Download citation
Download citation
link to html
Crystallization of [Cd(S-thpc12)](ClO4)2·H2O {S-thpc12 is 1,4,7,10-tetrakis­[(S)-2-hydroxy­propyl]-1,4,7,10-tetra­aza­cyclo­do­decane} in the presence of two equivalents of sodium picrate monohydrate (sodium 2,4,6-tri­nitro­phenolate monohydrate) diastereoselectively produces a neutral receptor complex, viz. the title compound, [Lambda]-[Cd(C20H44N4O4)](C6H2N3O7)2·CH3CN. In this complex, two picrate anions hydrogen bond, via their phenolate moieties, to the pendant hydroxyl groups of the receptor which, together with the four N atoms, themselves bond to CdII in an approximately cubic arrangement. One picrate anion hydrogen bonds to all four hydroxyl groups, one of which also acts as the sole hydrogen-bond donor to the second picrate anion.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103016007/ob1131sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103016007/ob1131Isup2.hkl
Contains datablock I

CCDC reference: 221058

Comment top

The ability of optically active pendant hydroxyl-donor macrocyclic ligands based on cyclen (cyclen is 1,4,7,10-tetraazacyclododecane) to coordinate in a diastereoselective manner has been noted previously (Dhillon et al., 1997, 1998). The structures of such complexes generally approximate to that of a distorted cube or square antiprism (Buøen et al., 1982; Chin et al., 1994; Hancock et al., 1988; Luckay et al., 1995) and as such have an inherent helicity which may be described Δ or Λ depending on whether the four hydroxyl donors are displaced anticlockwise or clockwise, with respect to the N atom to which each is attached, when the molecule is viewed from the plane of the hydroxyl groups towards the plane of the four N atoms along the pseudo-C4 axis (Dhillon et al., 1995). Our recent research has been directed towards attaching aromatic groups to each of the pendant arms in such a way that they will juxtapose to form a cavity suitable for the inclusion of smaller guest molecules, in particular aromatic anions (Smith et al., 1999, 2002). In the present work, the attached group is the smaller methyl group and it was of interest to us to determine if, by using it, association with picrate (2,4,6-trinitrophenolate), which appears to be too large to be included within complexes having more enclosed cavities (Smith et al., 2002), could be induced.

The cation of the title compound, (I), shows the expected approximately cubic coordination geometry about Cd, with Cd—N bond lengths in the range 2.440 (2)–2.525 (3) Å and Cd—O(hydroxyl) bond lengths in the range 2.378 (2)–2.845 (2) Å (Table 1 and Fig. 1). The plane of the four O atoms is rotated clockwise by ca 14°, with respect to the plane of the four N atoms, giving the complex the Λ helicity (left-handed screw form of the N—O chelating arms around the local fourfold axis). One picrate anion is located centrally above the cation, held in place by hydrogen bonds from all four hydroxyl O atoms to O1a, while the other packs in the crystal beside it and is hydrogen bonded only to hydroxyl atom O1 (Table 2 and Fig. 2). The planar regions of the two anions are approximately parallel, with a mean separation of 3.22 Å, and are offset in such a way as to prevent the eclipsing of any of the atoms (Fig. 3). The extra stability conferred on the crystal structure by the stacking of the anions and steric factors involved in the formation of the bifurcated hydrogen bond from O1 to the electron-rich O1b centre apparently combine to weaken the Cd—O1 bond. This bond is 0.219 Å longer than any such bond currently recorded in the Cambridge Structural Database (Version 5.24; Allen, 2002). The CdII to phenolate O1a distance is 3.656 (2) Å, eliminating the possibility of significant ionic interaction between these charged centres. No association of the acetonitrile molecule present in the crystal lattice with the complex is apparent.

As judged from the range of hydrogen-bond donor–acceptor distances in (I) (2.840–3.197 Å), the picrate anions are held less strongly than are 4-nitrophenolate anions in similar complexes; corresponding distances are 2.627–2.797 Å in {1,4,7,10-tetrakis[(S)-2-hydroxypropyl-κO]-1,4,7,10- tetraazacyclododecane-κ4N}cadmium(II) 4-nitrophenolate perchlorate hydrate (Davies et al., 2000), and 2.546 and 2.630 Å (twice) in {1,4,7,10-tetrakis[(S)-2-hydroxy-3-phenoxypropyl-κO]-1,4,7,10- tetraazacyclododecane-κ4N}cadmium(II) di-4-nitrophenolate (Smith et al., 2002). This probably arises for two reasons: (i) the greater delocalization of the negative charge away from the O atom on the picrate corresponding to short C—O1a/O1b bonds (Table 1) compared with corresponding distances in the 4-nitrophenolate anions in the above structures [1.293 (10) and 1.277 (4) Å, respectively], making these picrate O atoms more like neutral hydrogen-bond acceptors, (ii) a steric constraint is possibly more marked when associated with forming four hydrogen bonds to the same acceptor (O1a), rather than two, i.e. if the phenolate O moves any closer to the Cd atom, the hydrogen bonds will shorten, but the O—H.·O angles will deviate further from linearity than they already have.

The crystal structure of (I) shows that both picrates associate with the complex in the solid state. The electrical conductivity for the receptor complex in N,N-dimethylformamide (DMF) solution (128 Ω−1 cm2 mol−1), however, is almost in the range normally shown by 1:2 electrolytes in this solvent (130–170 Ω−1 cm2 mol−1; Geary, 1971), suggesting that both picrates are substantially dissociated in DMF, and probably more so in solvents of higher dielectric constant.

Experimental top

The title compound, (I), was prepared by adding sodium picrate monohydrate (159 mg, 0.6 mmol; Silberrad & Phillips, 1908) to a solution of [Cd(S-thpc12)](ClO4)2·H2O (212 mg, 0.3 mmol; Davies et al., 2000) in dry acetonitrile (15 ml). The solid dissolved quickly and a mass of yellow precipitate filled the flask within 20 min. This precipitate was dissolved in situ by heating the suspension to the boiling point of the solvent. The resulting solution was then allowed to reflux for 2 h. Upon cooling, large yellow prisms of (I), suitable for X-ray diffraction studies, formed. These were filtered off and dried (yield 228 mg, 76%). 13C NMR (DMSO-d6): δ 160.90, 141.96, 125.30, 124.27, 118.16 (CH3CN), 61.93, 59.36, 49.95, 48.00, 20.94, 1.24 (CH3CN). Analysis calculated for C34H51CdN11O18: C 40.26, H 5.07, N 15.19%; found: C 40.2, H 5.0, N 15.0%. Conductivity: 128 Ω−1 cm2 mol−1 (1 × 10−3 M, DMF).

Refinement top

Hydroxyl H-atom positions were obtained from the four highest peaks in the penultimate difference map and others were placed in calculated positions.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997) and Xtal3.7 ADDREF SORTRF (Hall et al., 2000); program(s) used to solve structure: SIR97 (Altomare et al., 1994); program(s) used to refine structure: Xtal3.7 CRYLSQ; molecular graphics: Xtal3.7; software used to prepare material for publication: Xtal3.7 BONDLA CIFIO.

Figures top
[Figure 1] Fig. 1. View of the title compound showing atom labels. Hydrogen bonds are shown as dashed lines. Displacement ellipsoids are at the 50% probability level and H atoms have been omitted.
[Figure 2] Fig. 2. View of the title compound nearly edge-on to the trinitrophenolate planes. Hydrogen bonds are shown as dashed lines. Atoms are shown as spheres of arbitrary size and H atoms have been omitted.
[Figure 3] Fig. 3. Stacking of the trinitrophenolate planes, viewed strictly normal to the least-squares plane. Displacement ellipsoids are at the 50% probability level. H atoms have been omitted.
(I) top
Crystal data top
[Cd(C20H44N4O4)]·(C6H2N3O7)2·C2H3NF(000) = 1048
Mr = 1014.25Dx = 1.597 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: p 2ybCell parameters from 6088 reflections
a = 10.980 (2) Åθ = 1.2–26.4°
b = 16.575 (3) ŵ = 0.61 mm1
c = 11.640 (2) ÅT = 168 K
β = 95.51 (1)°Irregular hexagonal plate, yellow
V = 2108.6 (7) Å30.60 × 0.42 × 0.15 mm
Z = 2
Data collection top
Bruker P4
diffractometer
8289 independent reflections
Radiation source: sealed tube4248 reflections with F2 > 0
Graphite monochromatorRint = 0.016
ω scansθmax = 26.4°
Absorption correction: empirical (using intensity measurements)
(SADABS; Bruker, 1997)
h = 1313
Tmin = 0.779, Tmax = 0.913k = 2020
15919 measured reflectionsl = 1414
Refinement top
Refinement on F2H-atom parameters not refined
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.05Fo2)2]1/2
R[F2 > 2σ(F2)] = 0.023(Δ/σ)max = 0.001
wR(F2) = 0.057Δρmax = 0.37 e Å3
S = 1.23Δρmin = 0.31 e Å3
8289 reflectionsExtinction correction: Zachariasen, Larson (1970), Eq22 p292 "Cryst. Comp." Munksgaard 1970
578 parametersExtinction coefficient: 13E2 (3)
0 restraintsAbsolute structure: Flack (1983), 3983 Friedel pairs
0 constraintsAbsolute structure parameter: 0.018 (14)
Crystal data top
[Cd(C20H44N4O4)]·(C6H2N3O7)2·C2H3NV = 2108.6 (7) Å3
Mr = 1014.25Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.980 (2) ŵ = 0.61 mm1
b = 16.575 (3) ÅT = 168 K
c = 11.640 (2) Å0.60 × 0.42 × 0.15 mm
β = 95.51 (1)°
Data collection top
Bruker P4
diffractometer
8289 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Bruker, 1997)
4248 reflections with F2 > 0
Tmin = 0.779, Tmax = 0.913Rint = 0.016
15919 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.023H-atom parameters not refined
wR(F2) = 0.057Δρmax = 0.37 e Å3
S = 1.23Δρmin = 0.31 e Å3
8289 reflectionsAbsolute structure: Flack (1983), 3983 Friedel pairs
578 parametersAbsolute structure parameter: 0.018 (14)
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd0.51822 (2)0.195970.751280 (10)0.01855 (10)
O10.6529 (2)0.33695 (15)0.8223 (2)0.0275 (12)
O20.7324 (2)0.17482 (13)0.73439 (17)0.0234 (12)
O30.5936 (2)0.07227 (15)0.8702 (2)0.0304 (13)
O40.5124 (2)0.22364 (13)0.95112 (18)0.0243 (11)
O1a0.77320 (18)0.1933 (2)0.97763 (16)0.0318 (10)
O2a0.9408 (3)0.26278 (19)0.8568 (2)0.0434 (15)
O3a1.0705 (3)0.33873 (17)0.9565 (2)0.0354 (14)
O5a1.1341 (3)0.1702 (2)1.4252 (2)0.054 (2)
O4a1.2266 (3)0.2604 (2)1.3288 (2)0.0495 (17)
O7a0.6641 (3)0.0977 (3)1.1182 (3)0.061 (2)
O6a0.7553 (5)0.0623 (3)1.2757 (4)0.105 (3)
O1b0.8145 (3)0.40135 (17)1.0135 (2)0.0346 (13)
O2b0.9166 (3)0.55402 (18)0.9815 (2)0.0445 (16)
O3b1.1079 (3)0.5270 (2)1.0215 (3)0.067 (2)
O5b1.0755 (3)0.3724 (3)1.5056 (2)0.061 (2)
O4b1.1854 (4)0.4676 (3)1.4382 (3)0.062 (2)
O7b0.6442 (3)0.3355 (2)1.1335 (3)0.0487 (18)
O6b0.7062 (3)0.2844 (2)1.2962 (3)0.059 (2)
N10.4218 (3)0.3219 (2)0.6771 (3)0.0214 (15)
N20.5517 (2)0.1965 (3)0.54702 (18)0.0240 (11)
N30.4332 (3)0.0648 (2)0.6675 (3)0.0254 (17)
N40.3044 (2)0.1894 (2)0.79980 (19)0.0232 (12)
N1a0.9943 (3)0.28350 (19)0.9494 (2)0.0286 (14)
N2a1.1423 (3)0.2126 (2)1.3393 (2)0.038 (2)
N3a0.7508 (3)0.1013 (2)1.1876 (3)0.0356 (17)
N1b0.9999 (3)0.5191 (2)1.0390 (3)0.0354 (17)
N2b1.0972 (3)0.4214 (2)1.4301 (3)0.045 (2)
N3b0.7211 (3)0.3288 (2)1.2140 (3)0.0349 (17)
N1c0.7802 (4)0.4311 (3)0.5550 (4)0.052 (2)
C10.4054 (4)0.3114 (2)0.5498 (3)0.0278 (17)
C20.5185 (4)0.2792 (2)0.5015 (3)0.0282 (18)
C30.4724 (4)0.1356 (2)0.4854 (3)0.0295 (18)
C40.4727 (4)0.0559 (2)0.5499 (3)0.0315 (18)
C50.2973 (3)0.0724 (2)0.6619 (3)0.0295 (18)
C60.2557 (3)0.1065 (2)0.7728 (3)0.0285 (17)
C70.2335 (3)0.2503 (2)0.7286 (3)0.0270 (17)
C80.3022 (3)0.3299 (2)0.7236 (3)0.0261 (17)
C110.4931 (4)0.3975 (2)0.7052 (4)0.026 (2)
C120.5605 (4)0.3983 (2)0.8232 (3)0.0282 (19)
C130.6130 (4)0.4827 (3)0.8468 (4)0.042 (2)
C210.6816 (3)0.1787 (2)0.5334 (3)0.0278 (18)
C220.7697 (3)0.2110 (2)0.6307 (3)0.0259 (17)
C230.8993 (3)0.1880 (4)0.6098 (3)0.0365 (18)
C310.4734 (4)0.0063 (3)0.7373 (4)0.033 (2)
C320.6023 (4)0.0042 (2)0.7965 (3)0.030 (2)
C330.6444 (5)0.0719 (3)0.8618 (4)0.047 (3)
C410.2989 (3)0.2065 (3)0.9242 (3)0.0257 (16)
C420.4146 (3)0.17944 (19)0.9965 (3)0.0254 (17)
C430.4047 (3)0.1968 (3)1.1227 (2)0.0323 (15)
C1a0.8573 (2)0.1950 (3)1.0574 (2)0.0243 (12)
C2a0.9711 (3)0.2401 (2)1.0533 (3)0.0252 (16)
C3a1.0606 (3)0.2465 (2)1.1437 (3)0.0279 (17)
C4a1.0466 (3)0.2045 (3)1.2447 (2)0.0307 (18)
C5a0.9450 (4)0.1583 (2)1.2572 (3)0.0294 (17)
C6a0.8538 (3)0.1528 (2)1.1672 (3)0.0277 (17)
C1b0.8646 (3)0.4140 (2)1.1115 (3)0.0267 (16)
C2b0.9700 (3)0.4673 (2)1.1336 (3)0.0282 (17)
C3b1.0466 (4)0.4701 (3)1.2334 (3)0.031 (2)
C4b1.0156 (4)0.4219 (2)1.3256 (3)0.0331 (18)
C5b0.9094 (4)0.3772 (2)1.3183 (3)0.0306 (17)
C6b0.8334 (3)0.3748 (2)1.2172 (3)0.0267 (16)
C1c0.8500 (4)0.4391 (3)0.6320 (4)0.043 (2)
C2c0.9406 (6)0.4490 (4)0.7329 (5)0.065 (3)
H20.772840.196190.788240.02300*
H30.672700.077880.901230.03800*
H40.586730.204181.000000.02300*
H10.690120.330960.892410.03500*
H1a0.385770.362160.514700.03400*
H1b0.340030.274710.530870.03400*
H2a0.503880.275990.419450.03500*
H2b0.584900.314600.521400.03500*
H3a0.500500.126110.411810.03700*
H3b0.390830.155330.475540.03700*
H4a0.418420.019690.507230.03900*
H4b0.553170.034440.555700.03900*
H5a0.262340.020350.650360.03700*
H5b0.270120.106860.600750.03700*
H6a0.169410.108610.765210.03600*
H6b0.283540.071630.834750.03600*
H7a0.158800.260500.761400.03400*
H7b0.216840.230530.652770.03400*
H8a0.253430.366310.676850.03300*
H8b0.315940.350830.800120.03300*
H11a0.438780.441630.698280.03200*
H11b0.552030.402790.650240.03200*
H120.508820.387290.882470.03500*
H13a0.655350.483980.922190.06300*
H13b0.548340.521040.842620.06300*
H13c0.667900.495430.791580.06300*
H21a0.701850.201910.462770.03500*
H21b0.691180.121740.529860.03500*
H220.768410.268270.636520.03300*
H23a0.954670.208170.670690.05500*
H23b0.918480.210360.538570.05500*
H23c0.905730.130880.606770.05500*
H31a0.471850.052240.687800.04100*
H31b0.418070.014900.794220.04100*
H320.661130.012780.743530.03800*
H33a0.724700.063750.897160.07200*
H33b0.644560.115510.808240.07200*
H33c0.590440.083560.917830.07200*
H41a0.230670.179000.949990.03200*
H41b0.288920.263010.933800.03200*
H420.428220.122960.992080.03200*
H43a0.477270.180441.166990.04800*
H43b0.336440.169641.147700.04800*
H43c0.394190.253931.132540.04800*
H3a'1.131140.279151.137320.03500*
H5a'0.936820.129951.326920.03600*
H3b'1.116310.503761.240380.03900*
H5b'0.888910.347841.383850.03900*
H2ca1.004480.482930.714380.09600*
H2cb0.972270.397500.756730.09600*
H2cc0.901010.472130.794950.09600*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd0.01840 (10)0.02028 (11)0.01674 (10)0.00020 (16)0.00043 (6)0.00156 (10)
O10.0318 (14)0.0258 (13)0.0236 (11)0.0078 (11)0.0048 (10)0.0000 (10)
O20.0243 (11)0.0279 (16)0.0171 (9)0.0030 (8)0.0019 (8)0.0022 (8)
O30.0288 (13)0.0341 (15)0.0279 (12)0.0007 (11)0.0001 (10)0.0004 (10)
O40.0248 (12)0.0277 (13)0.0197 (10)0.0038 (8)0.0016 (9)0.0022 (8)
O1a0.0279 (10)0.0398 (13)0.0259 (9)0.006 (2)0.0075 (8)0.0033 (15)
O2a0.0458 (16)0.061 (2)0.0227 (12)0.0200 (14)0.0021 (11)0.0052 (12)
O3a0.0291 (14)0.0388 (16)0.0374 (14)0.0035 (12)0.0004 (12)0.0006 (12)
O5a0.0490 (17)0.081 (3)0.0297 (14)0.0071 (15)0.0132 (12)0.0057 (13)
O4a0.0325 (15)0.080 (2)0.0339 (14)0.0063 (15)0.0093 (12)0.0111 (14)
O7a0.0369 (18)0.097 (3)0.0484 (17)0.0270 (19)0.0049 (14)0.0248 (18)
O6a0.106 (4)0.130 (4)0.070 (2)0.076 (3)0.034 (2)0.064 (3)
O1b0.0368 (15)0.0372 (15)0.0277 (12)0.0010 (12)0.0070 (11)0.0011 (11)
O2b0.0512 (18)0.0401 (16)0.0407 (15)0.0043 (13)0.0036 (14)0.0153 (13)
O3b0.042 (2)0.069 (2)0.091 (3)0.0084 (17)0.0092 (18)0.043 (2)
O5b0.050 (2)0.101 (3)0.0303 (15)0.0151 (18)0.0044 (13)0.0124 (17)
O4b0.060 (3)0.063 (2)0.057 (2)0.002 (2)0.0301 (18)0.0096 (17)
O7b0.0351 (17)0.057 (2)0.0515 (18)0.0100 (15)0.0057 (15)0.0023 (15)
O6b0.057 (2)0.070 (2)0.0542 (18)0.0152 (18)0.0233 (16)0.0167 (17)
N10.0213 (17)0.0254 (18)0.0173 (14)0.0023 (13)0.0001 (13)0.0006 (12)
N20.0249 (11)0.0274 (12)0.0191 (10)0.001 (2)0.0006 (8)0.0028 (17)
N30.0245 (18)0.0241 (18)0.0272 (16)0.0037 (14)0.0005 (14)0.0040 (13)
N40.0215 (11)0.0259 (15)0.0218 (10)0.0019 (16)0.0005 (8)0.0000 (15)
N1a0.0236 (14)0.0355 (17)0.0264 (14)0.0028 (13)0.0003 (11)0.0044 (12)
N2a0.0353 (16)0.053 (3)0.0228 (14)0.0101 (16)0.0063 (12)0.0074 (13)
N3a0.040 (2)0.039 (2)0.0273 (15)0.0000 (15)0.0017 (14)0.0026 (14)
N1b0.040 (2)0.0277 (17)0.0382 (17)0.0033 (14)0.0027 (15)0.0076 (13)
N2b0.045 (2)0.057 (2)0.0316 (18)0.0175 (19)0.0085 (16)0.0033 (17)
N3b0.038 (2)0.0325 (19)0.0364 (17)0.0037 (15)0.0162 (15)0.0014 (15)
N1c0.047 (3)0.060 (3)0.048 (2)0.011 (2)0.003 (2)0.0136 (19)
C10.032 (2)0.0287 (19)0.0210 (15)0.0001 (15)0.0051 (14)0.0065 (13)
C20.032 (2)0.032 (2)0.0197 (15)0.0008 (16)0.0001 (14)0.0080 (14)
C30.031 (2)0.037 (2)0.0199 (16)0.0035 (16)0.0011 (14)0.0042 (14)
C40.035 (2)0.031 (2)0.0284 (17)0.0023 (16)0.0030 (15)0.0104 (14)
C50.0293 (19)0.030 (2)0.0284 (18)0.0099 (15)0.0016 (15)0.0029 (15)
C60.0253 (18)0.028 (2)0.0323 (17)0.0088 (15)0.0021 (15)0.0010 (15)
C70.0205 (16)0.032 (2)0.0283 (16)0.0010 (14)0.0006 (13)0.0014 (15)
C80.0241 (17)0.0267 (19)0.0268 (17)0.0050 (14)0.0013 (15)0.0045 (15)
C110.025 (2)0.021 (2)0.033 (2)0.0009 (15)0.0016 (16)0.0047 (15)
C120.028 (2)0.022 (2)0.034 (2)0.0049 (15)0.0009 (16)0.0052 (15)
C130.039 (2)0.026 (2)0.059 (3)0.0048 (19)0.013 (2)0.0150 (19)
C210.0284 (16)0.033 (3)0.0222 (14)0.0005 (13)0.0030 (12)0.0008 (13)
C220.0278 (15)0.026 (3)0.0241 (14)0.0036 (13)0.0046 (12)0.0002 (12)
C230.0272 (15)0.051 (2)0.0319 (15)0.001 (2)0.0034 (12)0.007 (2)
C310.035 (2)0.022 (2)0.043 (3)0.0037 (17)0.004 (2)0.0034 (16)
C320.033 (2)0.021 (2)0.037 (2)0.0040 (17)0.0030 (17)0.0038 (15)
C330.042 (3)0.034 (3)0.064 (3)0.001 (2)0.003 (2)0.016 (2)
C410.0254 (14)0.028 (2)0.0245 (13)0.0003 (16)0.0035 (11)0.0017 (15)
C420.0301 (16)0.022 (2)0.0240 (14)0.0006 (12)0.0022 (12)0.0047 (12)
C430.0454 (17)0.0277 (16)0.0240 (13)0.004 (3)0.0048 (12)0.001 (2)
C1a0.0267 (13)0.0232 (14)0.0225 (12)0.001 (2)0.0014 (10)0.002 (2)
C2a0.0260 (17)0.0257 (18)0.0234 (15)0.0063 (14)0.0004 (13)0.0048 (13)
C3a0.0216 (16)0.034 (2)0.0274 (16)0.0062 (14)0.0022 (13)0.0112 (14)
C4a0.0280 (15)0.039 (3)0.0233 (13)0.007 (2)0.0071 (11)0.0066 (17)
C5a0.037 (2)0.0305 (18)0.0197 (15)0.0111 (16)0.0007 (14)0.0016 (13)
C6a0.0292 (18)0.0276 (19)0.0259 (16)0.0024 (14)0.0006 (14)0.0023 (14)
C1b0.0265 (17)0.0249 (18)0.0281 (16)0.0043 (13)0.0010 (14)0.0013 (13)
C2b0.0333 (19)0.0236 (18)0.0271 (17)0.0022 (14)0.0003 (14)0.0019 (13)
C3b0.030 (2)0.028 (2)0.036 (2)0.0001 (16)0.0005 (16)0.0043 (15)
C4b0.035 (2)0.035 (2)0.0282 (17)0.0097 (16)0.0047 (15)0.0057 (15)
C5b0.037 (2)0.031 (2)0.0254 (16)0.0130 (15)0.0081 (14)0.0030 (14)
C6b0.0305 (18)0.0222 (17)0.0285 (16)0.0071 (14)0.0083 (14)0.0017 (13)
C1c0.051 (3)0.035 (2)0.042 (2)0.0062 (19)0.009 (2)0.0105 (18)
C2c0.076 (4)0.062 (4)0.054 (3)0.012 (3)0.012 (3)0.005 (3)
Geometric parameters (Å, º) top
Cd—O12.845 (2)C5—H5b0.938
Cd—O22.404 (2)C6—H6a0.944
Cd—O32.566 (2)C6—H6b0.951
Cd—O42.378 (2)C7—C81.524 (5)
Cd—N12.459 (3)C7—H7a0.953
Cd—N22.440 (2)C7—H7b0.943
Cd—N32.525 (3)C8—H8a0.945
Cd—N42.469 (2)C8—H8b0.954
O1—C121.436 (5)C11—C121.496 (6)
O1—H10.882C11—H11a0.943
O2—C221.442 (4)C11—H11b0.957
O2—H20.814C12—C131.529 (6)
O3—C321.426 (5)C12—H120.952
O3—H30.913C13—H13a0.953
O4—C421.442 (4)C13—H13b0.951
O4—H41.002C13—H13c0.946
O1a—C1a1.245 (3)C21—C221.515 (4)
O1b—C1b1.236 (4)C21—H21a0.953
O2a—N1a1.226 (4)C21—H21b0.951
O3a—N1a1.237 (4)C22—C231.515 (5)
O5a—N2a1.232 (4)C22—H220.952
O4a—N2a1.233 (5)C23—H23a0.950
O7a—N3a1.190 (4)C23—H23b0.950
O6a—N3a1.209 (6)C23—H23c0.951
O2b—N1b1.226 (4)C31—C321.523 (6)
O3b—N1b1.229 (5)C31—H31a0.954
O5b—N2b1.236 (5)C31—H31b0.952
O4b—N2b1.231 (6)C32—C331.521 (6)
O7b—N3b1.205 (4)C32—H320.946
O6b—N3b1.230 (5)C33—H33a0.947
N1—C11.486 (4)C33—H33b0.955
N1—C81.474 (5)C33—H33c0.942
N1—C111.496 (5)C41—C421.523 (4)
N2—C21.502 (5)C41—H41a0.950
N2—C31.475 (5)C41—H41b0.950
N2—C211.479 (4)C42—C431.511 (4)
N3—C41.482 (5)C42—H420.950
N3—C51.493 (5)C43—H43a0.946
N3—C311.475 (6)C43—H43b0.944
N4—C61.497 (5)C43—H43c0.962
N4—C71.479 (5)C1a—C2a1.461 (5)
N4—C411.483 (4)C1a—C6a1.462 (5)
N1a—C2a1.451 (4)C2a—C3a1.373 (4)
N2a—C4a1.454 (4)C3a—C4a1.387 (5)
N3a—C6a1.454 (5)C3a—H3a'0.954
N1b—C2b1.458 (5)C4a—C5a1.373 (6)
N2b—C4b1.440 (5)C5a—C6a1.381 (5)
N3b—C6b1.448 (5)C5a—H5a'0.949
N1c—C1c1.129 (6)C1b—C2b1.459 (5)
C1—C21.509 (5)C1b—C6b1.461 (5)
C1—H1a0.951C2b—C3b1.367 (5)
C1—H1b0.950C3b—C4b1.404 (6)
C2—H2a0.954C3b—H3b'0.945
C2—H2b0.947C4b—C5b1.378 (5)
C3—C41.519 (5)C5b—C6b1.376 (5)
C3—H3a0.951C5b—H5b'0.950
C3—H3b0.950C1c—C2c1.474 (7)
C4—H4a0.951C2c—H2ca0.940
C4—H4b0.949C2c—H2cb0.953
C5—C61.519 (5)C2c—H2cc0.958
C5—H5a0.948
O1—H1—O1b137.44N4—C7—H7a108.9
O1—H1—O1a124.22N4—C7—H7b109.4
O2—H2—O1a135.18C8—C7—H7a108.1
O3—H3—O1a129.02C8—C7—H7b108.5
O4—H4—O1a135.13H7a—C7—H7b109.8
O2—H2—O2a149.58N1—C8—C7113.5 (3)
O3—H3—O7a106.28N1—C8—H8a108.7
O1—Cd—O270.03 (7)N1—C8—H8b108.0
O1—Cd—O3111.57 (7)C7—C8—H8a108.7
O1—Cd—O467.61 (7)C7—C8—H8b108.3
O1—Cd—N166.37 (9)H8a—C8—H8b109.6
O1—Cd—N299.05 (10)N1—C11—C12114.3 (3)
O1—Cd—N3169.13 (10)N1—C11—H11a108.6
O1—Cd—N4116.65 (10)N1—C11—H11b107.7
O2—Cd—O370.13 (8)C12—C11—H11a109.0
O2—Cd—O4103.08 (7)C12—C11—H11b107.8
O2—Cd—N1119.11 (10)H11a—C11—H11b109.5
O2—Cd—N271.39 (7)O1—C12—C11106.0 (3)
O2—Cd—N399.86 (10)O1—C12—C13113.3 (3)
O2—Cd—N4166.22 (9)O1—C12—H12109.9
O3—Cd—O470.37 (8)C11—C12—C13108.5 (3)
O3—Cd—N1166.74 (10)C11—C12—H12112.7
O3—Cd—N2117.23 (11)C13—C12—H12106.6
O3—Cd—N366.95 (9)C12—C13—H13a109.1
O3—Cd—N496.09 (10)C12—C13—H13b109.6
O4—Cd—N197.41 (9)C12—C13—H13c109.6
O4—Cd—N2166.66 (10)H13a—C13—H13b109.2
O4—Cd—N3120.02 (9)H13a—C13—H13c109.6
O4—Cd—N470.70 (8)H13b—C13—H13c109.8
N1—Cd—N275.79 (12)N2—C21—C22113.7 (3)
N1—Cd—N3117.67 (11)N2—C21—H21a108.6
N1—Cd—N474.40 (12)N2—C21—H21b108.4
N2—Cd—N373.25 (12)C22—C21—H21a108.4
N2—Cd—N4117.29 (7)C22—C21—H21b108.5
N3—Cd—N474.10 (12)H21a—C21—H21b109.1
Cd—O1—C12103.6 (2)O2—C22—C21105.4 (3)
Cd—O1—H1110.99O2—C22—C23112.1 (3)
C12—O1—H1109.8O2—C22—H22110.4
Cd—O2—C22111.50 (17)C21—C22—C23109.5 (3)
Cd—O2—H2109.82C21—C22—H22113.1
C22—O2—H2106.6C23—C22—H22106.4
Cd—O3—C32110.1 (2)C22—C23—H23a109.6
Cd—O3—H3112.19C22—C23—H23b109.5
C32—O3—H3101.7C22—C23—H23c109.3
Cd—O4—C42110.57 (16)H23a—C23—H23b109.5
Cd—O4—H4113.37H23a—C23—H23c109.4
C42—O4—H4102.9H23b—C23—H23c109.5
Cd—N1—C1104.9 (2)N3—C31—C32112.0 (4)
Cd—N1—C8108.4 (2)N3—C31—H31a108.5
Cd—N1—C11115.8 (2)N3—C31—H31b109.0
C1—N1—C8110.5 (3)C32—C31—H31a109.1
C1—N1—C11109.1 (3)C32—C31—H31b109.3
C8—N1—C11108.1 (3)H31a—C31—H31b109.0
Cd—N2—C2107.1 (2)O3—C32—C31104.5 (3)
Cd—N2—C3109.5 (2)O3—C32—C33112.9 (3)
Cd—N2—C21109.91 (16)O3—C32—H32111.2
C2—N2—C3110.0 (2)C31—C32—C33110.8 (4)
C2—N2—C21110.4 (3)C31—C32—H32112.7
C3—N2—C21109.9 (3)C33—C32—H32104.9
Cd—N3—C4108.2 (2)C32—C33—H33a109.0
Cd—N3—C5106.0 (2)C32—C33—H33b108.8
Cd—N3—C31113.3 (2)C32—C33—H33c109.6
C4—N3—C5110.3 (3)H33a—C33—H33b109.3
C4—N3—C31109.3 (3)H33a—C33—H33c110.4
C5—N3—C31109.7 (3)H33b—C33—H33c109.7
Cd—N4—C6108.7 (2)N4—C41—C42111.9 (3)
Cd—N4—C7107.6 (2)N4—C41—H41a108.9
Cd—N4—C41110.14 (17)N4—C41—H41b108.6
C6—N4—C7110.5 (2)C42—C41—H41a109.0
C6—N4—C41109.5 (3)C42—C41—H41b109.0
C7—N4—C41110.4 (3)H41a—C41—H41b109.5
O2a—N1a—O3a122.0 (3)O4—C42—C41105.0 (2)
O2a—N1a—C2a119.1 (3)O4—C42—C43112.7 (3)
O3a—N1a—C2a118.8 (3)O4—C42—H42110.7
O5a—N2a—O4a124.1 (3)C41—C42—C43110.3 (3)
O5a—N2a—C4a117.3 (3)C41—C42—H42112.8
O4a—N2a—C4a118.6 (3)C43—C42—H42105.5
O7a—N3a—O6a121.0 (4)C42—C43—H43a109.8
O7a—N3a—C6a120.2 (3)C42—C43—H43b110.0
O6a—N3a—C6a118.9 (4)C42—C43—H43c108.9
O2b—N1b—O3b122.7 (4)H43a—C43—H43b110.4
O2b—N1b—C2b118.7 (3)H43a—C43—H43c108.8
O3b—N1b—C2b118.6 (3)H43b—C43—H43c109.0
O5b—N2b—O4b123.9 (3)O1a—C1a—C2a124.3 (3)
O5b—N2b—C4b117.3 (4)O1a—C1a—C6a124.2 (3)
O4b—N2b—C4b118.8 (4)C2a—C1a—C6a111.6 (2)
O7b—N3b—O6b121.6 (4)N1a—C2a—C1a120.0 (3)
O7b—N3b—C6b120.2 (3)N1a—C2a—C3a115.5 (3)
O6b—N3b—C6b118.2 (3)C1a—C2a—C3a124.5 (3)
N1—C1—C2112.8 (3)C2a—C3a—C4a118.8 (3)
N1—C1—H1a108.9C2a—C3a—H3a'120.7
N1—C1—H1b108.8C4a—C3a—H3a'120.5
C2—C1—H1a108.3N2a—C4a—C3a117.7 (3)
C2—C1—H1b108.6N2a—C4a—C5a120.4 (3)
H1a—C1—H1b109.4C3a—C4a—C5a121.8 (3)
N2—C2—C1111.8 (3)C4a—C5a—C6a119.6 (3)
N2—C2—H2a108.3C4a—C5a—H5a'120.8
N2—C2—H2b108.9C6a—C5a—H5a'119.6
C1—C2—H2a109.1N3a—C6a—C1a120.6 (3)
C1—C2—H2b109.4N3a—C6a—C5a115.7 (3)
H2a—C2—H2b109.4C1a—C6a—C5a123.6 (3)
N2—C3—C4112.5 (3)O1b—C1b—C2b122.8 (3)
N2—C3—H3a108.9O1b—C1b—C6b125.6 (3)
N2—C3—H3b109.1C2b—C1b—C6b111.5 (3)
C4—C3—H3a108.5N1b—C2b—C1b117.0 (3)
C4—C3—H3b108.5N1b—C2b—C3b117.2 (3)
H3a—C3—H3b109.4C1b—C2b—C3b125.7 (3)
N3—C4—C3112.5 (3)C2b—C3b—C4b117.1 (4)
N3—C4—H4a108.7C2b—C3b—H3b'121.3
N3—C4—H4b108.9C4b—C3b—H3b'121.6
C3—C4—H4a108.6N2b—C4b—C3b118.2 (3)
C3—C4—H4b108.6N2b—C4b—C5b120.2 (3)
H4a—C4—H4b109.4C3b—C4b—C5b121.6 (3)
N3—C5—C6112.0 (3)C4b—C5b—C6b120.5 (3)
N3—C5—H5a108.6C4b—C5b—H5b'119.4
N3—C5—H5b109.2C6b—C5b—H5b'120.1
C6—C5—H5a107.9N3b—C6b—C1b118.7 (3)
C6—C5—H5b108.6N3b—C6b—C5b118.8 (3)
H5a—C5—H5b110.6C1b—C6b—C5b122.4 (3)
N4—C6—C5112.9 (3)N1c—C1c—C2c179.6 (5)
N4—C6—H6a108.7C1c—C2c—H2ca110.3
N4—C6—H6b108.4C1c—C2c—H2cb109.4
C5—C6—H6a108.4C1c—C2c—H2cc109.0
C5—C6—H6b108.5H2ca—C2c—H2cb110.0
H6a—C6—H6b109.9H2ca—C2c—H2cc109.6
N4—C7—C8112.1 (3)H2cb—C2c—H2cc108.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1a0.882.623.197 (4)124
O1—H1···O1b0.882.202.913 (3)137
O2—H2···O1a0.812.212.840 (3)135
O3—H3···O1a0.912.343.000 (4)129
O4—H4···O1a1.002.102.894 (3)135

Experimental details

Crystal data
Chemical formula[Cd(C20H44N4O4)]·(C6H2N3O7)2·C2H3N
Mr1014.25
Crystal system, space groupMonoclinic, P21
Temperature (K)168
a, b, c (Å)10.980 (2), 16.575 (3), 11.640 (2)
β (°) 95.51 (1)
V3)2108.6 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.61
Crystal size (mm)0.60 × 0.42 × 0.15
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Bruker, 1997)
Tmin, Tmax0.779, 0.913
No. of measured, independent and
observed (F2 > 0) reflections
15919, 8289, 4248
Rint0.016
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.057, 1.23
No. of reflections8289
No. of parameters578
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.37, 0.31
Absolute structureFlack (1983), 3983 Friedel pairs
Absolute structure parameter0.018 (14)

Computer programs: SMART (Bruker, 1997), SMART, SAINT (Bruker, 1997) and Xtal3.7 ADDREF SORTRF (Hall et al., 2000), SIR97 (Altomare et al., 1994), Xtal3.7 CRYLSQ, Xtal3.7 BONDLA CIFIO.

Selected bond lengths (Å) top
Cd—O12.845 (2)Cd—N22.440 (2)
Cd—O22.404 (2)Cd—N32.525 (3)
Cd—O32.566 (2)Cd—N42.469 (2)
Cd—O42.378 (2)O1a—C1a1.245 (3)
Cd—N12.459 (3)O1b—C1b1.236 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1a0.882.623.197 (4)124
O1—H1···O1b0.882.202.913 (3)137
O2—H2···O1a0.812.212.840 (3)135
O3—H3···O1a0.912.343.000 (4)129
O4—H4···O1a1.002.102.894 (3)135
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds