Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, [Rh(CH3)2(C2H3N)(C9H21N3)](C24H20B), the geometry around the RhIII centre is distorted octahedral, with elongated Rh-N bonds trans to the metal-bonded methyl groups. The metal-containing cations are located in channels formed by an anionic supramolecular mesh, in which aromatic [pi]-[pi] interactions between anionic [B(Ph)4]- units play a major role.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102019182/ob1087sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102019182/ob1087Isup2.hkl
Contains datablock I

CCDC reference: 201249

Comment top

Recent years have seen an increasing interest in hard non-π-interacting ligands for organometallic and inorganic coordination compounds, azacrown compounds being one group of interest (Chaudhuri & Wieghardt, 1987; Reichenbach-Klinke & Konig, 2002). In this respect, the Cn* ligand present in the title compound, (I) [Cn* is 1,4,7-trimethyl-1,4,7-triazacyclononane, according to the notation suggested by Flood et al. (2000)], represents a six-electron, and thus isoelectronic, alternative to the more conventional ligand systems, such as cyclopentadienyl (Cp and Cp*; η5-C5R5, R = H or Me), tris(pyrazolyl)borate and tridentate phosphine ligands. Azacrown ligands are devoid of back-bonding capabilities, commonly yielding highly electron-rich metal centres (Flood, Sowa et al., 1996). \sch

A range of group IX organometallic compounds have been shown to exhibit catalytic activity in a variety of reactions, such as C—H activation and olefin polymerization (for recent reviews, see Shilov & Shul'pin, 1997; Britovsek et al., 1999). In some instances (i.e. polymerization), late-metal compounds might represent robust alternatives to early-metal catalysts, which tend to be highly sensitive towards polar functional groups, air and water. In fact, Cn*Rh(H2O)(Me)(OH)+, a complex closely related to (I), has been reported to polymerize ethene using water as solvent (Flood et al., 1993).

Compound (I) was synthesized as part of a general study of electron-transfer induced reactions of certain group IX organometallic complexes (Fooladi & Tilset, 1997; Fooladi et al., 2002, and references therein). Oxidation of the trimethyl complex Cn*RhMe3, previously reported by Flood, Wang et al. (1996), in acetonitrile solvent resulted in the spontaneous elimination of ethane, yielding a mixture of the two solvento complexes Cn*Rh(Me)(NCMe)22+ and (I). The oxidatively induced simultaneous cleavage of two M—C bonds yielding ethane resembles the reactivity of other RhIII compounds [Cp*Rh(Me2SO)Me2 and Cp*Rh(PPh3)Me2], but contrasts with the reactivity of related Ir compounds [Cp*Ir(Me2SO)Me2 and Cp*Ir(PPh3)Me2], in which bond formation (Ir—Ir bond formation and insertion of Ir into a Cp* C—H bond) is involved in the primary reactions, presumably due to the relatively different M—C and M—M bond strengths of second- versus third-row metals (Fooladi et al., 2002).

The structure of the RhIII cation in (I) is shown in Fig. 1. The three N—Rh—N bond angles within the Cn* ligand exhibit a marked deviation from the ideal value of 90° for octahedral coordination, with values lying between 80.95 (3) and 83.08 (4)°. Also, the acetonitrile and the two Rh-bound methyl ligands are forced slightly towards one another, but less than for the cyclononane ligand. In both cases, the bond angles closely resemble those observed in the corresponding trimethyl analogue Cn*RhMe3 [N—Rh—N 80.2 (2) and 80.0 (3)°, Me—Rh—Me 87.6 (3) and 87.2 (5)°; Flood, Wang et al. (1996)]. A noticeable trans influence is reflected in the Rh—N(Cn*) bond distances, as the two Rh—N bonds trans to the Rh-bound methyl groups are markedly elongated [2.2135 (9) and 2.2258 (9) Å] compared with the Rh—N bond trans to the acetonitrile ligand [2.0942 (8) Å]. This elongation also affects the Cn* ligand, in that the N—Rh—N angle trans to the two methyl groups is smaller relative to the angles involving the shorter Rh—N bond, as would be expected according to a valence-shell electron-pair repulsion argument: a shorter bond results in more steric congestion close to the metal centre, thus resulting in a wider N—Rh—N bond angle.

To our knowledge, only one other X-ray crystal structure of a rhodium acetonitrile alkyl compound has been reported, namely that of the octahedral compound [Rh(PNP)(Ph)(Me)(NCMe)][BF4], in which PNP is the tridentate ligand 2,6-bis(diphenylphospanylmethyl)pyridine, (II) (Hahn et al., 1999). The Rh—N bond of the acetonitrile ligand in (II) is slightly longer [2.142 (3) Å] than the corresponding bond in (I). This elongation is presumably due to a stronger trans influence of the methyl group compared with the Cn* N atom. In (I), the end-on coordinated acetonitrile exhibits a nearly linear arrangement [Rh1—N4—C10 176.31 (11)° and N4—C10—C11 179.08 (15)°], as observed in (II) and other related compounds (Hahn et al., 1999, and references therein). Furthermore, a related tetranuclear Cn* acetonitrile complex, [{Cn*Rh(NCMe)Cl2}3Ag][OTf] was recently published (OTf is?; Südfeld & Sheldrick, 2000). Unfortunately, the characterization is insufficient for a detailed discussion of the structural properties of the compound.

As far as the crystal packing of (I) is concerned, it should be noted that numerous ππ-stacking interactions between adjacent [B(Ph)4]- anions play a major role in the solid-state phase of this complex. These interactions are typically in the range 2.9–3.2 Å, where the distance is between the aromatic H atoms and the C atoms of neighbouring molecules. Furthermore, the [B(Ph)4]- anions form a mesh with channels when looking along the b axis in the crystal. The metal-containing cations are confined within these channels (Fig. 2).

Experimental top

The synthesis of (I) was carried out according to the procedure previously reported by Fooladi et al. (1997). A solution of HBF4·Et2O (51 mg, 0.31 mmol) in acetonitrile (1 ml) was added dropwise to a stirred solution of Cn*RhMe3 (100 mg, 0.31 mmol) in acetonitrile-dichloromethane (2:1, 6 ml) at 259 K. The mixture was warmed to ambient temperature and stirred for another 1.5 h, followed by the removal of the solvent in vacuo. The oily residue was washed with benzene (2 ml) in order to remove any remaining Cn*RhMe3, dissolved in dichloromethane, filtered through Celite and recrystallized from dichloromethane-ether (Ratio?), to give yellow crystals of (I) (yield 108 mg, 81%). X-ray quality crystals were obtained by slow diffusion of diethyl ether into a solution of (I) in dichloromethane under a nitrogen atmosphere over a period of nine months.

Refinement top

All H atoms were placed in calculated geometric positions, with C—H distances in the range 0.95–0.99 Å Is this added text OK?, and refined isotropically riding on their parent atoms.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1995); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the cation in (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A molecular packing diagram for (I), viewed along the b axis, showing the anionic channel-forming network in which the metal-containing cations are confined.
(acetonitrile-κN)dimethyl(1,4,7-trimethyl-1,4,7-triazacyclononane- κ3N)rhodium(III) tetraphenylborate top
Crystal data top
[Rh(CH3)2(C2H3N)(C9H21N3)][B(C6H5)4]F(000) = 1400
Mr = 664.53Dx = 1.277 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 14.2560 (3) ÅCell parameters from 8192 reflections
b = 16.6074 (3) Åθ = 2.3–40.4°
c = 14.6189 (3) ŵ = 0.52 mm1
β = 92.789 (1)°T = 150 K
V = 3457.0 (1) Å3Block, yellow
Z = 40.6 × 0.4 × 0.3 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
20545 independent reflections
Radiation source: fine-focus sealed tube17370 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 40.4°, θmin = 2.3°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 2525
Tmin = 0.73, Tmax = 0.85k = 2930
55207 measured reflectionsl = 2526
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.21 w = 1/[σ2(Fo2) + (0.02P)2 + 1.41P]
where P = (Fo2 + 2Fc2)/3
20545 reflections(Δ/σ)max = 0.003
388 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
[Rh(CH3)2(C2H3N)(C9H21N3)][B(C6H5)4]V = 3457.0 (1) Å3
Mr = 664.53Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.2560 (3) ŵ = 0.52 mm1
b = 16.6074 (3) ÅT = 150 K
c = 14.6189 (3) Å0.6 × 0.4 × 0.3 mm
β = 92.789 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
20545 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
17370 reflections with I > 2σ(I)
Tmin = 0.73, Tmax = 0.85Rint = 0.017
55207 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.21Δρmax = 0.74 e Å3
20545 reflectionsΔρmin = 0.64 e Å3
388 parameters
Special details top

Refinement. Data collection was carried out using a Siemens SMART CCD Area-Detector Diffractometer (Siemens, 1995) and nominally covered over a hemisphere of reciprocal space, by a combination of 5 sets of exposures. Each exposure of 30 s covered 0.6° in ω. Crystal-to-detector distance was 5.00 cm.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rh10.296683 (5)0.087162 (5)0.187845 (5)0.01646 (2)
N10.15194 (6)0.09656 (6)0.17165 (6)0.02086 (14)
N20.28258 (6)0.21633 (5)0.22326 (7)0.02165 (15)
N30.25207 (7)0.07506 (6)0.33524 (6)0.02287 (15)
N40.43332 (6)0.08282 (6)0.20910 (7)0.02301 (15)
B10.16728 (7)0.10662 (6)0.26848 (7)0.01664 (15)
C10.12077 (8)0.18382 (7)0.18156 (10)0.0286 (2)
H1A0.09030.19190.24320.034*
H1B0.07390.19580.13570.034*
C20.20277 (8)0.24153 (7)0.16852 (9)0.0284 (2)
H2A0.18240.29630.18730.034*
H2B0.22340.24340.10290.034*
C30.25902 (9)0.22485 (7)0.32367 (8)0.0272 (2)
H3A0.29190.27250.34730.033*
H3B0.19060.23390.33350.033*
C40.28693 (9)0.15086 (8)0.37655 (8)0.0283 (2)
H4A0.26130.15520.44050.034*
H4B0.35620.14860.37790.034*
C50.14697 (8)0.07107 (8)0.34039 (9)0.0285 (2)
H5A0.12610.03110.38730.034*
H5B0.12120.12420.35940.034*
C60.10885 (7)0.04775 (7)0.24891 (9)0.0262 (2)
H6A0.03990.05550.25160.031*
H6B0.12160.01000.23720.031*
C70.11694 (9)0.06524 (9)0.08413 (9)0.0306 (2)
H7A0.04810.06480.08770.046*
H7B0.13940.10000.03350.046*
H7C0.14030.01040.07370.046*
C80.36653 (9)0.26530 (8)0.19760 (10)0.0320 (2)
H8A0.35150.32250.20570.048*
H8B0.41780.25080.23670.048*
H8C0.38590.25500.13340.048*
C90.29219 (12)0.00559 (9)0.38258 (9)0.0358 (3)
H9A0.27420.00830.44810.054*
H9B0.26830.04440.35690.054*
H9C0.36080.00680.37420.054*
C100.51289 (7)0.08183 (7)0.21665 (10)0.0271 (2)
C110.61376 (8)0.08169 (8)0.22523 (14)0.0419 (4)
H11A0.63260.13120.25590.063*
H11B0.63170.03490.26140.063*
H11C0.64520.07890.16420.063*
C120.30220 (8)0.03601 (7)0.15738 (8)0.02548 (19)
H12A0.28060.06690.21150.038*
H12B0.26160.04750.10680.038*
H12C0.36700.05120.13960.038*
C130.33397 (9)0.10531 (9)0.05126 (8)0.0308 (2)
H13A0.40260.10450.04250.046*
H13B0.30710.06240.01460.046*
H13C0.31000.15760.03180.046*
C140.15430 (6)0.00851 (5)0.25660 (6)0.01619 (13)
C150.14865 (7)0.02813 (6)0.16991 (7)0.02044 (16)
H150.14850.00520.11710.025*
C160.14320 (8)0.11149 (7)0.15811 (9)0.02563 (19)
H160.13970.13360.09810.031*
C170.14288 (8)0.16235 (6)0.23353 (10)0.0272 (2)
H170.13720.21900.22580.033*
C180.15112 (8)0.12859 (6)0.32064 (9)0.0260 (2)
H180.15260.16240.37310.031*
C190.15718 (7)0.04509 (6)0.33125 (7)0.02066 (16)
H190.16350.02360.39140.025*
C200.11976 (7)0.14283 (6)0.36035 (7)0.01845 (14)
C210.04392 (7)0.10640 (7)0.40219 (7)0.02191 (17)
H210.02210.05570.37990.026*
C220.00086 (8)0.14167 (8)0.47528 (8)0.0275 (2)
H220.05120.11440.50220.033*
C230.02821 (9)0.21636 (8)0.50855 (8)0.0307 (2)
H230.00220.24080.55780.037*
C240.10244 (10)0.25477 (8)0.46862 (9)0.0308 (2)
H240.12270.30610.49040.037*
C250.14753 (8)0.21832 (7)0.39643 (8)0.02485 (18)
H250.19870.24550.37080.030*
C260.28173 (7)0.11834 (6)0.27288 (7)0.01767 (14)
C270.33537 (8)0.11065 (7)0.35563 (8)0.02511 (19)
H270.30370.10600.41110.030*
C280.43345 (9)0.10966 (9)0.35942 (10)0.0340 (3)
H280.46720.10390.41670.041*
C290.48181 (8)0.11704 (8)0.27948 (12)0.0364 (3)
H290.54850.11690.28180.044*
C300.43137 (9)0.12456 (8)0.19647 (11)0.0321 (3)
H300.46360.12950.14140.038*
C310.33340 (8)0.12494 (7)0.19360 (8)0.02404 (18)
H310.30030.12980.13590.029*
C320.11267 (7)0.15491 (6)0.18310 (7)0.01845 (14)
C330.02382 (7)0.12904 (7)0.14924 (7)0.02222 (17)
H330.00120.08090.17340.027*
C340.02946 (9)0.17018 (8)0.08213 (8)0.0283 (2)
H340.08920.15000.06150.034*
C350.00463 (10)0.24084 (8)0.04520 (9)0.0340 (3)
H350.03100.26930.00090.041*
C360.09157 (12)0.26887 (8)0.07701 (10)0.0373 (3)
H360.11570.31730.05270.045*
C370.14466 (9)0.22681 (7)0.14470 (9)0.0294 (2)
H370.20410.24760.16520.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.01368 (3)0.01882 (3)0.01683 (3)0.00017 (2)0.00035 (2)0.00018 (2)
N10.0149 (3)0.0239 (4)0.0240 (4)0.0007 (3)0.0027 (3)0.0003 (3)
N20.0199 (3)0.0189 (3)0.0259 (4)0.0020 (3)0.0017 (3)0.0003 (3)
N30.0257 (4)0.0249 (4)0.0179 (3)0.0032 (3)0.0009 (3)0.0007 (3)
N40.0165 (3)0.0245 (4)0.0282 (4)0.0010 (3)0.0022 (3)0.0007 (3)
B10.0179 (4)0.0157 (4)0.0164 (4)0.0005 (3)0.0014 (3)0.0002 (3)
C10.0199 (4)0.0260 (5)0.0402 (6)0.0053 (4)0.0036 (4)0.0000 (4)
C20.0270 (5)0.0219 (4)0.0363 (6)0.0036 (4)0.0017 (4)0.0051 (4)
C30.0297 (5)0.0243 (5)0.0271 (5)0.0035 (4)0.0038 (4)0.0072 (4)
C40.0346 (5)0.0312 (5)0.0192 (4)0.0042 (4)0.0015 (4)0.0044 (4)
C50.0268 (5)0.0315 (5)0.0262 (5)0.0069 (4)0.0096 (4)0.0008 (4)
C60.0178 (4)0.0272 (5)0.0332 (5)0.0056 (3)0.0025 (4)0.0006 (4)
C70.0256 (5)0.0362 (6)0.0309 (5)0.0009 (4)0.0119 (4)0.0026 (5)
C80.0291 (5)0.0253 (5)0.0408 (7)0.0095 (4)0.0066 (5)0.0004 (5)
C90.0494 (8)0.0329 (6)0.0257 (5)0.0017 (5)0.0071 (5)0.0074 (4)
C100.0173 (4)0.0221 (4)0.0421 (6)0.0001 (3)0.0035 (4)0.0016 (4)
C110.0161 (4)0.0267 (6)0.0835 (12)0.0019 (4)0.0098 (5)0.0054 (6)
C120.0241 (4)0.0249 (5)0.0276 (5)0.0036 (4)0.0031 (4)0.0049 (4)
C130.0308 (5)0.0424 (7)0.0187 (4)0.0010 (5)0.0035 (4)0.0023 (4)
C140.0150 (3)0.0152 (3)0.0184 (3)0.0007 (2)0.0015 (3)0.0004 (3)
C150.0230 (4)0.0185 (4)0.0197 (4)0.0022 (3)0.0002 (3)0.0020 (3)
C160.0258 (4)0.0203 (4)0.0304 (5)0.0026 (3)0.0027 (4)0.0080 (4)
C170.0235 (4)0.0151 (4)0.0433 (6)0.0011 (3)0.0047 (4)0.0018 (4)
C180.0270 (4)0.0177 (4)0.0341 (5)0.0047 (3)0.0094 (4)0.0069 (4)
C190.0232 (4)0.0184 (4)0.0207 (4)0.0034 (3)0.0042 (3)0.0036 (3)
C200.0197 (3)0.0185 (4)0.0173 (4)0.0037 (3)0.0012 (3)0.0004 (3)
C210.0212 (4)0.0244 (4)0.0204 (4)0.0037 (3)0.0037 (3)0.0005 (3)
C220.0266 (5)0.0348 (6)0.0216 (4)0.0098 (4)0.0070 (4)0.0025 (4)
C230.0366 (6)0.0355 (6)0.0201 (4)0.0176 (5)0.0031 (4)0.0035 (4)
C240.0395 (6)0.0245 (5)0.0281 (5)0.0098 (4)0.0011 (4)0.0087 (4)
C250.0290 (5)0.0193 (4)0.0263 (5)0.0030 (3)0.0023 (4)0.0040 (3)
C260.0195 (3)0.0149 (3)0.0187 (4)0.0012 (3)0.0019 (3)0.0023 (3)
C270.0245 (4)0.0283 (5)0.0222 (4)0.0038 (4)0.0028 (3)0.0064 (4)
C280.0247 (5)0.0337 (6)0.0425 (7)0.0052 (4)0.0106 (5)0.0152 (5)
C290.0188 (4)0.0264 (5)0.0639 (9)0.0028 (4)0.0025 (5)0.0124 (6)
C300.0255 (5)0.0244 (5)0.0478 (7)0.0031 (4)0.0164 (5)0.0004 (5)
C310.0244 (4)0.0226 (4)0.0257 (5)0.0012 (3)0.0077 (3)0.0008 (3)
C320.0219 (4)0.0155 (3)0.0180 (4)0.0017 (3)0.0014 (3)0.0006 (3)
C330.0205 (4)0.0246 (4)0.0215 (4)0.0028 (3)0.0000 (3)0.0028 (3)
C340.0274 (5)0.0346 (6)0.0226 (5)0.0103 (4)0.0025 (4)0.0001 (4)
C350.0436 (7)0.0328 (6)0.0252 (5)0.0169 (5)0.0013 (5)0.0066 (4)
C360.0505 (8)0.0236 (5)0.0378 (7)0.0046 (5)0.0012 (6)0.0138 (5)
C370.0348 (5)0.0191 (4)0.0338 (6)0.0020 (4)0.0019 (4)0.0066 (4)
Geometric parameters (Å, º) top
Rh1—N12.0942 (8)C12—H12B0.9800
Rh1—N22.2135 (9)C12—H12C0.9800
Rh1—N32.2258 (9)C13—H13A0.9800
Rh1—N41.9888 (9)C13—H13B0.9800
Rh1—C122.0941 (11)C13—H13C0.9800
Rh1—C132.0633 (12)C14—C151.4046 (14)
N1—C71.4895 (15)C14—C191.4073 (13)
N1—C61.4976 (15)C15—C161.3968 (15)
N1—C11.5205 (15)C15—H150.9500
N2—C81.4802 (14)C16—C171.3891 (18)
N2—C21.4828 (15)C16—H160.9500
N2—C31.4965 (15)C17—C181.3912 (19)
N3—C91.4750 (17)C17—H170.9500
N3—C41.4918 (15)C18—C191.3975 (15)
N3—C51.4980 (15)C18—H180.9500
N4—C101.1451 (13)C19—H190.9500
B1—C261.6414 (14)C20—C211.4048 (15)
B1—C201.6472 (14)C20—C251.4093 (15)
B1—C321.6470 (14)C21—C221.3995 (15)
B1—C141.6480 (14)C21—H210.9500
C1—C21.5165 (17)C22—C231.388 (2)
C1—H1A0.9900C22—H220.9500
C1—H1B0.9900C23—C241.388 (2)
C2—H2A0.9900C23—H230.9500
C2—H2B0.9900C24—C251.3998 (16)
C3—C41.5152 (19)C24—H240.9500
C3—H3A0.9900C25—H250.9500
C3—H3B0.9900C26—C271.4051 (15)
C4—H4A0.9900C26—C311.4074 (14)
C4—H4B0.9900C27—C281.3967 (17)
C5—C61.5181 (18)C27—H270.9500
C5—H5A0.9900C28—C291.391 (2)
C5—H5B0.9900C28—H280.9500
C6—H6A0.9900C29—C301.386 (2)
C6—H6B0.9900C29—H290.9500
C7—H7A0.9800C30—C311.3953 (17)
C7—H7B0.9800C30—H300.9500
C7—H7C0.9800C31—H310.9500
C8—H8A0.9800C32—C331.4046 (15)
C8—H8B0.9800C32—C371.4049 (15)
C8—H8C0.9800C33—C341.3906 (15)
C9—H9A0.9800C33—H330.9500
C9—H9B0.9800C34—C351.389 (2)
C9—H9C0.9800C34—H340.9500
C10—C111.4495 (16)C35—C361.383 (2)
C11—H11A0.9800C35—H350.9500
C11—H11B0.9800C36—C371.4026 (18)
C11—H11C0.9800C36—H360.9500
C12—H12A0.9800C37—H370.9500
N1—Rh1—N282.84 (3)H9B—C9—H9C109.5
N1—Rh1—N383.08 (4)N4—C10—C11179.08 (15)
N2—Rh1—N380.95 (3)C10—C11—H11A109.5
N4—Rh1—C1288.33 (4)C10—C11—H11B109.5
N4—Rh1—C1387.04 (5)H11A—C11—H11B109.5
N4—Rh1—N1176.69 (4)C10—C11—H11C109.5
C13—Rh1—N195.08 (5)H11A—C11—H11C109.5
C12—Rh1—C1386.08 (5)H11B—C11—H11C109.5
N1—Rh1—C1294.35 (4)Rh1—C12—H12A109.5
N4—Rh1—N294.42 (4)Rh1—C12—H12B109.5
C13—Rh1—N295.80 (5)H12A—C12—H12B109.5
C12—Rh1—N2176.74 (4)Rh1—C12—H12C109.5
N4—Rh1—N394.67 (4)H12A—C12—H12C109.5
C13—Rh1—N3176.42 (5)H12B—C12—H12C109.5
C12—Rh1—N397.11 (4)Rh1—C13—H13A109.5
C7—N1—C6108.45 (9)Rh1—C13—H13B109.5
C7—N1—C1107.83 (9)H13A—C13—H13B109.5
C6—N1—C1109.68 (9)Rh1—C13—H13C109.5
C7—N1—Rh1116.37 (7)H13A—C13—H13C109.5
C6—N1—Rh1104.16 (6)H13B—C13—H13C109.5
C1—N1—Rh1110.20 (6)C15—C14—C19115.08 (9)
C8—N2—C2109.89 (10)C15—C14—B1121.64 (8)
C8—N2—C3109.68 (9)C19—C14—B1123.01 (9)
C2—N2—C3111.17 (9)C16—C15—C14122.76 (10)
C8—N2—Rh1114.21 (7)C16—C15—H15118.6
C2—N2—Rh1102.17 (7)C14—C15—H15118.6
C3—N2—Rh1109.55 (7)C17—C16—C15120.46 (11)
C9—N3—C4109.00 (10)C17—C16—H16119.8
C9—N3—C5110.58 (10)C15—C16—H16119.8
C4—N3—C5111.66 (9)C16—C17—C18118.57 (10)
C9—N3—Rh1115.20 (8)C16—C17—H17120.7
C4—N3—Rh1103.33 (7)C18—C17—H17120.7
C5—N3—Rh1106.90 (7)C17—C18—C19120.23 (10)
Rh1—N4—C10176.31 (11)C17—C18—H18119.9
C26—B1—C20111.85 (8)C19—C18—H18119.9
C26—B1—C32113.84 (8)C18—C19—C14122.84 (10)
C20—B1—C32104.02 (7)C18—C19—H19118.6
C26—B1—C14103.16 (7)C14—C19—H19118.6
C20—B1—C14113.48 (8)C21—C20—C25115.36 (9)
C32—B1—C14110.80 (8)C21—C20—B1123.61 (9)
C2—C1—N1111.74 (9)C25—C20—B1120.71 (9)
C2—C1—H1A109.3C22—C21—C20122.78 (11)
N1—C1—H1A109.3C22—C21—H21118.6
C2—C1—H1B109.3C20—C21—H21118.6
N1—C1—H1B109.3C23—C22—C21120.13 (11)
H1A—C1—H1B107.9C23—C22—H22119.9
N2—C2—C1111.14 (9)C21—C22—H22119.9
N2—C2—H2A109.4C22—C23—C24118.94 (10)
C1—C2—H2A109.4C22—C23—H23120.5
N2—C2—H2B109.4C24—C23—H23120.5
C1—C2—H2B109.4C23—C24—C25120.38 (11)
H2A—C2—H2B108.0C23—C24—H24119.8
N2—C3—C4111.82 (9)C25—C24—H24119.8
N2—C3—H3A109.3C24—C25—C20122.40 (11)
C4—C3—H3A109.3C24—C25—H25118.8
N2—C3—H3B109.3C20—C25—H25118.8
C4—C3—H3B109.3C27—C26—C31115.55 (10)
H3A—C3—H3B107.9C27—C26—B1121.41 (9)
N3—C4—C3112.14 (9)C31—C26—B1122.42 (9)
N3—C4—H4A109.2C28—C27—C26122.48 (12)
C3—C4—H4A109.2C28—C27—H27118.8
N3—C4—H4B109.2C26—C27—H27118.8
C3—C4—H4B109.2C29—C28—C27120.12 (12)
H4A—C4—H4B107.9C29—C28—H28119.9
N3—C5—C6111.54 (9)C27—C28—H28119.9
N3—C5—H5A109.3C30—C29—C28119.11 (11)
C6—C5—H5A109.3C30—C29—H29120.4
N3—C5—H5B109.3C28—C29—H29120.4
C6—C5—H5B109.3C29—C30—C31120.18 (12)
H5A—C5—H5B108.0C29—C30—H30119.9
N1—C6—C5112.02 (9)C31—C30—H30119.9
N1—C6—H6A109.2C30—C31—C26122.55 (11)
C5—C6—H6A109.2C30—C31—H31118.7
N1—C6—H6B109.2C26—C31—H31118.7
C5—C6—H6B109.2C33—C32—C37115.08 (10)
H6A—C6—H6B107.9C33—C32—B1120.20 (9)
N1—C7—H7A109.5C37—C32—B1124.47 (9)
N1—C7—H7B109.5C34—C33—C32123.41 (11)
H7A—C7—H7B109.5C34—C33—H33118.3
N1—C7—H7C109.5C32—C33—H33118.3
H7A—C7—H7C109.5C33—C34—C35119.98 (12)
H7B—C7—H7C109.5C33—C34—H34120.0
N2—C8—H8A109.5C35—C34—H34120.0
N2—C8—H8B109.5C36—C35—C34118.58 (11)
H8A—C8—H8B109.5C36—C35—H35120.7
N2—C8—H8C109.5C34—C35—H35120.7
H8A—C8—H8C109.5C35—C36—C37120.90 (12)
H8B—C8—H8C109.5C35—C36—H36119.5
N3—C9—H9A109.5C37—C36—H36119.5
N3—C9—H9B109.5C32—C37—C36122.05 (12)
H9A—C9—H9B109.5C32—C37—H37119.0
N3—C9—H9C109.5C36—C37—H37119.0
H9A—C9—H9C109.5

Experimental details

Crystal data
Chemical formula[Rh(CH3)2(C2H3N)(C9H21N3)][B(C6H5)4]
Mr664.53
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)14.2560 (3), 16.6074 (3), 14.6189 (3)
β (°) 92.789 (1)
V3)3457.0 (1)
Z4
Radiation typeMo Kα
µ (mm1)0.52
Crystal size (mm)0.6 × 0.4 × 0.3
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.73, 0.85
No. of measured, independent and
observed [I > 2σ(I)] reflections
55207, 20545, 17370
Rint0.017
(sin θ/λ)max1)0.911
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.077, 1.21
No. of reflections20545
No. of parameters388
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.64

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SAINT, SHELXTL (Sheldrick, 1995), SHELXTL.

Selected geometric parameters (Å, º) top
Rh1—N12.0942 (8)Rh1—N41.9888 (9)
Rh1—N22.2135 (9)Rh1—C122.0941 (11)
Rh1—N32.2258 (9)Rh1—C132.0633 (12)
N1—Rh1—N282.84 (3)N4—Rh1—C1387.04 (5)
N1—Rh1—N383.08 (4)C12—Rh1—C1386.08 (5)
N2—Rh1—N380.95 (3)Rh1—N4—C10176.31 (11)
N4—Rh1—C1288.33 (4)N4—C10—C11179.08 (15)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds