Download citation
Download citation
link to html
The title complex, bis­[3,3'-(pyridine-4-imino-[kappa]N1)­di­propane­nitrile]silver(I) perchlorate, [Ag(CEAP)2]ClO4 {CEAP is 4-[N,N-bis(2-cyano­ethyl)­amino]­pyridine, C11H12N4}, has been prepared and characterized. The unit cell consists of two crystallographically non-equivalent mol­ecules. Cation cavities are constructed by [Ag(CEAP)2]+ cations through hydrogen bonds, and the ClO4- anions are incorporated into the cavities in [mu]4- and [mu]2-ClO4- bridging modes through C-H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103007613/ob1118sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103007613/ob1118Isup2.hkl
Contains datablock I

CCDC reference: 200614

Comment top

Recently, a series of compounds with zeolite-like molecular-sized channels, pores and cavities have been attracting considerable attention (Bowes et al., 1996; Kitazawa et al., 1992; Martin et al., 1998). These compounds can bind many molecules into their cavities, which gives them unique properties as catalysts, as ion-exchangers, for molecular separation sorption, etc. (Behrens et al., 1997; Fujita et al., 1994; Hoelderich et al., 1988). The cavities are constructed by organic components as well as by coordination polymers. Clearly, molecular recognition and self-organization are important factors in the sorbing of the guest (Ducharme et al., 1988; Endo et al., 1995; Geib et al., 1991). It has been found that hydrogen-bonding interactions are very important for molecular recognition in a wide variety of crystal-packing configurations (Bishop et al., 1993; Hunter, 1994; Smith, 1998; Zaworotko, 1994). Silver is an important element, with abundant catalytic properties. Absorbed oxygen on the silver surface is well known in the catalysis of epoxide fomation and oxidative coupling of methane (Epling et al., 1997; Minahan et al., 1996; Serafin et al., 1998). Silver complexes have also been well documented as catalysts in many reactions, such as enantioselective alkylation of imino easter (Ferraris et al., 2002) and the hetero-Diels-Alder reaction (Hague et al., 2001). In this paper, we report the synthesis of the title compound, (I), which shows a two-dimensional layer structure.

The unit cell of (I) consists of two types of basic units that have the same chemical composition but crystallographically non-equivalent conformation. Each unit contains an Ag(CEAP)2+ cation and a ClO4 anion, and they form a vaulted structure. In the cation, each Ag atom is coordinated by two N atoms in the pyridine rings of two ligands, with Ag—N distances in the range 2.138 (3)–2.142 (3) Å and N—Ag—N angles of 179.1 (1)° in unit (a) and 177.1 (1)° in unit (b). The bond distances and angles are all within the range typically observed in Ag complexes (Furuta et al., 1999; Ozutsumi et al., 1997; Smith et al., 1999). The Cl—O distances in the two units are 1.396 (3)–1.460 (3) Å, which are also within the typical range (Riera et al., 1998). The dramatic difference between units (a) and (b) is the dihedral angle of the ligands. In unit (a), which consists of the Ag1 complex and Cl1 perchlorate, the angle between the planes of the two pyridine rings of the ligand is 45.8 (2)°. But in unit (b), which consists of the Ag2 complex and Cl2 perchlorate, the two pyridine rings are nearly coplanar and the angle between their planes is 16.7 (2)°. The complex packing consists of parallel layers. In one layer, all arc-centers of the vaulted cations have the same positions, and they stack above or below the plane. The two adjacent layers form a zip-like structure, and they are connected via? C—H···N hydrogen bonds (C4—H4···N4i, C40—H40A···N4, C35—H35···N16v; Table 2). We also found that neighboring layers slide laterally with respect to each other. The sliding of the layers and the vaulted structure of the Ag(CEAP)2+ cations make hydrogen-bond formation easy. In each layer, there are many chains composed of alternate? basic units, and the unit–unit distance (see Fig. 2 lu-u) in the chain is 8.893 (3) Å. All chains in the layer are parallel, with a chain–chain distance (see Fig. 2 lc-c) of 19.020 (2) Å. Neighboring chains also slide over each other, and they are connected? by C—H···N hydrogen bonds, with a C10···N11(1 − x, 1 − y, 2 − z) distance of 3.362 (6) Å. In a chain, the supramolecular cavites of the host are composed of adjacent units assembled through C—H···N hydrogen bonds. The length (see Fig. 2 lc) and width (see Fig.2 lu-u) of the cavity are 11.274 (2) and 8.893 (3) Å, respectively. All ClO4 anions are located as guests in the cavities and are connected to? the Ag(CEAP)2+ cations through C—H···O interactions. In unit (a), the ClO4 anion bridges three Ag(CEAP)2+ in the two layers to form a zip-like structure through C38—H38···O2, C10—H10B···O3 and C29—H29A···O4 (1 − x, 1 − y, 2 − z) hydrogen bonds. This anion also connects an adjacent zip structure, through the C32—H32B···O4 hydrogen bond. Therefore, the ClO4 anion in unit (a) bridges four Ag(CEAP)2+ cations to form a µ4-ClO4 bridging mode. In unit (b), the ClO4 anion bridges two Ag(CEAP)2+ cations with a µ2-ClO4 bridging mode (see Fig.3) to form a zip structure through C17—H17A···O7(1 + x, y, −1 + z) and C34—H34···O7(1 + x, y, z) hydrogen bonds. The O···H distances are in the range 2.51–2.59 Å, with C···O distances in the range 3.279 (5)–3.446 (5) Å, falling into the normal range of C—H···O separations (Desiraju, 1991; Steiner et al., 1998).

Experimental top

The synthesis of the title compound, (I), was performed in the dark. A solution of AgNO3 (170 mg, 1 mmol) in 10 ml CH3OH was added to a stired solution of 4-[N,N-bis(2-cyanoethyl)amino]pyridine (400 mg, 2 mmol) in CH3OH (20 ml) at room temperature, the reaction mixture was stired for 1 h and filtered. A solution of NaClO4 (122.5 mg, 1 mmol) in CH3OH (5 ml) was added to the clear filtrate and stired for 15 min. The reaction mixture was filtered again, and colorless single crystals of (I) suitable for X-ray analysis were obtained after several days by slow evaporation of the filtrate.

Analysis calculated for AgC22H24N8O4Cl: C 43.47, H 3.98, N 18.44; found: C 43.35, H 4.01, N 18.40.

Refinement top

The positions of all H atoms were fixed geometrically, and distances to H atoms were set by the program SHELXTL (Bruker, 2000)?.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids shown at the 50% probability level.
[Figure 2] Fig. 2. Supramolecular cavites in a molecular layer. H atoms have been omitted for clarity.
[Figure 3] Fig. 3. (a) A view of the µ2-ClO4 bridge mode in the basic unit (b), involving atoms Ag2 and Cl2. (b) A view of the µ4-ClO4 bridge mode in the basic unit (a), involving atoms Ag1 and Cl1.
4-[N,N-bis(2-cyanoethyl)amino]pyridine silver(I) perchlorate top
Crystal data top
[Ag(C11H12N4)2](ClO4)Z = 4
Mr = 607.81F(000) = 1232
Triclinic, P1Dx = 1.574 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.221 (2) ÅCell parameters from 2238 reflections
b = 14.457 (2) Åθ = 2.7–22.3°
c = 19.897 (2) ŵ = 0.94 mm1
α = 76.39 (1)°T = 293 K
β = 84.20 (1)°Block, colorless
γ = 88.06 (1)°0.3 × 0.3 × 0.2 mm
V = 2564.6 (7) Å3
Data collection top
Bruker Smart Apex CCD area detector
diffractometer
8825 independent reflections
Radiation source: sealed tube6422 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: empirical (using intensity measurements)
SADABS; Bruker, 2000
h = 1111
Tmin = 0.762, Tmax = 0.827k = 1711
13111 measured reflectionsl = 2423
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0418P)2 + 1.1404P]
where P = (Fo2 + 2Fc2)/3
8825 reflections(Δ/σ)max < 0.001
601 parametersΔρmax = 0.83 e Å3
0 restraintsΔρmin = 0.98 e Å3
Crystal data top
[Ag(C11H12N4)2](ClO4)γ = 88.06 (1)°
Mr = 607.81V = 2564.6 (7) Å3
Triclinic, P1Z = 4
a = 9.221 (2) ÅMo Kα radiation
b = 14.457 (2) ŵ = 0.94 mm1
c = 19.897 (2) ÅT = 293 K
α = 76.39 (1)°0.3 × 0.3 × 0.2 mm
β = 84.20 (1)°
Data collection top
Bruker Smart Apex CCD area detector
diffractometer
8825 independent reflections
Absorption correction: empirical (using intensity measurements)
SADABS; Bruker, 2000
6422 reflections with I > 2σ(I)
Tmin = 0.762, Tmax = 0.827Rint = 0.018
13111 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.05Δρmax = 0.83 e Å3
8825 reflectionsΔρmin = 0.98 e Å3
601 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

8.5985 (0.0057) x − 4.7604 (0.0222) y + 0.0151 (0.0294) z = 0.4068 (0.0268)

* 0.0077 (0.0026) N1 * −0.0066 (0.0029) C1 * 0.0000 (0.0029) C2 * 0.0053 (0.0028) C3 * −0.0042 (0.0028) C4 * −0.0022 (0.0027) C5

Rms deviation of fitted atoms = 0.0051

− 3.6847 (0.0133) x + 12.8624 (0.0107) y + 0.4139 (0.0281) z = 9.2453 (0.0179)

Angle to previous plane (with approximate e.s.d.) = 45.78 (0.15)

* −0.0122 (0.0025) N5 * −0.0014 (0.0026) C12 * 0.0137 (0.0026) C13 * −0.0128 (0.0025) C14 * 0.0000 (0.0026) C15 * 0.0128 (0.0027) C16

Rms deviation of fitted atoms = 0.0105

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

7.8487 (0.0079) x − 6.1431 (0.0213) y + 4.6860 (0.0290) z = 7.7192 (0.0368)

* −0.0085 (0.0027) N9 * 0.0104 (0.0029) C23 * 0.0021 (0.0028) C24 * −0.0157 (0.0027) C25 * 0.0179 (0.0027) C26 * −0.0062 (0.0027) C27

Rms deviation of fitted atoms = 0.0115

8.5003 (0.0066) x − 5.1466 (0.0239) y − 0.1481 (0.0314) z = 4.9497 (0.0338)

Angle to previous plane (with approximate e.s.d.) = 16.74 (0.17)

* −0.0201 (0.0028) N13 * 0.0189 (0.0030) C34 * −0.0056 (0.0030) C35 * −0.0057 (0.0029) C36 * 0.0042 (0.0030) C37 * 0.0081 (0.0031) C38

Rms deviation of fitted atoms = 0.0123

Refinement. The structure was solved by direct methods (Bruker, 2000) and successive difference Fourier syntheses. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.53776 (4)0.84897 (3)0.247521 (16)0.05426 (12)
Ag20.97604 (4)0.65100 (3)0.774192 (16)0.05707 (13)
C10.5323 (4)0.8787 (3)0.3968 (2)0.0434 (10)
H10.56410.93920.37330.052*
C20.5211 (4)0.8573 (3)0.4688 (2)0.0434 (10)
H20.54610.90230.49220.052*
C30.4709 (4)0.7656 (3)0.5069 (2)0.0394 (10)
C40.4347 (4)0.7021 (3)0.4671 (2)0.0395 (9)
H40.40030.64170.48910.047*
C50.4507 (4)0.7303 (3)0.3947 (2)0.0407 (10)
H50.42620.68720.36970.049*
C120.4846 (4)0.8544 (3)0.09566 (19)0.0364 (9)
H120.39590.82810.11670.044*
C130.5121 (4)0.8657 (3)0.02576 (19)0.0372 (9)
H130.44130.84840.00100.045*
C140.6454 (4)0.9030 (3)0.01036 (19)0.0337 (9)
C150.7442 (4)0.9309 (3)0.03290 (19)0.0388 (9)
H150.83400.95720.01370.047*
C160.7037 (4)0.9181 (3)0.1031 (2)0.0411 (10)
H160.76880.93810.12950.049*
C60.4963 (5)0.8115 (3)0.6195 (2)0.0479 (11)
H6A0.44590.79370.66580.057*
H6B0.46170.87410.59700.057*
C70.6614 (5)0.8144 (3)0.6246 (2)0.0573 (12)
H7A0.69610.75190.64730.069*
H7B0.71210.83190.57830.069*
C80.6925 (5)0.8844 (4)0.6644 (3)0.0612 (13)
C90.4085 (5)0.6463 (3)0.6176 (2)0.0460 (11)
H9A0.31630.63220.60410.055*
H9B0.40040.64130.66680.055*
C100.5249 (5)0.5706 (3)0.6391 (2)0.0479 (11)
H10A0.59100.59500.66570.058*
H10B0.47790.51520.66960.058*
C110.6119 (5)0.5400 (3)0.5813 (2)0.0486 (11)
C170.8345 (4)0.9317 (3)0.1133 (2)0.0428 (10)
H17A0.85500.89240.14660.051*
H17B0.90140.91250.07780.051*
C180.8635 (5)1.0385 (3)0.1513 (2)0.0515 (11)
H18A0.94921.04170.18430.062*
H18B0.78141.06330.17720.062*
C190.8861 (5)1.0996 (3)0.1025 (2)0.0492 (11)
C200.5745 (4)0.8995 (3)0.1267 (2)0.0420 (10)
H20A0.59120.94610.17050.050*
H20B0.47780.91140.10610.050*
C210.5787 (5)0.7987 (3)0.1413 (2)0.0496 (11)
H21A0.52560.80050.18120.059*
H21B0.67920.78210.15330.059*
C220.5168 (6)0.7235 (3)0.0828 (2)0.0560 (12)
C230.9650 (5)0.6777 (3)0.9217 (2)0.0461 (11)
H231.02190.72970.89880.055*
C240.9167 (4)0.6712 (3)0.99213 (19)0.0391 (9)
H240.94030.71741.01460.047*
C250.8291 (4)0.5898 (3)1.02835 (19)0.0375 (9)
C260.8037 (4)0.5221 (3)0.9895 (2)0.0382 (9)
H260.75260.46691.01070.046*
C270.8551 (4)0.5389 (3)0.9203 (2)0.0421 (10)
H270.83280.49450.89590.051*
C341.0597 (5)0.7668 (3)0.6260 (2)0.0459 (11)
H341.09110.80870.65030.055*
C351.0734 (4)0.7962 (3)0.5533 (2)0.0427 (10)
H351.10770.85660.53130.051*
C361.0339 (4)0.7321 (3)0.51331 (19)0.0403 (10)
C370.9803 (5)0.6406 (3)0.5548 (2)0.0455 (10)
H370.95240.59440.53320.055*
C380.9713 (5)0.6228 (3)0.6263 (2)0.0498 (11)
H380.93850.56330.65120.060*
C280.6938 (5)0.4972 (3)1.1372 (2)0.0460 (11)
H28A0.70350.49051.18620.055*
H28B0.73470.44051.12410.055*
C290.5302 (5)0.5065 (3)1.1247 (2)0.0471 (11)
H29A0.49420.56901.12860.056*
H29B0.51890.50031.07800.056*
C300.4438 (5)0.4327 (3)1.1755 (2)0.0505 (12)
C310.7726 (4)0.6607 (3)1.1305 (2)0.0428 (10)
H31A0.68550.65631.16280.051*
H31B0.76720.72011.09590.051*
C320.9082 (5)0.6623 (3)1.1706 (2)0.0504 (11)
H32A0.91990.60071.20210.060*
H32B0.99480.67401.13790.060*
C330.8936 (5)0.7356 (3)1.2098 (2)0.0496 (11)
C391.0031 (5)0.6828 (3)0.4051 (2)0.0499 (11)
H39A1.03820.62030.42740.060*
H39B1.04940.69920.35790.060*
C400.8382 (5)0.6796 (3)0.4032 (2)0.0544 (12)
H40A0.79160.66340.45030.065*
H40B0.80290.74200.38060.065*
C410.7976 (6)0.6071 (4)0.3645 (3)0.0628 (13)
C421.1048 (5)0.8455 (3)0.4003 (2)0.0470 (11)
H42A1.17000.83300.36200.056*
H42B1.16220.87280.42890.056*
C430.9903 (5)0.9193 (3)0.3707 (2)0.0538 (12)
H43A1.03960.97410.34040.065*
H43B0.93090.89200.34290.065*
C440.8975 (5)0.9502 (3)0.4238 (3)0.0543 (12)
N10.5002 (4)0.8175 (2)0.35835 (16)0.0399 (8)
N20.4633 (4)0.7409 (2)0.57875 (16)0.0446 (8)
N30.7106 (6)0.9386 (4)0.6962 (2)0.0874 (15)
N40.6766 (5)0.5155 (3)0.5373 (2)0.0657 (11)
N50.5785 (4)0.8792 (2)0.13680 (16)0.0412 (8)
N60.6825 (3)0.9137 (2)0.08030 (16)0.0369 (8)
N70.9059 (4)1.1438 (3)0.0644 (2)0.0590 (10)
N80.4748 (6)0.6645 (3)0.0383 (2)0.0814 (14)
N90.9354 (4)0.6149 (2)0.88488 (17)0.0468 (9)
N100.7759 (4)0.5817 (2)1.09634 (16)0.0421 (8)
N110.3764 (5)0.3743 (3)1.21703 (19)0.0634 (11)
N120.8767 (4)0.7938 (3)1.2410 (2)0.0597 (11)
N131.0061 (4)0.6847 (2)0.66301 (16)0.0452 (9)
N141.0443 (4)0.7527 (2)0.44280 (16)0.0425 (8)
N150.7727 (5)0.5546 (3)0.3337 (2)0.0711 (13)
N160.8238 (5)0.9759 (3)0.4662 (3)0.0760 (13)
Cl20.20629 (14)0.86994 (10)0.77829 (7)0.0678 (3)
O50.2578 (3)0.7736 (2)0.77718 (16)0.0678 (3)
O60.2955 (4)0.9367 (2)0.73160 (17)0.0678 (3)
O70.0561 (4)0.8739 (2)0.76139 (17)0.0678 (3)
O80.2031 (3)0.8823 (2)0.84745 (17)0.0678 (3)
Cl10.71035 (12)0.34676 (8)0.76277 (6)0.0525 (2)
O10.7497 (3)0.2514 (2)0.75398 (15)0.0525 (2)
O20.7961 (3)0.4156 (2)0.71250 (15)0.0525 (2)
O30.5571 (3)0.3632 (2)0.75459 (15)0.0525 (2)
O40.7356 (3)0.3526 (2)0.83252 (15)0.0525 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0691 (3)0.0643 (2)0.02670 (18)0.00383 (18)0.00010 (16)0.00761 (15)
Ag20.0653 (3)0.0747 (3)0.02777 (19)0.00534 (19)0.00058 (16)0.00810 (16)
C10.055 (3)0.037 (2)0.034 (2)0.004 (2)0.003 (2)0.0028 (19)
C20.056 (3)0.041 (2)0.035 (2)0.008 (2)0.005 (2)0.0090 (18)
C30.045 (2)0.040 (2)0.035 (2)0.0058 (19)0.0027 (19)0.0123 (18)
C40.043 (2)0.036 (2)0.042 (2)0.0013 (18)0.0033 (19)0.0132 (18)
C50.047 (3)0.040 (2)0.040 (2)0.0013 (19)0.0037 (19)0.0184 (19)
C120.036 (2)0.038 (2)0.035 (2)0.0001 (17)0.0004 (18)0.0074 (18)
C130.042 (2)0.036 (2)0.035 (2)0.0013 (18)0.0041 (18)0.0098 (17)
C140.039 (2)0.033 (2)0.031 (2)0.0012 (17)0.0029 (18)0.0109 (17)
C150.043 (2)0.039 (2)0.035 (2)0.0095 (18)0.0067 (18)0.0053 (18)
C160.048 (3)0.039 (2)0.036 (2)0.0060 (19)0.0075 (19)0.0047 (18)
C60.054 (3)0.053 (3)0.037 (2)0.009 (2)0.001 (2)0.011 (2)
C70.057 (3)0.065 (3)0.047 (3)0.011 (2)0.001 (2)0.007 (2)
C80.065 (3)0.066 (3)0.053 (3)0.017 (3)0.007 (3)0.011 (3)
C90.055 (3)0.047 (3)0.034 (2)0.008 (2)0.005 (2)0.0024 (19)
C100.060 (3)0.045 (3)0.039 (2)0.012 (2)0.004 (2)0.008 (2)
C110.059 (3)0.039 (3)0.047 (3)0.014 (2)0.004 (2)0.006 (2)
C170.040 (2)0.044 (3)0.042 (2)0.0062 (19)0.0083 (19)0.0073 (19)
C180.047 (3)0.053 (3)0.046 (3)0.008 (2)0.010 (2)0.000 (2)
C190.041 (3)0.046 (3)0.052 (3)0.004 (2)0.006 (2)0.002 (2)
C200.047 (3)0.042 (2)0.038 (2)0.0036 (19)0.0032 (19)0.0125 (19)
C210.066 (3)0.041 (3)0.042 (2)0.002 (2)0.008 (2)0.011 (2)
C220.081 (4)0.038 (3)0.050 (3)0.005 (2)0.005 (3)0.014 (2)
C230.052 (3)0.048 (3)0.035 (2)0.010 (2)0.001 (2)0.003 (2)
C240.043 (2)0.040 (2)0.034 (2)0.0046 (19)0.0011 (18)0.0088 (18)
C250.040 (2)0.042 (2)0.032 (2)0.0042 (18)0.0008 (18)0.0124 (18)
C260.038 (2)0.038 (2)0.040 (2)0.0015 (18)0.0015 (18)0.0113 (18)
C270.043 (2)0.046 (3)0.037 (2)0.000 (2)0.0040 (19)0.0093 (19)
C340.058 (3)0.049 (3)0.037 (2)0.010 (2)0.008 (2)0.019 (2)
C350.055 (3)0.041 (2)0.033 (2)0.010 (2)0.0046 (19)0.0090 (18)
C360.051 (3)0.042 (2)0.029 (2)0.0074 (19)0.0050 (19)0.0094 (18)
C370.059 (3)0.042 (3)0.034 (2)0.008 (2)0.004 (2)0.0063 (19)
C380.063 (3)0.047 (3)0.036 (2)0.006 (2)0.009 (2)0.000 (2)
C280.055 (3)0.044 (3)0.039 (2)0.013 (2)0.007 (2)0.0134 (19)
C290.056 (3)0.045 (3)0.044 (3)0.016 (2)0.011 (2)0.022 (2)
C300.064 (3)0.058 (3)0.037 (2)0.019 (2)0.009 (2)0.029 (2)
C310.046 (3)0.044 (2)0.039 (2)0.0022 (19)0.002 (2)0.0154 (19)
C320.053 (3)0.051 (3)0.047 (3)0.002 (2)0.001 (2)0.012 (2)
C330.054 (3)0.052 (3)0.044 (3)0.011 (2)0.010 (2)0.011 (2)
C390.061 (3)0.054 (3)0.036 (2)0.007 (2)0.003 (2)0.013 (2)
C400.057 (3)0.062 (3)0.043 (3)0.004 (2)0.000 (2)0.013 (2)
C410.065 (3)0.065 (4)0.055 (3)0.015 (3)0.009 (3)0.004 (3)
C420.054 (3)0.046 (3)0.037 (2)0.012 (2)0.005 (2)0.0058 (19)
C430.057 (3)0.050 (3)0.050 (3)0.019 (2)0.004 (2)0.001 (2)
C440.050 (3)0.051 (3)0.058 (3)0.017 (2)0.002 (3)0.003 (2)
N10.047 (2)0.046 (2)0.0271 (17)0.0007 (16)0.0005 (15)0.0118 (15)
N20.052 (2)0.048 (2)0.0338 (19)0.0103 (17)0.0022 (16)0.0103 (16)
N30.105 (4)0.093 (4)0.078 (3)0.027 (3)0.011 (3)0.041 (3)
N40.075 (3)0.051 (3)0.068 (3)0.007 (2)0.003 (2)0.011 (2)
N50.048 (2)0.042 (2)0.0318 (18)0.0006 (16)0.0010 (16)0.0070 (15)
N60.0386 (19)0.0396 (19)0.0330 (18)0.0042 (15)0.0003 (15)0.0103 (14)
N70.055 (3)0.052 (3)0.068 (3)0.0058 (19)0.003 (2)0.013 (2)
N80.126 (4)0.053 (3)0.068 (3)0.012 (3)0.006 (3)0.024 (2)
N90.055 (2)0.052 (2)0.0335 (19)0.0009 (18)0.0027 (17)0.0099 (17)
N100.050 (2)0.043 (2)0.0343 (19)0.0096 (16)0.0042 (16)0.0137 (15)
N110.079 (3)0.070 (3)0.042 (2)0.027 (2)0.015 (2)0.020 (2)
N120.073 (3)0.061 (3)0.046 (2)0.022 (2)0.009 (2)0.011 (2)
N130.057 (2)0.049 (2)0.0305 (19)0.0063 (18)0.0016 (17)0.0100 (17)
N140.056 (2)0.044 (2)0.0281 (18)0.0104 (16)0.0011 (16)0.0094 (15)
N150.092 (3)0.059 (3)0.066 (3)0.030 (2)0.020 (2)0.012 (2)
N160.071 (3)0.069 (3)0.087 (4)0.031 (2)0.009 (3)0.018 (3)
Cl20.0657 (7)0.0775 (7)0.0603 (6)0.0101 (5)0.0057 (5)0.0196 (5)
O50.0657 (7)0.0775 (7)0.0603 (6)0.0101 (5)0.0057 (5)0.0196 (5)
O60.0657 (7)0.0775 (7)0.0603 (6)0.0101 (5)0.0057 (5)0.0196 (5)
O70.0657 (7)0.0775 (7)0.0603 (6)0.0101 (5)0.0057 (5)0.0196 (5)
O80.0657 (7)0.0775 (7)0.0603 (6)0.0101 (5)0.0057 (5)0.0196 (5)
Cl10.0508 (5)0.0519 (5)0.0518 (5)0.0007 (4)0.0035 (4)0.0094 (4)
O10.0508 (5)0.0519 (5)0.0518 (5)0.0007 (4)0.0035 (4)0.0094 (4)
O20.0508 (5)0.0519 (5)0.0518 (5)0.0007 (4)0.0035 (4)0.0094 (4)
O30.0508 (5)0.0519 (5)0.0518 (5)0.0007 (4)0.0035 (4)0.0094 (4)
O40.0508 (5)0.0519 (5)0.0518 (5)0.0007 (4)0.0035 (4)0.0094 (4)
Geometric parameters (Å, º) top
Ag1—N12.139 (3)C23—H230.9300
Ag1—N52.139 (3)C24—C251.451 (5)
Ag2—N92.138 (3)C24—H240.9300
Ag2—N132.142 (3)C25—N101.371 (5)
C1—N11.356 (5)C25—C261.420 (5)
C1—C21.387 (5)C26—C271.379 (5)
C1—H10.9300C26—H260.9300
C2—C31.430 (5)C27—N91.356 (5)
C2—H20.9300C27—H270.9300
C3—N21.384 (5)C34—N131.323 (5)
C3—C41.415 (5)C34—C351.402 (5)
C4—C51.396 (5)C34—H340.9300
C4—H40.9300C35—C361.433 (5)
C5—N11.365 (5)C35—H350.9300
C5—H50.9300C36—N141.358 (5)
C12—N51.360 (5)C36—C371.458 (5)
C12—C131.360 (5)C37—C381.380 (5)
C12—H120.9300C37—H370.9300
C13—C141.416 (5)C38—N131.345 (5)
C13—H130.9300C38—H380.9300
C14—N61.372 (5)C28—N101.482 (5)
C14—C151.442 (5)C28—C291.550 (6)
C15—C161.380 (5)C28—H28A0.9700
C15—H150.9300C28—H28B0.9700
C16—N51.345 (5)C29—C301.478 (6)
C16—H160.9300C29—H29A0.9700
C6—N21.501 (5)C29—H29B0.9700
C6—C71.539 (6)C30—N111.177 (5)
C6—H6A0.9700C31—N101.459 (5)
C6—H6B0.9700C31—C321.553 (6)
C7—C81.476 (7)C31—H31A0.9700
C7—H7A0.9700C31—H31B0.9700
C7—H7B0.9700C32—C331.452 (6)
C8—N31.141 (6)C32—H32A0.9700
C9—N21.481 (5)C32—H32B0.9700
C9—C101.525 (6)C33—N121.155 (5)
C9—H9A0.9600C39—N141.473 (5)
C9—H9B0.9601C39—C401.526 (6)
C10—C111.481 (6)C39—H39A0.9700
C10—H10A0.9700C39—H39B0.9700
C10—H10B0.9700C40—C411.517 (7)
C11—N41.128 (5)C40—H40A0.9700
C17—N61.490 (5)C40—H40B0.9700
C17—C181.570 (5)C41—N151.123 (6)
C17—H17A0.9700C42—N141.499 (5)
C17—H17B0.9700C42—C431.533 (6)
C18—C191.492 (7)C42—H42A0.9700
C18—H18A0.9700C42—H42B0.9700
C18—H18B0.9700C43—C441.436 (7)
C19—N71.131 (6)C43—H43A0.9700
C20—N61.475 (5)C43—H43B0.9700
C20—C211.550 (5)C44—N161.152 (6)
C20—H20A0.9700Cl2—O61.396 (3)
C20—H20B0.9700Cl2—O81.426 (3)
C21—C221.475 (6)Cl2—O71.454 (4)
C21—H21A0.9700Cl2—O51.460 (3)
C21—H21B0.9700Cl1—O21.429 (3)
C22—N81.122 (5)Cl1—O31.444 (3)
C23—N91.343 (5)Cl1—O41.452 (3)
C23—C241.409 (5)Cl1—O11.460 (3)
N1—Ag1—N5179.10 (13)C35—C34—H34117.1
N9—Ag2—N13177.12 (13)C34—C35—C36119.2 (4)
N1—C1—C2124.4 (4)C34—C35—H35120.4
N1—C1—H1117.8C36—C35—H35120.4
C2—C1—H1117.8N14—C36—C35124.2 (4)
C1—C2—C3119.5 (4)N14—C36—C37121.5 (3)
C1—C2—H2120.2C35—C36—C37114.3 (3)
C3—C2—H2120.2C38—C37—C36119.5 (4)
N2—C3—C4122.7 (4)C38—C37—H37120.2
N2—C3—C2120.9 (3)C36—C37—H37120.2
C4—C3—C2116.3 (4)N13—C38—C37125.3 (4)
C5—C4—C3119.7 (4)N13—C38—H38117.3
C5—C4—H4120.1C37—C38—H38117.3
C3—C4—H4120.1N10—C28—C29111.1 (3)
N1—C5—C4123.9 (4)N10—C28—H28A109.4
N1—C5—H5118.1C29—C28—H28A109.4
C4—C5—H5118.1N10—C28—H28B109.4
N5—C12—C13124.2 (4)C29—C28—H28B109.4
N5—C12—H12117.9H28A—C28—H28B108.0
C13—C12—H12117.9C30—C29—C28110.9 (4)
C12—C13—C14121.8 (4)C30—C29—H29A109.5
C12—C13—H13119.1C28—C29—H29A109.5
C14—C13—H13119.1C30—C29—H29B109.5
N6—C14—C13125.1 (3)C28—C29—H29B109.5
N6—C14—C15120.8 (3)H29A—C29—H29B108.1
C13—C14—C15114.1 (3)N11—C30—C29178.7 (4)
C16—C15—C14119.2 (4)N10—C31—C32112.9 (3)
C16—C15—H15120.4N10—C31—H31A109.0
C14—C15—H15120.4C32—C31—H31A109.0
N5—C16—C15125.7 (4)N10—C31—H31B109.0
N5—C16—H16117.2C32—C31—H31B109.0
C15—C16—H16117.2H31A—C31—H31B107.8
N2—C6—C7110.3 (3)C33—C32—C31111.1 (4)
N2—C6—H6A109.6C33—C32—H32A109.4
C7—C6—H6A109.6C31—C32—H32A109.4
N2—C6—H6B109.6C33—C32—H32B109.4
C7—C6—H6B109.6C31—C32—H32B109.4
H6A—C6—H6B108.1H32A—C32—H32B108.0
C8—C7—C6109.8 (4)N12—C33—C32177.6 (5)
C8—C7—H7A109.7N14—C39—C40111.9 (4)
C6—C7—H7A109.7N14—C39—H39A109.2
C8—C7—H7B109.7C40—C39—H39A109.2
C6—C7—H7B109.7N14—C39—H39B109.2
H7A—C7—H7B108.2C40—C39—H39B109.2
N3—C8—C7177.1 (6)H39A—C39—H39B107.9
N2—C9—C10115.7 (3)C41—C40—C39111.3 (4)
N2—C9—H9A112.2C41—C40—H40A109.4
C10—C9—H9A123.1C39—C40—H40A109.4
N2—C9—H9B111.2C41—C40—H40B109.4
C10—C9—H9B79.8C39—C40—H40B109.4
H9A—C9—H9B109.5H40A—C40—H40B108.0
C11—C10—C9115.4 (4)N15—C41—C40176.9 (6)
C11—C10—H10A108.4N14—C42—C43115.0 (3)
C9—C10—H10A108.4N14—C42—H42A108.5
C11—C10—H10B108.4C43—C42—H42A108.5
C9—C10—H10B108.4N14—C42—H42B108.5
H10A—C10—H10B107.5C43—C42—H42B108.5
N4—C11—C10178.9 (5)H42A—C42—H42B107.5
N6—C17—C18113.7 (3)C44—C43—C42112.8 (4)
N6—C17—H17A108.8C44—C43—H43A109.0
C18—C17—H17A108.8C42—C43—H43A109.0
N6—C17—H17B108.8C44—C43—H43B109.0
C18—C17—H17B108.8C42—C43—H43B109.0
H17A—C17—H17B107.7H43A—C43—H43B107.8
C19—C18—C17112.8 (4)N16—C44—C43179.2 (5)
C19—C18—H18A109.0C1—N1—C5116.1 (3)
C17—C18—H18A109.0C1—N1—Ag1123.1 (3)
C19—C18—H18B109.0C5—N1—Ag1120.7 (3)
C17—C18—H18B109.0C3—N2—C9120.4 (3)
H18A—C18—H18B107.8C3—N2—C6121.3 (3)
N7—C19—C18177.8 (5)C9—N2—C6118.1 (3)
N6—C20—C21114.1 (3)C16—N5—C12115.0 (3)
N6—C20—H20A108.7C16—N5—Ag1122.3 (3)
C21—C20—H20A108.7C12—N5—Ag1122.6 (3)
N6—C20—H20B108.7C14—N6—C20121.2 (3)
C21—C20—H20B108.7C14—N6—C17123.0 (3)
H20A—C20—H20B107.6C20—N6—C17115.7 (3)
C22—C21—C20114.5 (4)C23—N9—C27115.7 (3)
C22—C21—H21A108.6C23—N9—Ag2120.0 (3)
C20—C21—H21A108.6C27—N9—Ag2123.1 (3)
C22—C21—H21B108.6C25—N10—C31123.0 (3)
C20—C21—H21B108.6C25—N10—C28122.2 (3)
H21A—C21—H21B107.6C31—N10—C28114.0 (3)
N8—C22—C21177.3 (6)C34—N13—C38115.7 (3)
N9—C23—C24125.3 (4)C34—N13—Ag2122.7 (3)
N9—C23—H23117.3C38—N13—Ag2121.6 (3)
C24—C23—H23117.3C36—N14—C39121.2 (3)
C23—C24—C25117.7 (4)C36—N14—C42121.4 (3)
C23—C24—H24121.2C39—N14—C42117.3 (3)
C25—C24—H24121.2O6—Cl2—O8111.7 (2)
N10—C25—C26123.8 (4)O6—Cl2—O7113.3 (2)
N10—C25—C24119.9 (3)O8—Cl2—O7107.0 (2)
C26—C25—C24116.3 (3)O6—Cl2—O5110.2 (2)
C27—C26—C25119.6 (4)O8—Cl2—O5108.9 (2)
C27—C26—H26120.2O7—Cl2—O5105.5 (2)
C25—C26—H26120.2O2—Cl1—O3110.53 (18)
N9—C27—C26125.2 (4)O2—Cl1—O4110.23 (18)
N9—C27—H27117.4O3—Cl1—O4108.47 (17)
C26—C27—H27117.4O2—Cl1—O1109.70 (17)
N13—C34—C35125.8 (4)O3—Cl1—O1108.84 (18)
N13—C34—H34117.1O4—Cl1—O1109.04 (17)
N1—C1—C2—C30.8 (7)C10—C9—N2—C397.1 (5)
C1—C2—C3—N2177.7 (4)C10—C9—N2—C688.6 (4)
C1—C2—C3—C40.3 (6)C7—C6—N2—C384.7 (5)
N2—C3—C4—C5177.3 (4)C7—C6—N2—C9101.0 (4)
C2—C3—C4—C50.7 (6)C15—C16—N5—C122.4 (6)
C3—C4—C5—N10.0 (6)C15—C16—N5—Ag1173.1 (3)
N5—C12—C13—C141.5 (6)C13—C12—N5—C160.9 (5)
C12—C13—C14—N6177.9 (4)C13—C12—N5—Ag1174.6 (3)
C12—C13—C14—C152.4 (5)C13—C14—N6—C209.2 (6)
N6—C14—C15—C16179.3 (3)C15—C14—N6—C20170.4 (3)
C13—C14—C15—C161.1 (5)C13—C14—N6—C17165.4 (3)
C14—C15—C16—N51.4 (6)C15—C14—N6—C1715.0 (5)
N2—C6—C7—C8179.7 (4)C21—C20—N6—C1496.1 (4)
N2—C9—C10—C1166.3 (5)C21—C20—N6—C1778.8 (4)
N6—C17—C18—C1978.6 (5)C18—C17—N6—C14101.7 (4)
N6—C20—C21—C2274.1 (5)C18—C17—N6—C2083.5 (4)
N9—C23—C24—C250.6 (6)C24—C23—N9—C271.5 (6)
C23—C24—C25—N10178.0 (4)C24—C23—N9—Ag2166.3 (3)
C23—C24—C25—C261.9 (5)C26—C27—N9—C230.2 (6)
N10—C25—C26—C27176.5 (4)C26—C27—N9—Ag2167.6 (3)
C24—C25—C26—C273.4 (6)C26—C25—N10—C31165.0 (4)
C25—C26—C27—N92.7 (6)C24—C25—N10—C3114.9 (6)
N13—C34—C35—C363.4 (7)C26—C25—N10—C284.0 (6)
C34—C35—C36—N14179.2 (4)C24—C25—N10—C28176.1 (4)
C34—C35—C36—C370.7 (6)C32—C31—N10—C2594.3 (5)
N14—C36—C37—C38179.9 (4)C32—C31—N10—C2895.9 (4)
C35—C36—C37—C380.2 (6)C29—C28—N10—C2584.5 (4)
C36—C37—C38—N131.2 (7)C29—C28—N10—C3185.4 (4)
N10—C28—C29—C30168.5 (3)C35—C34—N13—C384.6 (7)
N10—C31—C32—C33173.9 (3)C35—C34—N13—Ag2175.5 (3)
N14—C39—C40—C41179.8 (4)C37—C38—N13—C343.5 (7)
N14—C42—C43—C4464.4 (5)C37—C38—N13—Ag2176.6 (3)
C2—C1—N1—C51.5 (6)C35—C36—N14—C39179.3 (4)
C2—C1—N1—Ag1174.1 (3)C37—C36—N14—C390.6 (6)
C4—C5—N1—C11.1 (6)C35—C36—N14—C422.3 (6)
C4—C5—N1—Ag1174.7 (3)C37—C36—N14—C42177.6 (4)
C4—C3—N2—C93.2 (6)C40—C39—N14—C3679.6 (5)
C2—C3—N2—C9178.9 (4)C40—C39—N14—C42103.2 (4)
C4—C3—N2—C6177.3 (4)C43—C42—N14—C36101.7 (5)
C2—C3—N2—C64.8 (6)C43—C42—N14—C3981.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N4i0.932.593.365 (6)142
C10—H10A···N11ii0.972.523.362 (6)145
C10—H10B···O30.972.573.346 (5)137
C10—H10B···N15i0.972.573.267 (6)129
C17—H17A···O7iii0.972.523.305 (5)138
C29—H29A···O4ii0.972.513.307 (5)140
C29—H29B···N8i0.972.683.329 (6)125
C32—H32B···O4iv0.972.613.279 (5)127
C32—H32B···N7v0.972.833.474 (6)125
C34—H34···O7vi0.932.593.405 (5)147
C35—H35···N16v0.932.543.382 (6)151
C38—H38···O20.932.533.446 (5)168
C40—H40A···N40.972.593.380 (6)138
C43—H43A···N3v0.972.623.457 (7)145
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2; (iii) x+1, y, z1; (iv) x+2, y+1, z+2; (v) x+2, y+2, z+1; (vi) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ag(C11H12N4)2](ClO4)
Mr607.81
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.221 (2), 14.457 (2), 19.897 (2)
α, β, γ (°)76.39 (1), 84.20 (1), 88.06 (1)
V3)2564.6 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.94
Crystal size (mm)0.3 × 0.3 × 0.2
Data collection
DiffractometerBruker Smart Apex CCD area detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
SADABS; Bruker, 2000
Tmin, Tmax0.762, 0.827
No. of measured, independent and
observed [I > 2σ(I)] reflections
13111, 8825, 6422
Rint0.018
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.103, 1.05
No. of reflections8825
No. of parameters601
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.83, 0.98

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Bruker, 2000), SHELXTL.

Selected geometric parameters (Å, º) top
Ag1—N12.139 (3)Cl2—O71.454 (4)
Ag1—N52.139 (3)Cl2—O51.460 (3)
Ag2—N92.138 (3)Cl1—O21.429 (3)
Ag2—N132.142 (3)Cl1—O31.444 (3)
Cl2—O61.396 (3)Cl1—O41.452 (3)
Cl2—O81.426 (3)Cl1—O11.460 (3)
N1—Ag1—N5179.10 (13)N9—Ag2—N13177.12 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N4i0.932.593.365 (6)141.5
C10—H10A···N11ii0.972.523.362 (6)144.5
C10—H10B···O30.972.573.346 (5)136.9
C10—H10B···N15i0.972.573.267 (6)129.4
C17—H17A···O7iii0.972.523.305 (5)137.5
C29—H29A···O4ii0.972.513.307 (5)139.6
C29—H29B···N8i0.972.683.329 (6)125.0
C32—H32B···O4iv0.972.613.279 (5)126.5
C32—H32B···N7v0.972.833.474 (6)124.8
C34—H34···O7vi0.932.593.405 (5)147.2
C35—H35···N16v0.932.543.382 (6)151.4
C38—H38···O20.932.533.446 (5)167.7
C40—H40A···N40.972.593.380 (6)138.2
C43—H43A···N3v0.972.623.457 (7)144.9
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2; (iii) x+1, y, z1; (iv) x+2, y+1, z+2; (v) x+2, y+2, z+1; (vi) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds