90311.12520.19100.076*
H10C0.85321.08830.23620.076*
C110.7330 (4)0.8702 (4)0.3140 (4)0.0281 (18)
H11A0.68750.85770.31290.034*
H11B0.74120.91870.34090.034*
C120.7720 (4)0.8016 (4)0.3490 (4)0.0282 (18)
C130.7427 (4)0.7268 (5)0.3575 (4)0.0306 (19)
C140.7806 (4)0.6626 (4)0.3882 (3)0.0276 (17)
C150.8449 (4)0.6773 (5)0.4094 (3)0.0327 (18)
H150.86900.63570.43110.039*
C160.8762 (4)0.7502 (4)0.4006 (4)0.0324 (19)
C170.8378 (4)0.8110 (4)0.3706 (4)0.0313 (19)
H170.85670.86080.36440.038*
C180.9475 (4)0.7630 (5)0.4269 (4)0.036 (2)
C190.9532 (5)0.7732 (6)0.5048 (4)0.054 (3)
H19A0.99750.78180.52200.081*
H19B0.93760.72560.52510.081*
H19C0.92790.81870.51600.081*
C200.9884 (4)0.6906 (5)0.4092 (5)0.057 (3)
H20A0.98250.68160.36090.086*
H20B0.97530.64360.43240.086*
H20C1.03310.70140.42340.086*
C210.9748 (4)0.8381 (6)0.3975 (5)0.052 (2)
H21A0.96780.83590.34860.078*
H21B1.02020.84140.41190.078*
H21C0.95360.88470.41330.078*
C220.7503 (4)0.5804 (4)0.3995 (4)0.0317 (19)
H22A0.76970.55930.44290.038*
H22B0.70480.58830.40330.038*
C230.7568 (4)0.5179 (4)0.3458 (4)0.0312 (19)
C240.7108 (4)0.5076 (4)0.2906 (4)0.0309 (18)
C250.7185 (4)0.4473 (4)0.2410 (4)0.0300 (19)
C260.7720 (4)0.3978 (4)0.2513 (4)0.0306 (19)
H260.77650.35710.21980.037*
C270.8197 (4)0.4055 (4)0.3063 (4)0.0305 (18)
C280.8096 (4)0.4675 (4)0.3527 (4)0.034 (2)
H280.84020.47470.39020.041*
C290.8770 (4)0.3471 (4)0.3152 (4)0.0312 (19)
C300.9260 (5)0.3683 (5)0.3768 (4)0.049 (2)
H30A0.94050.42270.37240.073*
H30B0.96210.33240.37830.073*
H30C0.90580.36320.41810.073*
C310.9126 (4)0.3478 (5)0.2515 (4)0.046 (2)
H31A0.88360.33200.21260.069*
H31B0.94820.31080.25750.069*
H31C0.92850.40110.24450.069*
C320.8512 (4)0.2622 (4)0.3252 (5)0.048 (2)
H32A0.86580.22680.29170.071*
H32B0.80470.26340.31990.071*
H32C0.86620.24330.37000.071*
C330.6687 (4)0.4398 (4)0.1785 (4)0.0313 (19)
H33A0.62890.46550.18800.038*
H33B0.65970.38330.16940.038*
C340.6923 (4)0.4788 (4)0.1150 (4)0.0309 (18)
C350.6714 (4)0.5581 (4)0.0950 (4)0.0296 (18)
C360.6956 (4)0.5905 (4)0.0366 (4)0.033 (2)
C370.7373 (4)0.5462 (4)0.0018 (4)0.035 (2)
H370.75170.56870.03700.042*
C380.7591 (4)0.4692 (4)0.0218 (4)0.0314 (19)
C390.7347 (4)0.4368 (4)0.0785 (4)0.0320 (19)
H390.74720.38520.09250.038*
C400.8077 (4)0.4243 (5)0.0176 (4)0.038 (2)
C410.8670 (5)0.4772 (5)0.0244 (5)0.059 (3)
H41A0.85460.52290.05260.089*
H41B0.89890.44650.04480.089*
H41C0.88480.49530.02000.089*
C420.7754 (5)0.4053 (5)0.0894 (4)0.054 (3)
H42A0.74140.36700.08640.081*
H42B0.80680.38310.11630.081*
H42C0.75790.45380.11040.081*
C430.8308 (4)0.3454 (5)0.0174 (4)0.044 (2)
H43A0.85420.35710.06090.066*
H43B0.85850.31750.01060.066*
H43C0.79430.31230.02370.066*
C440.6810 (4)0.6752 (4)0.0183 (3)0.0321 (18)
H44A0.63610.68670.02270.038*
H44B0.68850.68490.02870.038*
C450.7025 (4)0.8173 (4)0.0610 (4)0.0314 (18)
H45A0.71340.84060.01870.038*
H45B0.65610.82020.06130.038*
C460.7948 (4)0.7223 (4)0.0568 (4)0.037 (2)
H46A0.80110.73360.01020.055*
H46B0.80910.66860.06810.055*
H46C0.81920.75990.08620.055*
O70.5620 (3)0.9007 (3)0.1323 (3)0.0415 (15)
H7A0.59060.86820.15600.050*
H7B0.53810.86450.10530.050*
O80.4437 (3)1.0196 (3)0.1433 (3)0.0402 (14)
H8A0.42490.98210.11040.048*
H8B0.40701.03350.16150.048*
O90.4084 (3)1.1714 (4)0.0743 (3)0.0512 (15)
H9A0.43161.13250.09350.061*
H9B0.37511.17690.09840.061*
N20.8809 (5)0.6649 (6)0.2273 (4)0.078 (3)
C470.8727 (5)0.5856 (6)0.2050 (5)0.049 (2)
H470.83770.55490.21520.058*
C480.9187 (6)0.5547 (7)0.1673 (5)0.070 (3)
H480.91510.50230.15070.083*
C490.9708 (6)0.6027 (9)0.1542 (5)0.072 (4)
H491.00160.58050.12910.087*
C500.9788 (4)0.6756 (8)0.1745 (5)0.055 (3)
H501.01420.70550.16450.066*
C510.9357 (6)0.7062 (7)0.2097 (6)0.066 (3)
H510.94150.75920.22440.079*
N30.5238 (3)0.9488 (4)0.2834 (3)0.0379 (17)
C520.5436 (5)0.8765 (5)0.3084 (5)0.044 (2)
H520.55710.83870.27820.053*
C530.5449 (5)0.8555 (5)0.3754 (5)0.053 (3)
H530.55880.80450.39000.063*
C540.5256 (5)0.9102 (5)0.4207 (4)0.049 (2)
H540.52620.89730.46670.058*
C550.5052 (5)0.9850 (6)0.3970 (5)0.051 (3)
H550.49161.02360.42640.062*
C560.5055 (5)1.0008 (5)0.3286 (5)0.046 (2)
H560.49191.05150.31290.055*
N40.5858 (4)1.0847 (4)0.2006 (4)0.0435 (19)
C570.6470 (5)1.0749 (5)0.2272 (5)0.049 (2)
H570.66291.02270.23190.059*
C580.6877 (5)1.1369 (6)0.2478 (4)0.044 (2)
H580.73031.12700.26470.053*
C590.6636 (5)1.2149 (5)0.2430 (5)0.049 (3)
H590.68971.25840.25730.059*
C600.6003 (5)1.2266 (5)0.2164 (5)0.049 (2)
H600.58271.27810.21310.059*
C610.5638 (4)1.1606 (5)0.1950 (4)0.040 (2)
H610.52161.16890.17570.048*
N50.4803 (4)0.7864 (5)0.0644 (4)0.050 (2)
C620.4587 (5)0.7354 (6)0.1109 (5)0.054 (3)
H620.47390.74260.15660.065*
C630.4161 (5)0.6742 (6)0.0945 (5)0.066 (3)
H630.40350.64000.12790.079*
C640.3922 (5)0.6648 (7)0.0264 (6)0.067 (3)
H640.36340.62370.01270.081*
C650.4126 (5)0.7180 (7)0.0199 (5)0.063 (3)
H650.39710.71390.06580.075*
C660.4564 (5)0.7781 (6)0.0019 (5)0.056 (3)
H660.46890.81410.03020.067*
N60.3667 (4)0.9377 (4)0.0455 (4)0.052 (2)
C670.3322 (5)0.8818 (6)0.0741 (5)0.054 (3)
H670.34210.87080.12040.065*
C680.2824 (5)0.8398 (6)0.0381 (5)0.052 (2)
H680.26030.80040.05970.062*
C690.2660 (6)0.8565 (6)0.0287 (6)0.071 (3)
H690.23180.82980.05350.085*
C700.3009 (6)0.9135 (6)0.0592 (5)0.061 (3)
H700.29120.92570.10530.074*
C710.3501 (5)0.9522 (6)0.0207 (5)0.055 (3)
H710.37340.99080.04180.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U0.03129 (16)0.02766 (14)0.02778 (14)0.00008 (17)0.00346 (10)0.00015 (16)
Li0.035 (9)0.039 (7)0.051 (9)0.004 (6)0.005 (7)0.010 (7)
N10.040 (5)0.023 (3)0.027 (3)0.000 (3)0.007 (3)0.001 (3)
O10.032 (3)0.028 (3)0.033 (3)0.001 (2)0.005 (2)0.000 (2)
O20.027 (3)0.031 (3)0.029 (3)0.000 (2)0.003 (2)0.002 (2)
O30.027 (3)0.032 (3)0.028 (3)0.000 (2)0.002 (2)0.006 (2)
O40.033 (3)0.027 (3)0.035 (3)0.000 (2)0.001 (3)0.004 (2)
O50.033 (3)0.034 (3)0.040 (3)0.002 (3)0.006 (3)0.006 (3)
O60.027 (3)0.033 (3)0.037 (3)0.000 (3)0.002 (2)0.000 (3)
C10.033 (5)0.026 (4)0.029 (4)0.004 (4)0.003 (4)0.002 (3)
C20.031 (5)0.029 (4)0.030 (4)0.004 (3)0.003 (4)0.004 (3)
C30.028 (5)0.025 (4)0.029 (4)0.000 (3)0.002 (3)0.001 (3)
C40.035 (5)0.032 (4)0.033 (4)0.006 (4)0.002 (4)0.003 (4)
C50.037 (5)0.024 (4)0.040 (5)0.003 (4)0.005 (4)0.004 (4)
C60.048 (6)0.027 (4)0.028 (4)0.003 (4)0.003 (4)0.002 (3)
C70.039 (6)0.035 (4)0.044 (5)0.006 (4)0.011 (4)0.002 (4)
C80.034 (6)0.055 (6)0.059 (6)0.003 (4)0.006 (5)0.008 (5)
C90.045 (6)0.057 (6)0.057 (6)0.014 (5)0.015 (5)0.001 (5)
C100.053 (7)0.045 (5)0.054 (6)0.023 (5)0.009 (5)0.001 (5)
C110.026 (5)0.028 (4)0.031 (4)0.000 (3)0.007 (4)0.004 (3)
C120.035 (5)0.030 (4)0.021 (4)0.001 (3)0.008 (3)0.004 (3)
C130.030 (5)0.037 (4)0.026 (4)0.002 (4)0.007 (4)0.012 (4)
C140.029 (5)0.028 (4)0.025 (4)0.001 (4)0.001 (3)0.003 (3)
C150.048 (5)0.026 (4)0.023 (4)0.013 (4)0.001 (3)0.001 (4)
C160.040 (5)0.034 (4)0.024 (4)0.003 (4)0.002 (4)0.003 (3)
C170.035 (5)0.028 (4)0.032 (4)0.001 (3)0.010 (4)0.004 (3)
C180.034 (5)0.033 (4)0.039 (5)0.001 (4)0.002 (4)0.005 (4)
C190.046 (7)0.080 (7)0.034 (5)0.004 (5)0.005 (4)0.005 (5)
C200.030 (6)0.063 (7)0.079 (7)0.002 (5)0.006 (5)0.014 (5)
C210.036 (6)0.064 (6)0.055 (6)0.001 (5)0.006 (4)0.003 (5)
C220.036 (5)0.032 (4)0.027 (4)0.000 (4)0.005 (4)0.003 (4)
C230.044 (6)0.023 (4)0.026 (4)0.004 (4)0.001 (4)0.003 (3)
C240.035 (5)0.028 (4)0.029 (4)0.002 (4)0.001 (4)0.007 (4)
C250.039 (5)0.021 (4)0.031 (4)0.001 (4)0.008 (4)0.002 (3)
C260.040 (6)0.021 (4)0.033 (4)0.007 (4)0.011 (4)0.002 (3)
C270.030 (5)0.030 (4)0.032 (4)0.002 (4)0.006 (4)0.005 (4)
C280.045 (6)0.030 (4)0.028 (4)0.003 (4)0.005 (4)0.009 (4)
C290.033 (5)0.026 (4)0.035 (4)0.007 (3)0.005 (4)0.008 (3)
C300.046 (6)0.055 (5)0.044 (5)0.016 (5)0.005 (5)0.004 (5)
C310.042 (6)0.053 (6)0.043 (5)0.013 (4)0.006 (4)0.003 (4)
C320.054 (7)0.027 (4)0.063 (6)0.006 (4)0.012 (5)0.009 (4)
C330.040 (5)0.028 (4)0.026 (4)0.007 (4)0.001 (4)0.002 (3)
C340.029 (5)0.028 (4)0.034 (4)0.003 (3)0.005 (4)0.002 (4)
C350.029 (5)0.035 (4)0.024 (4)0.001 (4)0.003 (3)0.004 (4)
C360.038 (6)0.031 (4)0.029 (4)0.003 (4)0.003 (4)0.008 (4)
C370.050 (6)0.036 (4)0.019 (4)0.003 (4)0.008 (4)0.002 (4)
C380.038 (5)0.027 (4)0.028 (4)0.006 (4)0.001 (4)0.004 (3)
C390.035 (5)0.029 (4)0.031 (4)0.004 (4)0.004 (4)0.002 (4)
C400.045 (6)0.038 (5)0.030 (4)0.000 (4)0.005 (4)0.003 (4)
C410.064 (8)0.045 (5)0.073 (7)0.002 (5)0.029 (6)0.001 (5)
C420.077 (8)0.045 (5)0.039 (5)0.012 (5)0.003 (5)0.005 (4)
C430.040 (6)0.050 (6)0.042 (5)0.005 (4)0.003 (4)0.000 (4)
C440.044 (5)0.030 (4)0.020 (3)0.006 (4)0.002 (3)0.007 (4)
C450.041 (5)0.028 (4)0.025 (4)0.000 (4)0.003 (3)0.004 (4)
C460.035 (5)0.044 (5)0.034 (4)0.006 (4)0.013 (4)0.001 (4)
O70.043 (4)0.038 (3)0.041 (3)0.004 (3)0.004 (3)0.001 (3)
O80.029 (4)0.048 (3)0.044 (3)0.007 (3)0.005 (3)0.006 (3)
O90.048 (4)0.056 (3)0.049 (3)0.001 (4)0.005 (3)0.001 (3)
N20.078 (7)0.098 (7)0.056 (5)0.020 (6)0.007 (5)0.011 (6)
C470.048 (7)0.047 (5)0.050 (6)0.001 (5)0.002 (5)0.008 (5)
C480.096 (10)0.065 (7)0.049 (6)0.028 (7)0.016 (7)0.019 (6)
C490.055 (8)0.124 (11)0.043 (6)0.028 (8)0.026 (6)0.031 (7)
C500.031 (6)0.088 (8)0.046 (6)0.025 (6)0.005 (4)0.007 (6)
C510.063 (9)0.070 (7)0.060 (7)0.035 (6)0.010 (6)0.008 (6)
N30.032 (4)0.037 (4)0.043 (4)0.002 (3)0.001 (3)0.001 (3)
C520.051 (6)0.033 (5)0.048 (6)0.001 (4)0.004 (5)0.001 (4)
C530.053 (7)0.044 (5)0.061 (6)0.002 (5)0.004 (5)0.003 (5)
C540.060 (7)0.050 (5)0.035 (5)0.003 (5)0.000 (5)0.008 (4)
C550.059 (7)0.056 (6)0.039 (5)0.002 (5)0.003 (5)0.003 (5)
C560.051 (6)0.028 (4)0.056 (6)0.007 (4)0.003 (5)0.004 (4)
N40.049 (5)0.035 (4)0.047 (4)0.000 (4)0.008 (4)0.003 (3)
C570.038 (6)0.048 (5)0.062 (6)0.008 (5)0.005 (5)0.006 (5)
C580.032 (6)0.058 (6)0.043 (5)0.001 (5)0.001 (4)0.008 (5)
C590.062 (8)0.037 (5)0.049 (6)0.016 (5)0.003 (5)0.004 (4)
C600.057 (7)0.035 (5)0.056 (6)0.002 (5)0.006 (5)0.011 (4)
C610.037 (5)0.042 (5)0.043 (5)0.003 (4)0.010 (4)0.008 (4)
N50.041 (5)0.059 (5)0.051 (5)0.003 (4)0.005 (4)0.012 (4)
C620.054 (7)0.064 (6)0.044 (6)0.005 (5)0.002 (5)0.003 (5)
C630.074 (8)0.058 (6)0.063 (7)0.009 (7)0.003 (6)0.001 (6)
C640.055 (7)0.071 (7)0.076 (7)0.004 (6)0.009 (6)0.020 (7)
C650.057 (8)0.090 (8)0.040 (5)0.001 (6)0.005 (5)0.024 (6)
C660.033 (6)0.090 (8)0.044 (6)0.007 (5)0.001 (5)0.009 (5)
N60.055 (6)0.051 (5)0.050 (5)0.010 (4)0.006 (4)0.008 (4)
C670.067 (8)0.053 (6)0.043 (5)0.011 (5)0.008 (5)0.007 (5)
C680.046 (6)0.056 (6)0.054 (6)0.006 (5)0.009 (5)0.011 (5)
C690.083 (9)0.054 (6)0.071 (8)0.009 (6)0.017 (7)0.010 (6)
C700.076 (9)0.053 (6)0.052 (6)0.005 (6)0.009 (6)0.001 (5)
C710.062 (8)0.055 (6)0.049 (6)0.011 (5)0.013 (5)0.003 (5)
Geometric parameters (Å, º) top
U—O12.301 (5)C32—H32B0.9600
U—O22.262 (5)C32—H32C0.9600
U—O32.243 (5)C33—C341.538 (10)
U—O42.272 (5)C33—H33A0.9700
U—O51.805 (5)C33—H33B0.9700
U—O61.796 (5)C34—C391.388 (11)
U—N13.808 (6)C34—C351.430 (10)
Li—O71.914 (15)C35—C361.414 (11)
Li—O81.906 (15)C36—C371.379 (11)
Li—N32.064 (16)C36—C441.477 (10)
Li—N42.089 (16)C37—C381.400 (10)
N1—C461.507 (10)C37—H370.9300
N1—C451.519 (9)C38—C391.387 (10)
N1—C441.528 (9)C38—C401.537 (11)
N1—O13.153 (8)C39—H390.9300
N1—O43.202 (8)C40—C421.532 (11)
N1—H10.9177C40—C431.534 (11)
O1—C21.349 (9)C40—C411.537 (12)
O1—O23.157 (7)C41—H41A0.9600
O1—O43.576 (7)C41—H41B0.9600
O2—C131.347 (9)C41—H41C0.9600
O2—O32.935 (7)C42—H42A0.9600
O3—C241.364 (9)C42—H42B0.9600
O3—O43.129 (7)C42—H42C0.9600
O4—C351.329 (9)C43—H43A0.9600
C1—C61.375 (11)C43—H43B0.9600
C1—C21.418 (10)C43—H43C0.9600
C1—C451.503 (10)C44—H44A0.9700
C2—C31.405 (10)C44—H44B0.9700
C3—C41.390 (11)C45—H45A0.9700
C3—C111.504 (10)C45—H45B0.9700
C4—C51.410 (11)C46—H46A0.9600
C4—H40.9300C46—H46B0.9600
C5—C61.406 (11)C46—H46C0.9600
C5—C71.528 (11)O7—H7A0.8974
C6—H60.9300O7—H7B0.9138
C7—C101.530 (11)O8—H8A0.9525
C7—C91.530 (11)O8—H8B0.9108
C7—C81.544 (12)O9—H9A0.8688
C8—H8C0.9600O9—H9B0.8897
C8—H8D0.9600N2—C471.394 (12)
C8—H8E0.9600N2—C511.410 (14)
C9—H9C0.9600C47—C481.376 (14)
C9—H9D0.9600C47—H470.9300
C9—H9E0.9600C48—C491.396 (16)
C10—H10A0.9600C48—H480.9300
C10—H10B0.9600C49—C501.281 (15)
C10—H10C0.9600C49—H490.9300
C11—C121.521 (10)C50—C511.297 (14)
C11—H11A0.9700C50—H500.9300
C11—H11B0.9700C51—H510.9300
C12—C171.402 (11)N3—C561.327 (10)
C12—C131.402 (10)N3—C521.346 (10)
C13—C141.422 (10)C52—C531.363 (12)
C14—C151.382 (11)C52—H520.9300
C14—C221.532 (10)C53—C541.366 (12)
C15—C161.396 (11)C53—H530.9300
C15—H150.9300C54—C551.379 (12)
C16—C171.381 (10)C54—H540.9300
C16—C181.536 (11)C55—C561.374 (12)
C17—H170.9300C55—H550.9300
C18—C211.513 (11)C56—H560.9300
C18—C201.537 (11)N4—C571.335 (12)
C18—C191.536 (11)N4—C611.342 (10)
C19—H19A0.9600C57—C581.367 (12)
C19—H19B0.9600C57—H570.9300
C19—H19C0.9600C58—C591.390 (12)
C20—H20A0.9600C58—H580.9300
C20—H20B0.9600C59—C601.380 (13)
C20—H20C0.9600C59—H590.9300
C21—H21A0.9600C60—C611.375 (11)
C21—H21B0.9600C60—H600.9300
C21—H21C0.9600C61—H610.9300
C22—C231.501 (10)N5—C661.285 (11)
C22—H22A0.9700N5—C621.361 (11)
C22—H22B0.9700C62—C631.365 (13)
C23—C241.380 (10)C62—H620.9300
C23—C281.378 (11)C63—C641.388 (14)
C24—C251.422 (10)C63—H630.9300
C25—C261.384 (11)C64—C651.372 (14)
C25—C331.526 (10)C64—H640.9300
C26—C271.395 (11)C65—C661.389 (13)
C26—H260.9300C65—H650.9300
C27—C281.408 (10)C66—H660.9300
C27—C291.535 (10)N6—C711.334 (11)
C28—H280.9300N6—C671.338 (12)
C29—C321.530 (10)C67—C681.381 (13)
C29—C311.528 (11)C67—H670.9300
C29—C301.539 (11)C68—C691.354 (13)
C30—H30A0.9600C68—H680.9300
C30—H30B0.9600C69—C701.374 (14)
C30—H30C0.9600C69—H690.9300
C31—H31A0.9600C70—C711.369 (13)
C31—H31B0.9600C70—H700.9300
C31—H31C0.9600C71—H710.9300
C32—H32A0.9600
O1—U—O287.56 (17)H31A—C31—H31B109.5
O2—U—O381.30 (17)C29—C31—H31C109.5
O3—U—O487.73 (17)H31A—C31—H31C109.5
O4—U—O1102.91 (17)H31B—C31—H31C109.5
O1—U—N155.79 (15)C29—C32—H32A109.3
O4—U—N157.05 (15)C29—C32—H32B109.9
O5—U—O6176.8 (2)H32A—C32—H32B109.4
O6—U—O391.1 (2)C29—C32—H32C109.3
O5—U—O391.6 (2)H32A—C32—H32C109.4
O6—U—O291.5 (2)H32B—C32—H32C109.5
O5—U—O290.6 (2)C25—C33—C34111.8 (6)
O6—U—O484.2 (2)C25—C33—H33A109.2
O5—U—O494.2 (2)C34—C33—H33A109.2
O2—U—O4168.15 (17)C25—C33—H33B109.2
O6—U—O184.0 (2)C34—C33—H33B109.2
O5—U—O193.7 (2)H33A—C33—H33B107.9
O3—U—O1167.69 (18)C39—C34—C35120.9 (7)
O6—U—N153.05 (18)C39—C34—C33119.3 (7)
O5—U—N1123.79 (19)C35—C34—C33119.8 (7)
O3—U—N1128.68 (15)O4—C35—C36119.3 (7)
O2—U—N1127.88 (16)O4—C35—C34124.0 (7)
O7—Li—O8113.2 (8)C36—C35—C34116.7 (7)
O7—Li—N3110.4 (7)C37—C36—C35120.3 (7)
O7—Li—N4113.9 (8)C37—C36—C44120.7 (7)
O8—Li—N3111.6 (8)C35—C36—C44118.6 (7)
O8—Li—N4108.4 (7)C36—C37—C38123.3 (7)
N3—Li—N498.6 (7)C36—C37—H37118.3
C46—N1—C45111.3 (5)C38—C37—H37118.3
C46—N1—C44113.3 (5)C39—C38—C37116.5 (7)
C45—N1—C44112.3 (6)C39—C38—C40122.7 (7)
C46—N1—U124.2 (4)C37—C38—C40120.8 (7)
C45—N1—U98.6 (4)C38—C39—C34122.3 (7)
C44—N1—U95.7 (4)C38—C39—H39118.9
C46—N1—H1101.0C34—C39—H39118.9
C45—N1—H1111.6C42—C40—C43108.9 (7)
C44—N1—H1106.7C42—C40—C41108.3 (7)
C2—O1—U132.4 (4)C43—C40—C41108.1 (8)
C13—O2—U119.3 (4)C42—C40—C38108.7 (7)
C35—O4—U130.5 (5)C43—C40—C38112.3 (6)
C6—C1—C2121.9 (7)C41—C40—C38110.4 (7)
C6—C1—C45120.8 (7)C40—C41—H41A109.5
C2—C1—C45117.1 (7)C40—C41—H41B109.5
O1—C2—C3121.7 (7)H41A—C41—H41B109.5
O1—C2—C1120.5 (7)C40—C41—H41C109.5
C3—C2—C1117.8 (7)H41A—C41—H41C109.5
C4—C3—C2118.9 (7)H41B—C41—H41C109.5
C4—C3—C11118.8 (7)C40—C42—H42A109.5
C2—C3—C11122.2 (7)C40—C42—H42B109.5
C3—C4—C5124.0 (7)H42A—C42—H42B109.5
C3—C4—H4118.0C40—C42—H42C109.5
C5—C4—H4118.0H42A—C42—H42C109.5
C6—C5—C4115.8 (7)H42B—C42—H42C109.5
C6—C5—C7123.8 (7)C40—C43—H43A109.5
C4—C5—C7120.4 (7)C40—C43—H43B109.5
C1—C6—C5121.5 (7)H43A—C43—H43B109.5
C1—C6—H6119.2C40—C43—H43C109.5
C5—C6—H6119.2H43A—C43—H43C109.5
C10—C7—C5110.9 (7)H43B—C43—H43C109.5
C10—C7—C9110.2 (7)C36—C44—N1109.1 (6)
C5—C7—C9111.4 (7)C36—C44—H44A109.9
C10—C7—C8108.3 (7)N1—C44—H44A109.9
C5—C7—C8109.3 (7)C36—C44—H44B109.9
C9—C7—C8106.6 (7)N1—C44—H44B109.9
C7—C8—H8C109.5H44A—C44—H44B108.3
C7—C8—H8D109.5C1—C45—N1109.6 (6)
H8C—C8—H8D109.5C1—C45—H45A109.8
C7—C8—H8E109.5N1—C45—H45A109.8
H8C—C8—H8E109.5C1—C45—H45B109.8
H8D—C8—H8E109.5N1—C45—H45B109.8
C7—C9—H9C109.5H45A—C45—H45B108.2
C7—C9—H9D109.5N1—C46—H46A109.5
H9C—C9—H9D109.5N1—C46—H46B109.5
C7—C9—H9E109.5H46A—C46—H46B109.5
H9C—C9—H9E109.5N1—C46—H46C109.5
H9D—C9—H9E109.5H46A—C46—H46C109.5
C7—C10—H10A109.5H46B—C46—H46C109.5
C7—C10—H10B109.5Li—O7—H7A115.9
H10A—C10—H10B109.5Li—O7—H7B124.3
C7—C10—H10C109.5H7A—O7—H7B101.4
H10A—C10—H10C109.5Li—O8—H8A111.4
H10B—C10—H10C109.5Li—O8—H8B132.5
C3—C11—C12113.9 (6)H8A—O8—H8B97.8
C3—C11—H11A108.8H9A—O9—H9B105.8
C12—C11—H11A108.8C47—N2—C51117.2 (10)
C3—C11—H11B108.8C48—C47—N2117.1 (10)
C12—C11—H11B108.8C48—C47—H47121.5
H11A—C11—H11B107.7N2—C47—H47121.5
C17—C12—C13119.1 (7)C47—C48—C49119.3 (11)
C17—C12—C11120.8 (6)C47—C48—H48120.3
C13—C12—C11120.1 (7)C49—C48—H48120.3
O2—C13—C12119.0 (7)C50—C49—C48124.0 (10)
O2—C13—C14121.8 (7)C50—C49—H49118.1
C12—C13—C14119.1 (7)C48—C49—H49117.9
C15—C14—C13118.1 (7)C49—C50—C51117.7 (9)
C15—C14—C22121.0 (7)C49—C50—H50121.1
C13—C14—C22120.8 (7)C51—C50—H50121.2
C14—C15—C16124.6 (7)C50—C51—N2124.7 (10)
C14—C15—H15117.7C50—C51—H51117.7
C16—C15—H15117.7N2—C51—H51117.6
C17—C16—C15115.5 (8)C56—N3—C52115.8 (7)
C17—C16—C18122.5 (7)C56—N3—Li119.7 (7)
C15—C16—C18121.9 (7)C52—N3—Li124.4 (7)
C16—C17—C12123.5 (7)N3—C52—C53123.7 (9)
C16—C17—H17118.3N3—C52—H52118.1
C12—C17—H17118.3C53—C52—H52118.1
C21—C18—C16112.1 (7)C52—C53—C54119.2 (9)
C21—C18—C20108.5 (8)C52—C53—H53120.4
C16—C18—C20110.9 (7)C54—C53—H53120.4
C21—C18—C19107.6 (7)C53—C54—C55118.7 (8)
C16—C18—C19108.5 (7)C53—C54—H54120.7
C20—C18—C19109.3 (7)C55—C54—H54120.7
C18—C19—H19A109.5C56—C55—C54118.1 (9)
C18—C19—H19B109.5C56—C55—H55120.9
H19A—C19—H19B109.5C54—C55—H55120.9
C18—C19—H19C109.5N3—C56—C55124.5 (8)
H19A—C19—H19C109.5N3—C56—H56117.8
H19B—C19—H19C109.5C55—C56—H56117.8
C18—C20—H20A109.5C57—N4—C61116.8 (8)
C18—C20—H20B109.5C57—N4—Li119.5 (7)
H20A—C20—H20B109.5C61—N4—Li123.1 (7)
C18—C20—H20C109.5N4—C57—C58124.1 (8)
H20A—C20—H20C109.5N4—C57—H57118.0
H20B—C20—H20C109.5C58—C57—H57118.0
C18—C21—H21A109.5C57—C58—C59118.3 (9)
C18—C21—H21B109.5C57—C58—H58120.9
H21A—C21—H21B109.5C59—C58—H58120.9
C18—C21—H21C109.5C60—C59—C58118.8 (8)
H21A—C21—H21C109.5C60—C59—H59120.6
H21B—C21—H21C109.5C58—C59—H59120.6
C23—C22—C14116.3 (6)C61—C60—C59118.6 (8)
C23—C22—H22A108.2C61—C60—H60120.7
C14—C22—H22A108.2C59—C60—H60120.7
C23—C22—H22B108.2N4—C61—C60123.5 (9)
C14—C22—H22B108.2N4—C61—H61118.3
H22A—C22—H22B107.4C60—C61—H61118.3
C24—C23—C28118.8 (7)C66—N5—C62117.1 (9)
C24—C23—C22122.2 (7)N5—C62—C63124.0 (9)
C28—C23—C22118.9 (7)N5—C62—H62118.0
O3—C24—C23121.4 (7)C63—C62—H62118.0
O3—C24—C25118.0 (7)C62—C63—C64117.9 (10)
C23—C24—C25120.5 (7)C62—C63—H63121.0
C26—C25—C24117.9 (7)C64—C63—H63121.0
C26—C25—C33122.5 (7)C65—C64—C63117.8 (10)
C24—C25—C33119.6 (7)C65—C64—H64121.1
C25—C26—C27123.8 (7)C63—C64—H64121.1
C25—C26—H26118.1C64—C65—C66119.9 (9)
C27—C26—H26118.1C64—C65—H65120.0
C26—C27—C28115.3 (7)C66—C65—H65120.0
C26—C27—C29120.7 (7)N5—C66—C65123.2 (10)
C28—C27—C29124.0 (7)N5—C66—H66118.4
C23—C28—C27123.7 (8)C65—C66—H66118.4
C23—C28—H28118.1C71—N6—C67116.4 (9)
C27—C28—H28118.1N6—C67—C68122.9 (9)
C32—C29—C31108.8 (6)N6—C67—H67118.6
C32—C29—C27108.5 (6)C68—C67—H67118.6
C31—C29—C27110.1 (6)C69—C68—C67119.5 (10)
C32—C29—C30108.8 (6)C69—C68—H68120.2
C31—C29—C30107.8 (7)C67—C68—H68120.2
C27—C29—C30112.7 (6)C68—C69—C70118.5 (10)
C29—C30—H30A109.5C68—C69—H69120.7
C29—C30—H30B109.5C70—C69—H69120.7
H30A—C30—H30B109.5C71—C70—C69118.8 (10)
C29—C30—H30C109.5C71—C70—H70120.6
H30A—C30—H30C109.5C69—C70—H70120.6
H30B—C30—H30C109.5N6—C71—C70123.8 (10)
C29—C31—H31A109.5N6—C71—H71118.1
C29—C31—H31B109.5C70—C71—H71118.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O60.922.173.083 (8)173
O7—H7A···O10.901.922.799 (7)168
O7—H7B···N50.911.892.793 (9)169
O8—H8A···N60.951.822.732 (9)159
O8—H8B···O3i0.911.842.735 (7)166
O9—H9A···O80.872.122.922 (8)153
O9—H9B···O2i0.891.952.808 (8)161
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Li(C5H5N)2(H2O)2][UO2(C46H58NO4)]·3C5H5N·H2O
Mr1415.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)20.8644 (16), 16.6147 (13), 19.7150 (14)
β (°) 96.321 (5)
V3)6792.8 (9)
Z4
Radiation typeMo Kα
µ (mm1)2.45
Crystal size (mm)0.38 × 0.12 × 0.05
Data collection
DiffractometerNonius Kappa-CCD
diffractometer
Absorption correctionPart of the refinement model (ΔF)
(DELABS in PLATON; Spek, 2003)
Tmin, Tmax0.698, 0.872
No. of measured, independent and
observed [I > 2σ(I)] reflections
45959, 12756, 7934
Rint0.096
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.126, 1.03
No. of reflections12756
No. of parameters806
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0088P)2 + 25.0468P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.82, 1.03

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO–SMN (Otwinowski & Minor, 1997), DENZO–SMN, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1999), SHELXTL and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
U—O12.301 (5)U—O61.796 (5)
U—O22.262 (5)Li—O71.914 (15)
U—O32.243 (5)Li—O81.906 (15)
U—O42.272 (5)Li—N32.064 (16)
U—O51.805 (5)Li—N42.089 (16)
O1—U—O287.56 (17)O7—Li—O8113.2 (8)
O2—U—O381.30 (17)O7—Li—N3110.4 (7)
O3—U—O487.73 (17)O7—Li—N4113.9 (8)
O4—U—O1102.91 (17)O8—Li—N3111.6 (8)
O1—U—N155.79 (15)O8—Li—N4108.4 (7)
O4—U—N157.05 (15)N3—Li—N498.6 (7)
O5—U—O6176.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O60.922.173.083 (8)173.3
O7—H7A···O10.901.922.799 (7)168.0
O7—H7B···N50.911.892.793 (9)169.0
O8—H8A···N60.951.822.732 (9)159.4
O8—H8B···O3i0.911.842.735 (7)166.2
O9—H9A···O80.872.122.922 (8)153.2
O9—H9B···O2i0.891.952.808 (8)161.0
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds