Download citation
Download citation
link to html
In the title compound, C16H12N2S4, which is the result of the S-alkyl­ation reaction of 2-mercapto­benzo­thia­zole with ethyl­ene dibromide, the planes of the two benzo­thia­zole moieties form a dihedral angle of 3.84 (14)°. The bridging chain moiety, -SCH2CH2S-, adopts an antiperiplanar conformation. There are intermolecular S...S non-bonded contacts of 3.6471 (9) Å, which stabilize the crystal packing.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103002257/ob1097sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103002257/ob1097Isup2.hkl
Contains datablock I

CCDC reference: 211754

Comment top

Acyclic crown ethers with N-heterocycle end-groups that will coordinate and transport metals have been of interest for several years (Vo¨gtle & Weber, 1979; Meth-Cohn & Smith, 1982; Liu et al., 1992; Matthews et al., 1996). Bis(benzothiazole) compounds have been studied as potential mimics for metalloproteins (Thompson et al., 1982) and bleomycin (Kane et al., 1995). We have recently reported the synthesis and characterization of bis(benzothiazole) acyclic crown ethers (Liu et al., 2001). We report here the X-ray crystal structure of the title compound, (I). \sch

In the molecular structure of (I) (Fig. 1), the two benzothiazole moieties make a dihedral angle of 3.84 (14)°, in nearly the same plane. The two thiazole moieties, like those of bis(benzothiazole-2-ylsulfanyl)methane (Matthews et al., 1996) and bis(2-benzothiazolyl)disulfane (Zingaro & Meyers, 1980), are anti to each other. The bridging chain moiety, SCH2CH2S, adopts an antiperiplanar conformation. The whole molecule possesses a local centre of symmetry. The bond lengths and angles in (I) show normal values (Table 1).

The crystal packing of (I) is shown in Fig. 2. As seen in bis(benzothiazole-2-ylsulfanyl)methane (Matthews et al., 1996) and bis(2-benzothiazolyl)disulfane (Zingaro & Meyers, 1980), there are intermolecular S1···S4(1/2 + x, 1/2 − y, z − 1/2) non-bonded contacts of 3.6471 (9) Å. These S···S contacts and cross-linking interactions stabilize the crystal packing.

Experimental top

The title compound was prepared via the S-alkylation reaction of 2-mercaptobenzothiazole with ethylene dibromide in acetone solution using potassium carbonate as base. Single crystals of (I) (m.p. 422–423 K) suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution.

Refinement top

The positions of all H atoms were fixed geometrically, with C—H distances in the range 0.93–0.97 Å. Is this altered text OK?

Computing details top

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 1997); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecular packing diagram for the crystal of (I).
2,2'-(1,2-Ethanediyldithio)bis(1,3-benzothiazole) top
Crystal data top
C16H12N2S4F(000) = 744
Mr = 360.52Dx = 1.520 Mg m3
Monoclinic, P21/nMelting point = 422–423 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 11.513 (2) ÅCell parameters from 29 reflections
b = 10.711 (2) Åθ = 2.7–14.8°
c = 13.998 (2) ŵ = 0.60 mm1
β = 114.10 (1)°T = 296 K
V = 1575.7 (5) Å3Plate, colourless
Z = 40.48 × 0.44 × 0.40 mm
Data collection top
Siemens P4
diffractometer
2095 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.010
Graphite monochromatorθmax = 25.0°, θmin = 1.9°
ω scansh = 013
Absorption correction: empirical (using intensity measurements)
(SHELXS86; Sheldrick, 1990)
k = 012
Tmin = 0.748, Tmax = 0.787l = 1615
3203 measured reflections3 standard reflections every 97 reflections
2779 independent reflections intensity decay: 6.4%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0419P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2779 reflectionsΔρmax = 0.25 e Å3
200 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0095 (9)
Crystal data top
C16H12N2S4V = 1575.7 (5) Å3
Mr = 360.52Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.513 (2) ŵ = 0.60 mm1
b = 10.711 (2) ÅT = 296 K
c = 13.998 (2) Å0.48 × 0.44 × 0.40 mm
β = 114.10 (1)°
Data collection top
Siemens P4
diffractometer
2095 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
(SHELXS86; Sheldrick, 1990)
Rint = 0.010
Tmin = 0.748, Tmax = 0.7873 standard reflections every 97 reflections
3203 measured reflections intensity decay: 6.4%
2779 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.06Δρmax = 0.25 e Å3
2779 reflectionsΔρmin = 0.19 e Å3
200 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. The structure was solved by direct methods (Sheldrick, 1990) and successive difference Fourier syntheses. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.21696 (5)0.46192 (5)0.11324 (4)0.04871 (17)
S20.23804 (5)0.59668 (6)0.30564 (5)0.05732 (19)
S30.06760 (6)0.66361 (6)0.41449 (5)0.05797 (19)
S40.06197 (5)0.80194 (6)0.59981 (5)0.05468 (19)
N10.05754 (15)0.42452 (15)0.19951 (12)0.0430 (4)
N20.11139 (16)0.83470 (15)0.52787 (13)0.0444 (4)
C10.02168 (18)0.34570 (18)0.11272 (15)0.0388 (5)
C20.0795 (2)0.2617 (2)0.08144 (18)0.0506 (6)
H20.13020.25490.11870.061*
C30.1032 (2)0.1890 (2)0.00576 (19)0.0589 (6)
H30.17020.13240.02690.071*
C40.0293 (2)0.1983 (2)0.06268 (18)0.0592 (6)
H40.04800.14850.12150.071*
C50.0715 (2)0.2805 (2)0.03308 (16)0.0495 (5)
H50.12120.28680.07110.059*
C60.09675 (18)0.35346 (18)0.05516 (15)0.0386 (5)
C70.15677 (18)0.48878 (19)0.20800 (16)0.0417 (5)
C80.1441 (2)0.5911 (2)0.38309 (16)0.0566 (6)
H8A0.11810.50570.38620.068*
H8B0.19640.61790.45390.068*
C90.0287 (2)0.6722 (2)0.33877 (16)0.0547 (6)
H9A0.02250.64680.26730.066*
H9B0.05490.75800.33730.066*
C100.0090 (2)0.77261 (19)0.51278 (16)0.0432 (5)
C110.14153 (18)0.91434 (18)0.61384 (15)0.0398 (5)
C120.2446 (2)0.9947 (2)0.65147 (17)0.0496 (5)
H120.30050.99960.61890.060*
C130.2634 (2)1.0674 (2)0.73778 (18)0.0560 (6)
H130.33251.12160.76350.067*
C140.1802 (2)1.0607 (2)0.78669 (17)0.0569 (6)
H140.19471.11020.84500.068*
C150.0768 (2)0.9822 (2)0.75050 (17)0.0548 (6)
H150.02120.97840.78340.066*
C160.05743 (19)0.90868 (19)0.66356 (16)0.0430 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0474 (3)0.0522 (4)0.0528 (3)0.0096 (3)0.0269 (3)0.0046 (3)
S20.0502 (4)0.0621 (4)0.0574 (4)0.0109 (3)0.0197 (3)0.0186 (3)
S30.0519 (4)0.0547 (4)0.0668 (4)0.0077 (3)0.0236 (3)0.0130 (3)
S40.0457 (3)0.0605 (4)0.0677 (4)0.0013 (3)0.0331 (3)0.0034 (3)
N10.0413 (10)0.0439 (10)0.0464 (10)0.0024 (8)0.0206 (8)0.0053 (8)
N20.0450 (10)0.0451 (10)0.0465 (10)0.0005 (8)0.0223 (8)0.0015 (8)
C10.0373 (11)0.0336 (11)0.0458 (11)0.0023 (9)0.0173 (9)0.0003 (9)
C20.0468 (13)0.0466 (13)0.0656 (15)0.0045 (10)0.0302 (12)0.0049 (11)
C30.0507 (14)0.0472 (14)0.0767 (16)0.0107 (11)0.0238 (13)0.0160 (12)
C40.0628 (15)0.0534 (14)0.0566 (14)0.0009 (12)0.0196 (13)0.0172 (12)
C50.0564 (14)0.0499 (13)0.0469 (12)0.0027 (11)0.0258 (11)0.0029 (11)
C60.0391 (11)0.0357 (11)0.0410 (11)0.0026 (9)0.0165 (9)0.0029 (9)
C70.0390 (11)0.0419 (12)0.0429 (11)0.0021 (10)0.0153 (9)0.0020 (9)
C80.0598 (15)0.0596 (15)0.0442 (12)0.0057 (12)0.0151 (11)0.0050 (11)
C90.0601 (14)0.0497 (13)0.0440 (12)0.0042 (11)0.0110 (11)0.0024 (10)
C100.0427 (12)0.0413 (12)0.0466 (12)0.0081 (10)0.0191 (10)0.0043 (10)
C110.0385 (11)0.0402 (11)0.0411 (11)0.0069 (9)0.0167 (9)0.0027 (9)
C120.0502 (13)0.0509 (13)0.0517 (13)0.0045 (11)0.0248 (11)0.0006 (11)
C130.0564 (14)0.0500 (14)0.0545 (14)0.0043 (12)0.0154 (12)0.0044 (12)
C140.0678 (16)0.0539 (14)0.0452 (13)0.0129 (13)0.0192 (12)0.0064 (11)
C150.0597 (15)0.0598 (15)0.0525 (14)0.0151 (12)0.0307 (12)0.0027 (12)
C160.0427 (11)0.0430 (12)0.0473 (12)0.0096 (10)0.0226 (10)0.0046 (10)
Geometric parameters (Å, º) top
S1—C61.734 (2)C4—H40.9300
S1—C71.753 (2)C5—C61.389 (3)
S2—C71.742 (2)C5—H50.9300
S2—C81.818 (2)C8—C91.494 (3)
S3—C101.744 (2)C8—H8A0.9700
S3—C91.822 (2)C8—H8B0.9700
S4—C161.730 (2)C9—H9A0.9700
S4—C101.750 (2)C9—H9B0.9700
N1—C71.297 (2)C11—C121.384 (3)
N1—C11.396 (2)C11—C161.406 (3)
N2—C101.294 (3)C12—C131.378 (3)
N2—C111.398 (2)C12—H120.9300
C1—C21.393 (3)C13—C141.388 (3)
C1—C61.404 (3)C13—H130.9300
C2—C31.378 (3)C14—C151.374 (3)
C2—H20.9300C14—H140.9300
C3—C41.386 (3)C15—C161.389 (3)
C3—H30.9300C15—H150.9300
C4—C51.379 (3)
C6—S1—C788.76 (9)C9—C8—H8B109.2
C7—S2—C8100.75 (10)S2—C8—H8B109.2
C10—S3—C9101.14 (10)H8A—C8—H8B107.9
C16—S4—C1088.81 (10)C8—C9—S3112.23 (15)
C7—N1—C1109.70 (16)C8—C9—H9A109.2
C10—N2—C11110.09 (17)S3—C9—H9A109.2
C2—C1—N1125.16 (18)C8—C9—H9B109.2
C2—C1—C6119.31 (18)S3—C9—H9B109.2
N1—C1—C6115.53 (17)H9A—C9—H9B107.9
C3—C2—C1118.7 (2)N2—C10—S3127.33 (16)
C3—C2—H2120.6N2—C10—S4116.57 (16)
C1—C2—H2120.6S3—C10—S4116.10 (12)
C2—C3—C4121.5 (2)C12—C11—N2125.44 (18)
C2—C3—H3119.2C12—C11—C16119.68 (19)
C4—C3—H3119.2N2—C11—C16114.89 (18)
C5—C4—C3120.8 (2)C13—C12—C11119.2 (2)
C5—C4—H4119.6C13—C12—H12120.4
C3—C4—H4119.6C11—C12—H12120.4
C4—C5—C6118.1 (2)C12—C13—C14120.6 (2)
C4—C5—H5120.9C12—C13—H13119.7
C6—C5—H5120.9C14—C13—H13119.7
C5—C6—C1121.53 (19)C15—C14—C13121.2 (2)
C5—C6—S1129.13 (16)C15—C14—H14119.4
C1—C6—S1109.33 (14)C13—C14—H14119.4
N1—C7—S2126.49 (16)C14—C15—C16118.4 (2)
N1—C7—S1116.69 (15)C14—C15—H15120.8
S2—C7—S1116.81 (11)C16—C15—H15120.8
C9—C8—S2112.22 (16)C15—C16—C11120.8 (2)
C9—C8—H8A109.2C15—C16—S4129.52 (17)
S2—C8—H8A109.2C11—C16—S4109.64 (15)
C7—N1—C1—C2178.7 (2)C10—S3—C9—C884.38 (17)
C7—N1—C1—C60.6 (2)C11—N2—C10—S3179.06 (15)
N1—C1—C2—C3179.52 (19)C11—N2—C10—S40.3 (2)
C6—C1—C2—C30.3 (3)C9—S3—C10—N23.7 (2)
C1—C2—C3—C40.4 (3)C9—S3—C10—S4175.63 (12)
C2—C3—C4—C50.6 (4)C16—S4—C10—N20.03 (17)
C3—C4—C5—C60.0 (3)C16—S4—C10—S3179.41 (12)
C4—C5—C6—C10.7 (3)C10—N2—C11—C12179.6 (2)
C4—C5—C6—S1178.61 (17)C10—N2—C11—C160.5 (2)
C2—C1—C6—C50.8 (3)N2—C11—C12—C13179.47 (19)
N1—C1—C6—C5179.88 (18)C16—C11—C12—C130.4 (3)
C2—C1—C6—S1178.58 (16)C11—C12—C13—C140.1 (3)
N1—C1—C6—S10.7 (2)C12—C13—C14—C150.3 (3)
C7—S1—C6—C5179.8 (2)C13—C14—C15—C160.3 (3)
C7—S1—C6—C10.51 (15)C14—C15—C16—C110.1 (3)
C1—N1—C7—S2178.44 (15)C14—C15—C16—S4179.99 (16)
C1—N1—C7—S10.1 (2)C12—C11—C16—C150.4 (3)
C8—S2—C7—N10.8 (2)N2—C11—C16—C15179.48 (18)
C8—S2—C7—S1179.38 (12)C12—C11—C16—S4179.62 (16)
C6—S1—C7—N10.22 (17)N2—C11—C16—S40.5 (2)
C6—S1—C7—S2178.95 (13)C10—S4—C16—C15179.7 (2)
C7—S2—C8—C982.90 (18)C10—S4—C16—C110.25 (15)
S2—C8—C9—S3178.53 (11)

Experimental details

Crystal data
Chemical formulaC16H12N2S4
Mr360.52
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)11.513 (2), 10.711 (2), 13.998 (2)
β (°) 114.10 (1)
V3)1575.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.60
Crystal size (mm)0.48 × 0.44 × 0.40
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SHELXS86; Sheldrick, 1990)
Tmin, Tmax0.748, 0.787
No. of measured, independent and
observed [I > 2σ(I)] reflections
3203, 2779, 2095
Rint0.010
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.080, 1.06
No. of reflections2779
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.19

Computer programs: XSCANS (Siemens, 1994), XSCANS, SHELXTL (Sheldrick, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
S1—C61.734 (2)S4—C161.730 (2)
S1—C71.753 (2)S4—C101.750 (2)
S2—C71.742 (2)N1—C71.297 (2)
S2—C81.818 (2)N1—C11.396 (2)
S3—C101.744 (2)N2—C101.294 (3)
S3—C91.822 (2)N2—C111.398 (2)
C7—S2—C8100.75 (10)C9—C8—S2112.22 (16)
C10—S3—C9101.14 (10)C8—C9—S3112.23 (15)
C8—S2—C7—N10.8 (2)C10—S3—C9—C884.38 (17)
C8—S2—C7—S1179.38 (12)C9—S3—C10—N23.7 (2)
C7—S2—C8—C982.90 (18)C9—S3—C10—S4175.63 (12)
S2—C8—C9—S3178.53 (11)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds