Download citation
Download citation
link to html
In the title compound, [CrBr2(C5H14N2)2]2Br2·HClO4·6H2O, there are two independent CrIII complex cations which are conformational isomers of each other. The Cr atoms lie respectively on a center of symmetry and on a mirror plane and have octahedral environments, coordinated by the N atoms of two 2,2-di­methylpropane-1,3-diamine ligands and by two Br atoms in trans positions. The Cr-N and Cr-Br bond lengths are in the ranges 2.078 (3)-2.089 (3) and 2.4495 (9)-2.5017 (9) Å, respectively. The crystal structure consists of two CrIII complex cations, two Br- anions, a (ClO4)- anion and an [H13O6]+ hydrogen-bonded cluster cation.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102018231/ob1082sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102018231/ob1082Isup2.hkl
Contains datablock I

CCDC reference: 199406

Comment top

2,2-Dimethyl-1,3-diaminopropane (Me2tn) can coordinate to a central metal ion as a bidentate ligand, forming a six-membered chelate ring, similar to the situation for unsubstituted 1,3-diaminopropane (tn; House, 1986). In addition to the conformational isomerism resulting from the six-membered chelate rings, the [CrBr2(tn/Me2tn)2]+ complex cation can exist as a cis or trans isomer. Although electronic absorption and IR spectra have been used to identify the geometrical structures of chromium(III) complexes (Choi et al., 2002; Poon & Pun, 1980), assignments based on spectral data are not always conclusive (Stearns & Armstrong, 1992). Furthermore, since the structural chemistry of complexes of the type [CrIIIL4Br2]X is rare (Lisgarten et al., 1990), we prepared the title complex, (I), which contains the [CrBr2(Me2tn)2]+ cation, and determined its crystal structure by X-ray analysis.

The structure analysis of (I) revealed that the crystal contains two crystallographically independent CrIII complex moieties. As atom Cr1 is located at a crystallographic center of symmetry, this CrIII complex cation has a molecular Ci symmetry, while the other complex cation, containing atom Cr2, has molecular Cs symmetry; atoms Cr2, Br21, Br22, C22, C24, C25, C27, C29 and C30 atoms are located on a crystallographic mirror plane. It was found that in both complex cations, the two Br atoms are coordinated to the central Cr atom in a trans arrangement. The Cr—Br bond lengths [2.4495 (9)–2.5017 (9) Å] are close to the value found in trans-[CrBr2(cyclam)2]Br (cyclam is 1,4,8,11-tetraazacyclotetradecane; Lisgarten et al., 1990). The Cr—-N bond lengths are in the range 2.078 (3)–2.089 (3) Å, which are typical values for CrIII—N(primary amine) bonds. All of the six-membered chelate rings formed by the Me2tn ligand adopt chair conformations, but two complex cations were so-called conformational (Ci and Cs) isomers due to the relative conformation of the two Me2tn chelate rings, as shown in Fig. 1.

As well as the complex cations, the asymmetric unit of (I) also contains a Br- ion (Br3), a half ClO4- anion and three O atoms (O1, O2 and O3) corresponding to the hydrated water molecules. Owing to charge balance, a half equivalent amount of H+ per CrIII complex cation should be included in the crystal. We suspected that such an H+ ion was trapped between atoms O1 and O1iii [symmetry code: (iii) 1 - x, y, -z], because the O1···O1iii distance was only 2.347 (9) Å, pointing to the existence of a strong hydrogen-bonding interaction between these atoms (Minkwitz et al., 1998). Since atom O1 is also involved in a hydrogen bond with both O2 and O3iv [O1···O2 2.662 (7) Å and O1···O3iv 2.667 (7) Å; symmetry code: (iv) 1/2 + x, 1/2 - y, z], the hydrated H+ cation in this crystal forms an [H13O6]+ cluster cation (Fig. 2). Although both Eigen-type and chain-like structures of [H9O4]+ clusters are often observed (Frank & Reiss, 1997; Hassaballa et al., 1998), the H-shaped [H13O6]+ cluster cation found in the crystal of (I) has,to our best knowledge, not been reported previously.

Hence, (I) can be formulated as (H13O6){trans-[CrBr2(Me2tn)2]}2Br2(ClO4). For help in visualizing the complete structure of this compound, a drawing containing an H13O6+ cluster cation and two conformational isomers of the CrIII complex cation, together with two Br- anions and a ClO4- anion, is illustrated in Fig. 2.

Experimental top

The starting material trans-[CrCl2(Me2tn)2]ClO4 was synthesized according to the literature method of House (1986). The complex trans-[CrCl2(Me2tn)2]ClO4 (1.0 g) and NaOH (1.0 g) were suspended in water (10 ml) and heated at 333 K for 15 min. HBr (48%, 10 ml) and HClO4 (60%, 5 ml) were added to the mixture. The solution was concentrated at 333 K until green crystals appeared. The reaction mixture was then placed in an ice bath and the crystalline product which was deposited was filtered off, washed with cold 2-propanol and then diethyl ether. Recrystallization of the crude product from 0.5 M HBr solution afforded green crystals of (I) suitable for X-ray analysis.

Refinement top

The water H atoms were located from difference syntheses and refined as parts of rigid groups, with O—H = 0.90 Å and Uiso(H) = 0.044 Å2. The position of the H+ ion (H00) was fixed at the midpoint between the atoms O1 and O1(1 - x, y, -z). Other H atoms were placed geometrically and refined using a riding model, with N—H = 0.90 Å, C—H = 0.96 (for methyl H) or 0.97 Å (for methylene H), and Uiso(H) = 1.2Uiso(N or C). The H atoms of the methyl groups (C24, C25, C29 and C30) were treated as positionally disordered over two sites.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: TEXSAN (Molecular Structure Cooperation & Rigaku, 2000); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP (Johnson, 1970); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Perspective views of the two crystallographically independent complex cations in (I). Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1/2 - x, 1/2 - y, -z; (ii) x, -y, z.]
[Figure 2] Fig. 2. View of a complete set of ions in (I). [Symmetry codes: (i) 1/2 - x, 1/2 - y, -z; (ii) x, -y, z; (iii) 1 - x, y, -z; (iv) 1/2 + x, 1/2 - y, z.]
trans-Dibromobis(2,2-dimethyl-1,3-diaminopropane)chromium(III) Bromide Hemi(hydrogen perchlorate) Trihydrate top
Crystal data top
[CrBr2(C5H14N2)2]2Br2·HClO4·6H2OF(000) = 2400
Mr = 1200.74Dx = 1.731 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71069 Å
a = 22.3862 (8) ÅCell parameters from 24876 reflections
b = 24.7393 (8) Åθ = 1.6–27.5°
c = 8.3230 (3) ŵ = 5.78 mm1
β = 91.624 (1)°T = 293 K
V = 4607.6 (3) Å3Plate, green
Z = 80.32 × 0.32 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPID Imaging Plate
diffractometer
5320 independent reflections
Radiation source: fine-focus sealed tube4188 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 2.5°
ω scansh = 2626
Absorption correction: multi-scan
(Higashi, 1995)
k = 3032
Tmin = 0.188, Tmax = 0.560l = 1010
20618 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.052P)2 + 9.0033P]
where P = (Fo2 + 2Fc2)/3
5320 reflections(Δ/σ)max = 0.002
228 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
[CrBr2(C5H14N2)2]2Br2·HClO4·6H2OV = 4607.6 (3) Å3
Mr = 1200.74Z = 8
Monoclinic, C2/mMo Kα radiation
a = 22.3862 (8) ŵ = 5.78 mm1
b = 24.7393 (8) ÅT = 293 K
c = 8.3230 (3) Å0.32 × 0.32 × 0.10 mm
β = 91.624 (1)°
Data collection top
Rigaku R-AXIS RAPID Imaging Plate
diffractometer
5320 independent reflections
Absorption correction: multi-scan
(Higashi, 1995)
4188 reflections with I > 2σ(I)
Tmin = 0.188, Tmax = 0.560Rint = 0.052
20618 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.05Δρmax = 0.73 e Å3
5320 reflectionsΔρmin = 0.60 e Å3
228 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br30.29087 (2)0.176534 (16)0.50962 (4)0.04806 (13)
Br110.19102 (2)0.335225 (17)0.00718 (5)0.05015 (13)
Br210.21757 (3)0.00000.10304 (7)0.05798 (18)
Br220.31308 (3)0.00000.64692 (6)0.05400 (17)
Cr10.25000.25000.00000.03191 (18)
Cr20.26574 (4)0.00000.37796 (9)0.03325 (18)
Cl0.00000.16923 (8)0.50000.0705 (5)
O10.4979 (2)0.1581 (2)0.1407 (6)0.1096 (16)
O20.4230 (2)0.2077 (2)0.3351 (6)0.1109 (16)
O30.0933 (2)0.3843 (2)0.2930 (6)0.1143 (16)
O410.0122 (4)0.1410 (4)0.6354 (7)0.201 (4)
O420.0445 (6)0.2016 (5)0.4612 (12)0.318 (8)
N110.19109 (14)0.21564 (14)0.1693 (3)0.0415 (7)
H11M0.16380.24100.19630.049*
H11N0.21200.20890.25780.049*
N120.19988 (14)0.22128 (13)0.1883 (3)0.0377 (7)
H12M0.22500.21750.27390.047*
H12N0.17380.24740.21300.047*
N210.32399 (15)0.05930 (13)0.3001 (4)0.0432 (7)
H21M0.31670.08940.35720.053*
H21N0.31360.06670.19720.053*
N220.20486 (15)0.05914 (13)0.4460 (4)0.0446 (7)
H22M0.18160.06650.35880.055*
H22N0.22610.08930.46800.055*
C110.15758 (19)0.16518 (17)0.1308 (5)0.0479 (10)
H11A0.18570.13540.12250.061*
H11B0.12970.15730.21910.061*
C120.12281 (18)0.16832 (18)0.0254 (5)0.0477 (9)
C130.16552 (19)0.17025 (16)0.1717 (5)0.0448 (9)
H13A0.14270.16510.26770.057*
H13B0.19340.14040.16490.057*
C140.07988 (19)0.2160 (2)0.0238 (6)0.0610 (12)
H14A0.10210.24910.01720.073*
H14B0.05760.21590.12060.073*
H14C0.05290.21320.06750.073*
C150.0877 (2)0.1150 (2)0.0352 (7)0.0693 (13)
H15A0.06410.11520.12970.090*
H15B0.11510.08520.04030.090*
H15C0.06190.11140.05840.090*
C210.38967 (19)0.05071 (17)0.3070 (5)0.0501 (10)
H21A0.40870.08160.25830.065*
H21B0.40300.04930.41880.065*
C220.4106 (3)0.00000.2241 (7)0.0453 (13)
C240.3906 (3)0.00000.0467 (7)0.0617 (17)
H24A0.34780.00060.03840.075*0.5
H24B0.40520.03200.00430.075*0.50
H24C0.40640.03140.00520.075*0.50
C250.4793 (3)0.00000.2378 (9)0.0667 (19)
H25A0.49170.00060.34910.080*0.5
H25B0.49450.03200.18800.080*0.50
H25C0.49450.03140.18470.080*0.50
C270.1262 (3)0.00000.5701 (7)0.0495 (14)
C280.16419 (19)0.05075 (17)0.5826 (5)0.0500 (10)
H28A0.18810.04920.68160.066*
H28B0.13790.08180.58950.066*
C290.0869 (3)0.00000.4162 (8)0.0617 (17)
H29A0.11180.00000.32420.075*
H29B0.06210.03170.41410.075*0.50
H29C0.06210.03170.41410.075*0.50
C300.0858 (3)0.00000.7148 (9)0.071 (2)
H30A0.10990.00060.81200.083*0.5
H30B0.06060.03140.71070.083*0.50
H30C0.06150.03200.71270.083*0.50
H000.50000.15810.00000.044*
H01A0.53130.14490.18840.044*
H01B0.48100.17230.22810.044*
H02A0.44050.23750.37680.044*
H02B0.39230.18700.36650.044*
H03A0.13080.38900.33270.044*
H03B0.08900.34900.26570.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br30.0635 (3)0.0428 (2)0.0376 (2)0.00513 (19)0.00295 (17)0.00615 (15)
Br110.0553 (3)0.0492 (2)0.0461 (2)0.01554 (19)0.00436 (18)0.00421 (17)
Br210.0621 (4)0.0722 (4)0.0390 (3)0.0000.0088 (3)0.000
Br220.0600 (4)0.0684 (4)0.0333 (3)0.0000.0032 (2)0.000
Cr10.0350 (4)0.0382 (4)0.0225 (3)0.0071 (3)0.0011 (3)0.0005 (3)
Cr20.0405 (4)0.0301 (4)0.0292 (4)0.0000.0011 (3)0.000
Cl0.0839 (13)0.0729 (12)0.0548 (9)0.0000.0051 (9)0.000
O10.103 (4)0.140 (4)0.085 (3)0.014 (3)0.006 (3)0.003 (3)
O20.107 (3)0.120 (4)0.107 (3)0.051 (3)0.017 (3)0.021 (3)
O30.083 (3)0.123 (4)0.135 (4)0.019 (3)0.024 (3)0.015 (3)
O410.229 (8)0.272 (10)0.100 (4)0.049 (8)0.016 (5)0.061 (5)
O420.378 (15)0.376 (15)0.209 (9)0.260 (13)0.142 (10)0.129 (10)
N110.0428 (17)0.0543 (19)0.0273 (14)0.0076 (15)0.0021 (12)0.0061 (13)
N120.0426 (17)0.0448 (17)0.0256 (13)0.0050 (14)0.0011 (12)0.0008 (12)
N210.0513 (19)0.0370 (17)0.0417 (16)0.0012 (15)0.0080 (14)0.0012 (13)
N220.0498 (19)0.0364 (17)0.0478 (17)0.0001 (15)0.0044 (14)0.0025 (14)
C110.045 (2)0.055 (2)0.043 (2)0.0019 (19)0.0074 (17)0.0087 (18)
C120.038 (2)0.057 (3)0.048 (2)0.0012 (19)0.0007 (17)0.0016 (18)
C130.048 (2)0.047 (2)0.0397 (19)0.0021 (18)0.0034 (17)0.0055 (17)
C140.041 (2)0.084 (3)0.058 (3)0.011 (2)0.0035 (19)0.001 (2)
C150.058 (3)0.072 (3)0.078 (3)0.016 (3)0.001 (2)0.001 (3)
C210.050 (2)0.051 (2)0.050 (2)0.011 (2)0.0063 (18)0.0009 (19)
C220.041 (3)0.053 (3)0.042 (3)0.0000.006 (2)0.000
C240.066 (4)0.080 (5)0.039 (3)0.0000.015 (3)0.000
C250.048 (4)0.076 (5)0.077 (5)0.0000.016 (3)0.000
C270.041 (3)0.056 (4)0.052 (3)0.0000.010 (2)0.000
C280.052 (2)0.046 (2)0.052 (2)0.004 (2)0.0099 (18)0.0080 (18)
C290.048 (4)0.072 (5)0.065 (4)0.0000.001 (3)0.000
C300.058 (4)0.084 (5)0.072 (5)0.0000.016 (3)0.000
Geometric parameters (Å, º) top
Br11—Cr12.4876 (4)C11—H11B0.9700
Br21—Cr22.5017 (9)C12—C141.522 (6)
Br22—Cr22.4495 (9)C12—C131.527 (6)
Cr1—N12i2.078 (3)C12—C151.539 (6)
Cr1—N122.078 (3)C13—H13A0.9700
Cr1—N112.084 (3)C13—H13B0.9700
Cr1—N11i2.084 (3)C14—H14A0.9600
Cr1—Br11i2.4876 (4)C14—H14B0.9600
Cr2—N212.078 (3)C14—H14C0.9600
Cr2—N21ii2.079 (3)C15—H15A0.9600
Cr2—N222.089 (3)C15—H15B0.9600
Cr2—N22ii2.089 (3)C15—H15C0.9600
Cl—O421.325 (8)C21—C221.512 (5)
Cl—O42iii1.325 (8)C21—H21A0.9700
Cl—O41iii1.347 (6)C21—H21B0.9700
Cl—O411.348 (6)C22—C21ii1.512 (5)
O1—H001.173C22—C241.530 (8)
O1—H01A0.899C22—C251.539 (9)
O1—H01B0.899C24—H24A0.9600
O2—H02A0.899C24—H24B0.9600
O2—H02B0.900C24—H24C0.9600
O3—H03A0.902C25—H25A0.9600
O3—H03B0.905C25—H25B0.9600
N11—C111.496 (5)C25—H25C0.9600
N11—H11M0.9000C27—C281.518 (5)
N11—H11N0.9000C27—C28ii1.518 (5)
N12—C131.483 (5)C27—C301.527 (9)
N12—H12M0.9000C27—C291.534 (9)
N12—H12N0.9000C28—H28A0.9700
N21—C211.485 (5)C28—H28B0.9700
N21—H21M0.9000C29—H29A0.9600
N21—H21N0.9000C29—H29B0.9600
N22—C281.491 (5)C29—H29C0.9600
N22—H22M0.9000C30—H30A0.9600
N22—H22N0.9000C30—H30B0.9600
C11—C121.536 (6)C30—H30C0.9600
C11—H11A0.9700
N12i—Cr1—N12180.0C14—C12—C11111.5 (4)
N12i—Cr1—N1188.54 (12)C13—C12—C11110.8 (3)
N12—Cr1—N1191.46 (12)C14—C12—C15110.0 (4)
N12i—Cr1—N11i91.46 (12)C13—C12—C15107.1 (4)
N12—Cr1—N11i88.54 (12)C11—C12—C15105.9 (4)
N11—Cr1—N11i180.0N12—C13—C12114.4 (3)
N12i—Cr1—Br1189.41 (9)N12—C13—H13A108.7
N12—Cr1—Br1190.59 (9)C12—C13—H13A108.7
N11—Cr1—Br1190.24 (9)N12—C13—H13B108.7
N11i—Cr1—Br1189.76 (9)C12—C13—H13B108.7
N12i—Cr1—Br11i90.59 (9)H13A—C13—H13B107.6
N12—Cr1—Br11i89.41 (9)C12—C14—H14A109.5
N11—Cr1—Br11i89.76 (9)C12—C14—H14B109.5
N11i—Cr1—Br11i90.24 (9)H14A—C14—H14B109.5
Br11—Cr1—Br11i180.0C12—C14—H14C109.5
N21—Cr2—N21ii89.79 (18)H14A—C14—H14C109.5
N21—Cr2—N2290.57 (13)H14B—C14—H14C109.5
N21ii—Cr2—N22177.29 (14)C12—C15—H15A109.5
N21—Cr2—N22ii177.29 (14)C12—C15—H15B109.5
N21ii—Cr2—N22ii90.57 (13)H15A—C15—H15B109.5
N22—Cr2—N22ii88.94 (18)C12—C15—H15C109.5
N21—Cr2—Br2291.47 (9)H15A—C15—H15C109.5
N21ii—Cr2—Br2291.47 (9)H15B—C15—H15C109.5
N22—Cr2—Br2291.20 (10)N21—C21—C22114.8 (4)
N22ii—Cr2—Br2291.20 (10)N21—C21—H21A108.6
N21—Cr2—Br2188.45 (9)C22—C21—H21A108.6
N21ii—Cr2—Br2188.45 (9)N21—C21—H21B108.6
N22—Cr2—Br2188.87 (10)C22—C21—H21B108.6
N22ii—Cr2—Br2188.88 (10)H21A—C21—H21B107.5
Br22—Cr2—Br21179.89 (4)C21ii—C22—C21112.1 (5)
O42—Cl—O42iii105.6 (13)C21ii—C22—C24110.8 (3)
O42—Cl—O41iii104.2 (5)C21—C22—C24110.8 (3)
O42iii—Cl—O41iii112.5 (8)C21ii—C22—C25106.7 (3)
O42—Cl—O41112.5 (8)C21—C22—C25106.7 (3)
O42iii—Cl—O41104.2 (5)C24—C22—C25109.6 (5)
O41iii—Cl—O41117.5 (9)C22—C24—H24A109.5
H00—O1—H01A112.6C22—C24—H24B109.5
H00—O1—H01B146.7H24A—C24—H24B109.5
H01A—O1—H01B98.5C22—C24—H24C109.5
H02A—O2—H02B132.8H24A—C24—H24C109.5
H03A—O3—H03B107.9H24B—C24—H24C109.5
C11—N11—Cr1120.5 (2)C22—C25—H25A109.5
C11—N11—H11M107.2C22—C25—H25B109.5
Cr1—N11—H11M107.2H25A—C25—H25B109.5
C11—N11—H11N107.2C22—C25—H25C109.5
Cr1—N11—H11N107.2H25A—C25—H25C109.5
H11M—N11—H11N106.8H25B—C25—H25C109.5
C13—N12—Cr1120.7 (2)C28—C27—C28ii111.6 (5)
C13—N12—H12M107.2C28—C27—C30106.8 (3)
Cr1—N12—H12M107.2C28ii—C27—C30106.8 (3)
C13—N12—H12N107.2C28—C27—C29111.4 (3)
Cr1—N12—H12N107.2C28ii—C27—C29111.4 (3)
H12M—N12—H12N106.8C30—C27—C29108.6 (5)
C21—N21—Cr2121.1 (2)N22—C28—C27114.5 (4)
C21—N21—H21M107.1N22—C28—H28A108.6
Cr2—N21—H21M107.1C27—C28—H28A108.6
C21—N21—H21N107.1N22—C28—H28B108.6
Cr2—N21—H21N107.1C27—C28—H28B108.6
H21M—N21—H21N106.8H28A—C28—H28B107.6
C28—N22—Cr2121.8 (3)C27—C29—H29A109.5
C28—N22—H22M106.9C27—C29—H29B109.5
Cr2—N22—H22M106.9H29A—C29—H29B109.5
C28—N22—H22N106.9C27—C29—H29C109.5
Cr2—N22—H22N106.9H29A—C29—H29C109.5
H22M—N22—H22N106.7H29B—C29—H29C109.5
N11—C11—C12114.1 (3)C27—C30—H30A109.5
N11—C11—H11A108.7C27—C30—H30B109.5
C12—C11—H11A108.7H30A—C30—H30B109.5
N11—C11—H11B108.7C27—C30—H30C109.5
C12—C11—H11B108.7H30A—C30—H30C109.5
H11A—C11—H11B107.6H30B—C30—H30C109.5
C14—C12—C13111.3 (4)
N12i—Cr1—N11—C11149.8 (3)Cr1—N11—C11—C1252.9 (4)
N12—Cr1—N11—C1130.2 (3)N11—C11—C12—C1455.7 (5)
Br11—Cr1—N11—C11120.8 (3)N11—C11—C12—C1368.9 (4)
Br11i—Cr1—N11—C1159.2 (3)N11—C11—C12—C15175.3 (3)
N11—Cr1—N12—C1330.6 (3)Cr1—N12—C13—C1253.9 (4)
N11i—Cr1—N12—C13149.4 (3)C14—C12—C13—N1255.2 (5)
Br11—Cr1—N12—C13120.8 (3)C11—C12—C13—N1269.5 (4)
Br11i—Cr1—N12—C1359.2 (3)C15—C12—C13—N12175.5 (4)
N21ii—Cr2—N21—C2133.2 (3)Cr2—N21—C21—C2254.1 (4)
N22—Cr2—N21—C21149.5 (3)N21—C21—C22—C21ii66.1 (6)
Br22—Cr2—N21—C2158.3 (3)N21—C21—C22—C2458.2 (5)
Br21—Cr2—N21—C21121.7 (3)N21—C21—C22—C25177.4 (4)
N21—Cr2—N22—C28149.5 (3)Cr2—N22—C28—C2754.6 (5)
N22ii—Cr2—N22—C2833.2 (4)C28ii—C27—C28—N2266.4 (6)
Br22—Cr2—N22—C2858.0 (3)C30—C27—C28—N22177.2 (4)
Br21—Cr2—N22—C28122.1 (3)C29—C27—C28—N2258.8 (5)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y, z; (iii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11M···O2i0.902.573.438 (6)163
N11—H11N···Br3iv0.902.773.661 (3)169
N12—H12M···Br30.902.623.496 (3)163
N12—H12N···Br3v0.903.063.567 (3)117
N21—H21M···Br3ii0.902.583.475 (3)177
N21—H21N···Br11vi0.902.903.580 (3)134
N22—H22N···Br3ii0.902.623.516 (3)176
O1—H00···O1vii1.171.172.347 (9)180
O1—H01A···O3viii0.901.772.667 (7)175
O1—H01B···O20.901.822.662 (7)155
O2—H02A···O42v0.902.052.89 (1)157
O2—H02B···Br30.902.613.420 (5)150
O3—H03A···Br3v0.902.703.383 (5)133
O3—H03A···Br22v0.903.023.575 (5)121
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y, z; (iv) x, y, z1; (v) x+1/2, y+1/2, z+1; (vi) x+1/2, y1/2, z; (vii) x+1, y, z; (viii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[CrBr2(C5H14N2)2]2Br2·HClO4·6H2O
Mr1200.74
Crystal system, space groupMonoclinic, C2/m
Temperature (K)293
a, b, c (Å)22.3862 (8), 24.7393 (8), 8.3230 (3)
β (°) 91.624 (1)
V3)4607.6 (3)
Z8
Radiation typeMo Kα
µ (mm1)5.78
Crystal size (mm)0.32 × 0.32 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID Imaging Plate
diffractometer
Absorption correctionMulti-scan
(Higashi, 1995)
Tmin, Tmax0.188, 0.560
No. of measured, independent and
observed [I > 2σ(I)] reflections
20618, 5320, 4188
Rint0.052
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.108, 1.05
No. of reflections5320
No. of parameters228
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.60

Computer programs: PROCESS-AUTO (Rigaku, 1998), PROCESS-AUTO, TEXSAN (Molecular Structure Cooperation & Rigaku, 2000), SHELXS86 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP (Johnson, 1970), SHELXL97.

Selected geometric parameters (Å, º) top
Br11—Cr12.4876 (4)Cr1—N112.084 (3)
Br21—Cr22.5017 (9)Cr2—N212.078 (3)
Br22—Cr22.4495 (9)Cr2—N222.089 (3)
Cr1—N122.078 (3)
N12—Cr1—N1191.46 (12)N22—Cr2—N22i88.94 (18)
N12—Cr1—Br1190.59 (9)N21—Cr2—Br2291.47 (9)
N11—Cr1—Br1190.24 (9)N22—Cr2—Br2291.20 (10)
N21—Cr2—N21i89.79 (18)N21—Cr2—Br2188.45 (9)
N21—Cr2—N2290.57 (13)N22—Cr2—Br2188.87 (10)
N21—Cr2—N22i177.29 (14)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11M···O2ii0.902.573.438 (6)163
N11—H11N···Br3iii0.902.773.661 (3)169
N12—H12M···Br30.902.623.496 (3)163
N12—H12N···Br3iv0.903.063.567 (3)117
N21—H21M···Br3i0.902.583.475 (3)177
N21—H21N···Br11v0.902.903.580 (3)134
N22—H22N···Br3i0.902.623.516 (3)176
O1—H00···O1vi1.171.172.347 (9)180
O1—H01A···O3vii0.901.772.667 (7)175
O1—H01B···O20.901.822.662 (7)155
O2—H02A···O42iv0.902.052.89 (1)157
O2—H02B···Br30.902.613.420 (5)150
O3—H03A···Br3iv0.902.703.383 (5)133
O3—H03A···Br22iv0.903.023.575 (5)121
Symmetry codes: (i) x, y, z; (ii) x+1/2, y+1/2, z; (iii) x, y, z1; (iv) x+1/2, y+1/2, z+1; (v) x+1/2, y1/2, z; (vi) x+1, y, z; (vii) x+1/2, y+1/2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds