Download citation
Download citation
link to html
The title compound, C24H20P+·C9H17NO5S-, consists of an organic monovalent cation and an organic monovalent anion, the latter being derived from the TEMPO radical (TEMPO is 2,2,6,6-tetra­methyl­piperidin-1-oxyl). Two inversion-related anions interact via two -O-H...O-S- hydrogen bonds, forming a dimer in which there are no short contacts between the spin centres (-N-O) of the TEMPO(OH)SO3- anions. Furthermore, no significant magnetic interaction is observed between the dimers because the dimer is surrounded by cations. These results are consistent with the paramagnetic behaviour of the title salt.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103012824/ob1128sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103012824/ob1128Isup2.hkl
Contains datablock I

CCDC reference: 219568

Comment top

In recent decades, many stable organic radicals and their derivatives have been synthesized because they are suitable for use in studying the magnetic properties of molecular materials (Kahn, 1993). Our current interests are in the preparation, elucidation of structure and characterization of stable organic radical anions that are useful not only as components of magnetic materials but also as counter-ions of organic conductors (Akutsu et al., 2001a, 2001b). We have examined the anion that is the bisulfide adduct of 4-Oxo-TEMPO (TEMPO = 2,2,6,6-tetramethylpiperidin-1-oxyl), and we report here the structure of the tetraphenylphosphonium salt, viz. the title compound, (I).

The crystal is constructed from the tetraphenyphosphonium cation and the anion. A view of the anion is shown in Fig. 1 and selected dimensions are presented in Table 1. The anion forms a dimer about the centre of symmetry, with hydrogen bonds between sulfonate atom O1 and hydroxy atom O4 in the centrosymmetrically related molecule (Fig. 1 and Table 2). Similar hydrogen bonds are observed in another dimeric bisulfide adduct, namely potassium hydroxymethanesulfonate (Cameron & Chute, 1979).

The O5···O5(-x, 1 − y, 2 − z) distance between the spin centres of the TEMPO anions in the dimer is 12.192 (5) Å, indicating that magnetic interactions are unlikely via this intradimer route. Each dimer is also surrounded by tetraphenylphosphonium cations, which add to the magnetic isolation. In fact, the nearest distance, O5···O5(1 − x, −y, 1 − z), is 6.678 (5) Å, which is too large to allow any significant magnetic interactions in the crystal. These results are consistent with the bulk magnetic properties of this salt (Currie-Weiss behaviour from 2–300 K with C = 0.391 emu mol−1 K−1 and θ = −0.137 K).

Experimental top

For the preparation of (I), the corresponding sodium salt was prepared by reacting 4-oxo-TEMPO (1.0 g, 5.9 mmol) with NaHSO3 (1.8 g, 18 mmol) in a mixed solvent of tetrahydrofuran (10 ml), water (10 ml) and H2SO4 (30%, 1.7 g) at 278–280 K, with stirring for 1–2 min. Exchange of the counter-cation with tetraphenylphosphonium chloride gave the title salt, (I), as orange needle-like crystals after recrystallization from CH2Cl2/toluene (overall yield 62%).

Refinement top

There is positional disorder in one of the sulfonate O atoms, and this O atom was refined over two possible positions (O31 and O32), each with an occupancy of 50%. The elongated displacement ellipsoids of the sulfonate O atoms suggest rotational disorder of the –SO3 group. All H atoms were located from difference density maps and assigned fixed distances and Uiso values of 0.0507 Å2.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Coorporation, 1994); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN for Windows (Molecular Structure Corporation, 1997-1999); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Watkin et al., 2001); software used to prepare material for publication: TEXSAN for Windows.

Figures top
[Figure 1] Fig. 1. A view of the anions in (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) −x, 1 − y, 2 − z.]
Tetraphenylphosphonium 2,2,6,6-Tetramethylpiperidinyloxy-4-hydroxy-4-sulfonate top
Crystal data top
C24H20P+·C9H17NO5SZ = 2
Mr = 590.69F(000) = 626.00
Triclinic, P1Dx = 1.299 Mg m3
Hall symbol: -p 1Mo Kα radiation, λ = 0.7107 Å
a = 11.733 (2) ÅCell parameters from 24 reflections
b = 12.212 (3) Åθ = 14.9–15.0°
c = 11.501 (3) ŵ = 0.20 mm1
α = 103.79 (2)°T = 296 K
β = 96.89 (2)°Block, orange
γ = 70.82 (1)°0.50 × 0.50 × 0.30 mm
V = 1510.1 (6) Å3
Data collection top
Rigaku AFC-7R
diffractometer
4180 reflections with I > 3σ(I)
Radiation source: Rigaku rotating anodeRint = 0.032
Graphite monochromatorθmax = 27.5°, θmin = 2.1°
ω/2θ scansh = 015
Absorption correction: psi scan
(North et al., 1968)
k = 1415
Tmin = 0.888, Tmax = 0.941l = 1414
7269 measured reflections3 standard reflections every 150 reflections
6933 independent reflections intensity decay: 0.5%
Refinement top
Refinement on F0 restraints
Least-squares matrix: full0 constraints
R[F2 > 2σ(F2)] = 0.058H-atom parameters not refined
wR(F2) = 0.051 Method = Prince modified Chebychev polynomial (Watkin, 1994) W = [weight] * [1-(deltaF/6*sigmaF)2]2
3.99 -1.74 2.77
S = 1.19(Δ/σ)max = 0.000202
4185 reflectionsΔρmax = 0.56 e Å3
379 parametersΔρmin = 0.46 e Å3
Crystal data top
C24H20P+·C9H17NO5Sγ = 70.82 (1)°
Mr = 590.69V = 1510.1 (6) Å3
Triclinic, P1Z = 2
a = 11.733 (2) ÅMo Kα radiation
b = 12.212 (3) ŵ = 0.20 mm1
c = 11.501 (3) ÅT = 296 K
α = 103.79 (2)°0.50 × 0.50 × 0.30 mm
β = 96.89 (2)°
Data collection top
Rigaku AFC-7R
diffractometer
4180 reflections with I > 3σ(I)
Absorption correction: psi scan
(North et al., 1968)
Rint = 0.032
Tmin = 0.888, Tmax = 0.9413 standard reflections every 150 reflections
7269 measured reflections intensity decay: 0.5%
6933 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.051H-atom parameters not refined
S = 1.19Δρmax = 0.56 e Å3
4185 reflectionsΔρmin = 0.46 e Å3
379 parameters
Special details top

Experimental. The scan width was (1.78 + 0.30tanθ)° with an ω scan speed of 0° per minute (up to 2 scans to achieve I/σ(I) > 10). Stationary background counts were recorded at each end of the scan, and the scan time:background time ratio was 2:1.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.02847 (9)0.32821 (8)1.10460 (8)0.0642
P10.63854 (6)0.30107 (6)0.61523 (6)0.0338
O10.0535 (3)0.4399 (2)1.0929 (4)0.1280
O20.0326 (3)0.2411 (2)1.0915 (2)0.0784
O310.0990 (16)0.3649 (11)1.2027 (12)0.12390.5000
O320.1124 (13)0.3037 (9)1.2150 (11)0.08810.5000
O40.1925 (2)0.3617 (2)0.9900 (2)0.0722
O50.2667 (2)0.0418 (2)0.66355 (19)0.0666
N10.2189 (2)0.1111 (2)0.75956 (19)0.0437
C10.7352 (2)0.3395 (2)0.5325 (2)0.0375
C20.7856 (3)0.2583 (3)0.4296 (3)0.0454
C30.8631 (3)0.2844 (3)0.3660 (3)0.0554
C40.8904 (3)0.3895 (4)0.4049 (3)0.0620
C50.8419 (3)0.4688 (3)0.5050 (3)0.0622
C60.7632 (3)0.4445 (3)0.5696 (3)0.0493
C70.7262 (2)0.1841 (2)0.6897 (2)0.0369
C80.7806 (3)0.0725 (2)0.6215 (3)0.0458
C90.8519 (3)0.0168 (3)0.6773 (3)0.0552
C100.8702 (3)0.0036 (3)0.7999 (3)0.0565
C110.8174 (4)0.1140 (3)0.8673 (3)0.0640
C120.7453 (3)0.2039 (3)0.8132 (3)0.0541
C130.5319 (2)0.2491 (2)0.5107 (2)0.0362
C140.4792 (3)0.1731 (3)0.5396 (3)0.0462
C150.3904 (3)0.1392 (3)0.4629 (3)0.0557
C160.3549 (3)0.1805 (3)0.3589 (3)0.0557
C170.4070 (3)0.2553 (3)0.3294 (3)0.0513
C180.4957 (3)0.2906 (2)0.4057 (3)0.0424
C190.5585 (2)0.4259 (2)0.7246 (2)0.0373
C200.6206 (3)0.4883 (3)0.8139 (3)0.0515
C210.5575 (4)0.5817 (3)0.8978 (3)0.0667
C220.4342 (4)0.6145 (3)0.8963 (3)0.0690
C230.3710 (3)0.5533 (3)0.8114 (3)0.0619
C240.4334 (3)0.4594 (3)0.7243 (3)0.0465
C250.1268 (3)0.2807 (3)0.9762 (3)0.0465
C260.2127 (3)0.1579 (3)0.9812 (3)0.0594
C270.0505 (2)0.2746 (3)0.8611 (3)0.0445
C280.2891 (3)0.0927 (3)0.8721 (3)0.0562
C290.1211 (2)0.2211 (3)0.7458 (3)0.0454
C300.3268 (5)0.0408 (4)0.8696 (4)0.0951
C310.4017 (3)0.1322 (5)0.8752 (4)0.0901
C320.0351 (4)0.1852 (5)0.6452 (3)0.0887
C330.1728 (4)0.3077 (3)0.7104 (4)0.0750
H10.14000.43500.97540.0507*
H20.76460.19020.40590.0507*
H30.89720.23010.29570.0507*
H40.94270.40660.35930.0507*
H50.86170.53980.53070.0507*
H60.73140.50020.63670.0507*
H80.76900.05630.53660.0507*
H90.88730.09420.62910.0507*
H100.91950.06070.83270.0507*
H110.83140.13160.95240.0507*
H120.71620.28130.85680.0507*
H140.50560.14440.61100.0507*
H150.35840.08630.48870.0507*
H160.29390.15860.30650.0507*
H170.38180.28610.25900.0507*
H180.52990.34590.38590.0507*
H200.71030.46240.81690.0507*
H210.59490.62490.95320.0507*
H220.39120.67780.95540.0507*
H230.28580.57580.81160.0507*
H240.39310.41860.66770.0507*
H2610.16440.11170.98910.0507*
H2620.26850.16671.04660.0507*
H2710.00200.22770.86020.0507*
H2720.00510.35620.85540.0507*
H3010.29840.05170.93810.0507*
H3020.29450.07880.79910.0507*
H3030.41320.07130.87130.0507*
H3110.47210.06450.87570.0507*
H3120.39930.16150.80570.0507*
H3130.40320.19050.94470.0507*
H3210.04450.21310.67200.0507*
H3220.03820.21690.57840.0507*
H3230.05950.10040.62150.0507*
H3310.22680.32800.76910.0507*
H3320.20910.27160.63840.0507*
H3330.10860.37520.69970.0507*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0720 (6)0.0542 (5)0.0545 (5)0.0084 (4)0.0260 (4)0.0063 (4)
P10.0321 (3)0.0340 (3)0.0359 (3)0.0101 (3)0.0046 (3)0.0072 (3)
O10.139 (3)0.0517 (16)0.192 (4)0.0171 (17)0.126 (3)0.0320 (19)
O20.119 (2)0.0614 (15)0.0626 (15)0.0285 (15)0.0402 (15)0.0095 (12)
O310.144 (11)0.163 (12)0.050 (6)0.064 (11)0.030 (6)0.042 (8)
O320.088 (5)0.116 (8)0.033 (3)0.011 (6)0.004 (3)0.006 (5)
O40.0531 (13)0.0586 (14)0.0931 (18)0.0212 (12)0.0189 (13)0.0191 (13)
O50.0806 (17)0.0633 (15)0.0403 (12)0.0112 (12)0.0127 (11)0.007 (1)
N10.0487 (14)0.0435 (13)0.0325 (12)0.0106 (11)0.002 (1)0.001 (1)
C10.0281 (12)0.0424 (14)0.0432 (14)0.0059 (11)0.0049 (11)0.0167 (12)
C20.0392 (15)0.0525 (17)0.0434 (15)0.0096 (13)0.0055 (12)0.0130 (13)
C30.0396 (16)0.076 (2)0.0477 (17)0.0062 (15)0.0099 (14)0.0214 (16)
C40.0428 (17)0.091 (3)0.067 (2)0.0260 (18)0.0101 (16)0.034 (2)
C50.056 (2)0.065 (2)0.082 (2)0.0308 (17)0.0111 (18)0.0235 (18)
C60.0472 (17)0.0472 (16)0.0588 (18)0.0170 (14)0.0135 (14)0.0126 (14)
C70.0361 (14)0.0395 (14)0.0384 (14)0.0132 (11)0.0002 (11)0.0133 (11)
C80.0527 (17)0.0387 (15)0.0425 (15)0.0119 (13)0.0011 (13)0.0070 (12)
C90.062 (2)0.0398 (16)0.060 (2)0.0111 (15)0.0022 (16)0.0121 (14)
C100.0583 (19)0.0541 (19)0.064 (2)0.0161 (16)0.0085 (16)0.0332 (16)
C110.081 (2)0.070 (2)0.0429 (17)0.020 (2)0.0025 (17)0.0225 (16)
C120.070 (2)0.0504 (18)0.0404 (16)0.0130 (16)0.0108 (15)0.0108 (13)
C130.0359 (14)0.0309 (13)0.0408 (14)0.0095 (11)0.0044 (11)0.0053 (11)
C140.0470 (16)0.0481 (16)0.0486 (16)0.0192 (13)0.0029 (13)0.0134 (13)
C150.0558 (19)0.0554 (19)0.065 (2)0.0314 (16)0.0013 (16)0.0115 (16)
C160.0529 (18)0.0574 (19)0.057 (2)0.0271 (16)0.0078 (15)0.0035 (15)
C170.0554 (18)0.0526 (18)0.0448 (16)0.0168 (15)0.0069 (14)0.0128 (14)
C180.0435 (15)0.0405 (15)0.0459 (15)0.0158 (12)0.0020 (12)0.0123 (12)
C190.0406 (14)0.0355 (14)0.0362 (13)0.0120 (11)0.0078 (11)0.0049 (11)
C200.0563 (19)0.0554 (18)0.0469 (17)0.0261 (15)0.0036 (14)0.0057 (14)
C210.101 (3)0.058 (2)0.0443 (17)0.040 (2)0.0120 (18)0.0082 (15)
C220.097 (3)0.0504 (19)0.0502 (19)0.0091 (19)0.032 (2)0.0018 (15)
C230.0549 (19)0.062 (2)0.059 (2)0.0016 (16)0.0213 (16)0.0141 (17)
C240.0440 (16)0.0478 (16)0.0455 (16)0.0092 (13)0.0077 (13)0.0103 (13)
C250.0430 (16)0.0412 (15)0.0459 (16)0.0062 (13)0.0093 (13)0.0024 (12)
C260.063 (2)0.059 (2)0.0348 (15)0.0051 (16)0.0017 (14)0.0058 (14)
C270.0353 (14)0.0482 (16)0.0512 (16)0.0073 (12)0.0070 (12)0.0181 (13)
C280.0539 (18)0.0522 (18)0.0393 (16)0.0087 (14)0.0018 (13)0.0039 (13)
C290.0362 (15)0.0573 (18)0.0432 (15)0.0071 (13)0.0018 (12)0.0218 (13)
C300.115 (3)0.064 (2)0.062 (2)0.039 (2)0.016 (2)0.0180 (19)
C310.0427 (19)0.125 (4)0.066 (2)0.003 (2)0.0083 (17)0.009 (2)
C320.054 (2)0.153 (4)0.048 (2)0.018 (2)0.0109 (17)0.027 (2)
C330.072 (2)0.066 (2)0.092 (3)0.0010 (18)0.040 (2)0.036 (2)
Geometric parameters (Å, º) top
S1—O11.413 (3)C15—H150.961
S1—O21.437 (3)C16—C171.373 (4)
S1—O311.392 (16)C16—H160.944
S1—O321.536 (13)C17—C181.391 (4)
S1—C251.846 (3)C17—H170.948
P1—C11.798 (3)C18—H180.972
P1—C71.800 (3)C19—C201.406 (4)
P1—C131.792 (3)C19—C241.389 (4)
P1—C191.794 (3)C20—C211.368 (4)
O31—O320.756 (16)C20—H200.993
O4—C251.412 (4)C21—C221.368 (6)
O4—H10.945C21—H210.896
O5—N11.281 (3)C22—C231.379 (5)
N1—C281.471 (4)C22—H220.943
N1—C291.481 (4)C23—C241.390 (4)
C1—C21.399 (4)C23—H230.947
C1—C61.385 (4)C24—H240.906
C2—C31.388 (4)C25—C261.517 (4)
C2—H20.915C25—C271.507 (4)
C3—C41.383 (5)C26—C281.529 (4)
C3—H30.950C26—H2610.946
C4—C51.360 (5)C26—H2620.946
C4—H40.953C27—C291.538 (4)
C5—C61.393 (4)C27—H2710.929
C5—H50.942C27—H2721.008
C6—H60.922C28—C301.536 (5)
C7—C81.385 (4)C28—C311.542 (6)
C7—C121.387 (4)C29—C321.523 (5)
C8—C91.380 (4)C29—C331.528 (5)
C8—H80.952C30—H3010.943
C9—C101.376 (5)C30—H3020.938
C9—H90.959C30—H3030.958
C10—C111.367 (5)C31—H3110.959
C10—H100.940C31—H3120.945
C11—C121.377 (5)C31—H3130.938
C11—H110.958C32—H3210.945
C12—H120.929C32—H3220.948
C13—C141.388 (4)C32—H3230.959
C13—C181.386 (4)C33—H3310.917
C14—C151.387 (4)C33—H3320.921
C14—H140.948C33—H3330.939
C15—C161.374 (5)
O1—S1—O2111.4 (2)C13—C18—H18120.699
O1—S1—O3199.3 (6)C17—C18—H18119.505
O2—S1—O31127.6 (6)P1—C19—C20121.1 (2)
O1—S1—O32125.2 (4)P1—C19—C24119.7 (2)
O2—S1—O32100.8 (5)C20—C19—C24119.1 (3)
O31—S1—O3229.4 (6)C19—C20—C21119.9 (3)
O1—S1—C25105.40 (16)C19—C20—H20119.483
O2—S1—C25106.50 (14)C21—C20—H20120.581
O31—S1—C25104.8 (7)C20—C21—C22120.6 (3)
O32—S1—C25106.4 (5)C20—C21—H21121.366
C1—P1—C7110.09 (12)C22—C21—H21118.003
C1—P1—C13107.89 (12)C21—C22—C23120.8 (3)
C7—P1—C13108.81 (12)C21—C22—H22120.184
C1—P1—C19111.79 (12)C23—C22—H22119.006
C7—P1—C19109.01 (12)C22—C23—C24119.5 (3)
C13—P1—C19109.19 (12)C22—C23—H23120.362
S1—O31—O3286 (2)C24—C23—H23120.107
S1—O32—O3164.7 (19)C19—C24—C23120.1 (3)
C25—O4—H1109.461C19—C24—H24119.376
O5—N1—C28115.9 (2)C23—C24—H24120.547
O5—N1—C29116.9 (2)S1—C25—O4107.71 (19)
C28—N1—C29124.5 (2)S1—C25—C26107.4 (2)
P1—C1—C2118.2 (2)O4—C25—C26110.0 (3)
P1—C1—C6122.0 (2)S1—C25—C27109.4 (2)
C2—C1—C6119.8 (2)O4—C25—C27112.9 (3)
C1—C2—C3119.3 (3)C26—C25—C27109.4 (2)
C1—C2—H2118.225C25—C26—C28116.3 (3)
C3—C2—H2122.467C25—C26—H261106.421
C2—C3—C4120.1 (3)C28—C26—H261107.584
C2—C3—H3119.873C25—C26—H262107.306
C4—C3—H3120.073C28—C26—H262105.608
C3—C4—C5121.0 (3)H261—C26—H262113.895
C3—C4—H4118.852C25—C27—C29115.4 (2)
C5—C4—H4120.176C25—C27—H271109.798
C4—C5—C6119.8 (3)C29—C27—H271105.839
C4—C5—H5120.049C25—C27—H272110.101
C6—C5—H5120.103C29—C27—H272108.291
C1—C6—C5120.1 (3)H271—C27—H272107.044
C1—C6—H6122.167N1—C28—C26111.5 (2)
C5—C6—H6117.745N1—C28—C30106.9 (3)
P1—C7—C8119.2 (2)C26—C28—C30107.6 (3)
P1—C7—C12121.8 (2)N1—C28—C31108.1 (3)
C8—C7—C12119.0 (3)C26—C28—C31112.4 (3)
C7—C8—C9119.8 (3)C30—C28—C31110.3 (3)
C7—C8—H8120.821N1—C29—C27109.9 (2)
C9—C8—H8119.427N1—C29—C32106.7 (3)
C8—C9—C10120.9 (3)C27—C29—C32107.9 (3)
C8—C9—H9118.842N1—C29—C33110.3 (2)
C10—C9—H9120.289C27—C29—C33113.0 (3)
C9—C10—C11119.5 (3)C32—C29—C33109.0 (3)
C9—C10—H10116.938C28—C30—H301108.821
C11—C10—H10123.603C28—C30—H302109.116
C10—C11—C12120.5 (3)H301—C30—H302111.118
C10—C11—H11121.176C28—C30—H303108.488
C12—C11—H11118.339H301—C30—H303109.377
C7—C12—C11120.5 (3)H302—C30—H303109.871
C7—C12—H12117.846C28—C31—H311108.422
C11—C12—H12121.237C28—C31—H312109.033
P1—C13—C14119.3 (2)H311—C31—H312109.196
P1—C13—C18120.57 (19)C28—C31—H313109.469
C14—C13—C18120.0 (2)H311—C31—H313109.730
C13—C14—C15119.6 (3)H312—C31—H313110.945
C13—C14—H14119.184C29—C32—H321109.980
C15—C14—H14121.193C29—C32—H322109.713
C14—C15—C16120.2 (3)H321—C32—H322110.102
C14—C15—H15114.887C29—C32—H323108.987
C16—C15—H15124.922H321—C32—H323109.139
C15—C16—C17120.6 (3)H322—C32—H323108.893
C15—C16—H16120.871C29—C33—H331109.889
C17—C16—H16118.568C29—C33—H332108.142
C16—C17—C18119.9 (3)H331—C33—H332111.300
C16—C17—H17121.456C29—C33—H333108.322
C18—C17—H17118.605H331—C33—H333110.433
C13—C18—C17119.8 (3)H332—C33—H333108.672
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1···O1i0.951.832.754 (5)165
Symmetry code: (i) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC24H20P+·C9H17NO5S
Mr590.69
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)11.733 (2), 12.212 (3), 11.501 (3)
α, β, γ (°)103.79 (2), 96.89 (2), 70.82 (1)
V3)1510.1 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.50 × 0.50 × 0.30
Data collection
DiffractometerRigaku AFC-7R
diffractometer
Absorption correctionPsi scan
(North et al., 1968)
Tmin, Tmax0.888, 0.941
No. of measured, independent and
observed [I > 3σ(I)] reflections
7269, 6933, 4180
Rint0.032
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.051, 1.19
No. of reflections4185
No. of parameters379
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.56, 0.46

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Coorporation, 1994), MSC/AFC Diffractometer Control Software, TEXSAN for Windows (Molecular Structure Corporation, 1997-1999), SIR92 (Altomare et al., 1994), CRYSTALS (Watkin et al., 2001), TEXSAN for Windows.

Selected bond lengths (Å) top
S1—O11.413 (3)C25—C261.517 (4)
S1—O21.437 (3)C25—C271.507 (4)
S1—O311.392 (16)C26—C281.529 (4)
S1—O321.536 (13)C27—C291.538 (4)
S1—C251.846 (3)C28—C301.536 (5)
O4—C251.412 (4)C28—C311.542 (6)
O5—N11.281 (3)C29—C321.523 (5)
N1—C281.471 (4)C29—C331.528 (5)
N1—C291.481 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1···O1i0.951.832.754 (5)165
Symmetry code: (i) x, y+1, z+2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds