Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In trans-bis(5-n-butyl­pyridine-2-carboxyl­ato-[kappa]2N,O)­bis­(methanol-[kappa]O)copper(II), [Cu(C10H12NO2)2(CH4O)2], the Cu atom lies on a centre of symmetry and has a distorted octahedral coordination. The Cu-O(methanol) bond length in the axial direction is 2.596 (3) Å, which is much longer than the Cu-­O(carboxylate) and Cu-N distances in the equatorial plane [1.952 (2) and 1.977 (2) Å, respectively]. In mer-tris(5-n-bu­tyl­pyridine-2-carboxyl­ato-[kappa]2N,O)­iron(III), [Fe(C10H12NO2)3], the Fe atom also has a distorted octahedral geometry, with Fe-O and Fe-N bond-length ranges of 1.949 (4)-1.970 (4) and 2.116 (5)-2.161 (5) Å, respectively. Both crystals are stabilized by stacking interactions of the 5-n-butyl­pyridine-2-carboxyl­ate ligand, although hydrogen bonds also contribute to the stabilization of the copper(II) complex.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102015615/ob1079sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102015615/ob1079Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102015615/ob1079IIsup3.hkl
Contains datablock II

CCDC references: 197321; 197322

Comment top

Fusaric acid (5-butylpicolinic acid or 5-butylpyridine-2-carboxylic acid) is a well known fusarium mycotoxin produced by certain fungi which cause infections in cereal grains and other agricultural commodities (Nagatsu et al., 1970; Wang & Ng, 1999; D'Mello et al., 1999). It is a potent inhibitor of the copper enzyme dopamine β-hydroxylase, which catalyzes the biosynthesis of norepinephrine and lowers endogeneous levels of norepinephrine and epinephrine in brain, heart, spleen and adrenal glands. It is suggested that the inhibitory action of fusaric acid is due to complex interactions with the enzyme-substrate complex (Nagatsu et al., 1970). Fusaric acid also possesses a marked growth-inhibitory action on rice seedlings via the Fenton reaction, which produces reactive oxygen species such as hydroxyl radicals in the presence of reactive transition metals, such as copper, iron etc., and hydrogen peroxide (Iwahashi et al., 1999; Kasprzak, 2002). The formation of chelates of fusaric acid with the transition metals FeIII, CuII, CoII, NiII or MnII has been confirmed spectrophotometrically (Malini, 1966). These findings prompted us to clarify the structure of fusaric acid and the mode of interaction between fusaric acid and metal ions, and we have determined the crystal structures of the title CuII and FeIII complexes, (I) and (II), respectively. \sch

The molecular structure of (I) is shown in Fig. 1. The Cu atom has a distorted octahedral coordination geometry in the trans form, defined by two N atoms and two O atoms of the bidentate ligand molecules in the equatorial plane, and two axial O atoms of the methanol molecules. The coordination bond length in the axial direction [Cu1—O3M 2.596 (3) Å] is longer than those in the equatorial plane (Table 1).

A similar coordination geometry was observed in hydrated bis(pyridine-2-carboxylato)copper(II), in which the corresponding Cu—O(aq) distance in the axial direction and Cu—O(carboxylate) bond length in the equatorial plane are 2.752 (2) and 1.940 (2) Å, respectively (Faure et al., 1973). These long bond lengths in the axial direction compared with those in the equatorial plane are usually observed in copper complexes of octahedral coordination geometry and are explained by a Jahn-Teller effect.

The butyl side chain of the fusaric acid ligands are in the fully extended trans zigzag conformation in (I), the zigzag plane nearly coinciding with the planes of the pyridine ring and the carboxylate [O2—C7—C2—N1 - 3.0 (4), C6—C5—C8—C9 - 17.5 (5) and C8—C9—C10—C11 - 179.6 (4)°].

In the crystal packing of (I), neighbouring molecules are stacked a mean distance of 3.403 (4) Å apart, and strong hydrogen bonds are formed between the coordinated methanol molecules and the carboxylate groups of neighbouring molecules (Table 2). The hydrocarbon side chains of the ligands and the coordinated methanol molecules form hydrophobic moieties by association.

The molecular structure of (II) is shown in Fig. 2. In this complex, the Fe atom has a distorted octahedral coordination geometry in the meridional form, bonded by three N and three O atoms from three bidentate ligands. The orientation of the hydrocarbon chains in (II) is very different from that in (I), with the chains roughly perpendicular to the pyridine ring plane [C14—C15—C18—C19 92.0 (7), C24—C25—C28—C29 80.0 (10) and C4—C5—C8—C9 - 76.7 (10)°]. The conformations of the three chains are different, being trans-gauche [C5—C8—C9—C10 - 179.3 (8) and C8—C9—C10—C11 - 63 (1)°], trans-trans [C15—C18—C19—C20 - 174.1 (7) and C18—C19—C20—C21 - 178.6 (7)°] and gauche-trans [C25—C28—C29—C30 68 (1) and C28—C29—C30—C31 166 (1)°].

The model of the coordination mode of the FeII complex of picolinic acid (pyridine-2-carboxylic acid) has been proposed from UV-visible absorption spectra (Iwahashi et al., 1999), in which the central FeII atom was expected to be coordinated by three N and three O atoms of the three ligands in the facial form. In this study, only the meridional isomer of the FeIII complex was obtained, although there was a probability that both meridional and facial isomers were obtained in the preparation of compound (II). It is noted that the crystal structures of the FeII complexes of picolinic acid or fusaric acid have not yet been determined.

In the crystal packing of (II), one of the three pyridine rings (N1/C2—C6) stacks a mean distance of 3.681 (12) Å apart. Neighbouring carbohydrate side chains are associated, forming carbohydrate moieties.

In both (I) and (II), the central metal atom forms a five-membered ring with O and N atoms of the bidentate ligand, as also observed in the CdII complex of fusaric acid (Okabe, Wada & Muranishi, 2002), as well as in the analogous metal complexes, such as the MoV complex of picolinic acid (Okabe, Isomoto & Odoko, 2002) and the CeIII complex of dipicolinic acid (pyridine-2,6-dicarboxylic acid; Okabe, Kyoyama & Fujimoto, 2002).

The major conformational differences found in the butyl side chain of fusaric acid in complexes (I) and (II) suggest that the conformational change of the butyl side chain occurs as required to accommodate the structure of its binding site on biological target molecules.

Parts of the text have been extensively rephrased - please check carefully to ensure the sense has not been altered.

Experimental top

Blue crystals of (I) were obtained by slow evaporation of a methanol-water solution (90:10 v/v) of a mixture of fusaric acid and CuSO4·5H2O (molar ratio 4:1). Colourless prismatic crystals of (II) were obtained by slow evaporation of an ethanol-water solution (30:70 v/v) of a mixture of fusaric acid and Fe(SO4)3.nH2O (n = 6–9; molar ratio ca 4:1 assuming n = 7).

Refinement top

The reflection data for (I) were corrected for an intensity decay of 20.2%. The H atoms of (I) and (II) were treated by riding models. Only one H atom, H3M?, attached to the methanol hydroxy group in (I), was fixed at the position located from the difference Fourier map. The remaining H atoms were placed in calculated positions, with C—H = 0.93–0.97 Å. Is this added text correct? The large atomic displacement parameters of the n-butyl groups of (II) suggest positional disorder.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation and Rigaku Corporation, 2000) for (I); MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, Rigaku Corporation, 2000) for (II). For both compounds, cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: TEXSAN (Molecular Structure Corporation and Rigaku Corporation, 2000) for (I); TEXSAN (Molecular Structure Corporation, Rigaku Corporation, 2000) for (II). Program(s) used to solve structure: SIR88 (Burla et al., 1989) and DIRDIF94 (Beurskens et al., 1994) for (I); SIR92 (Altomare et al., 1999) and DIRDIF94 (Beurskens et al., 1994) for (II). For both compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN.

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I) with the atomic numbering scheme; asterisks indicate symmetry-related atoms (symmetry code: 2 - x, 1 - y, 2 - z Is this the correct symmetry code?) Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of the molecule of (II) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
(I) top
Crystal data top
[Cu(C10H12NO2)2(CH4O)2]F(000) = 510.0
Mr = 484.05Dx = 1.359 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ynCell parameters from 23 reflections
a = 8.462 (4) Åθ = 14.9–15.0°
b = 6.612 (4) ŵ = 0.96 mm1
c = 21.456 (3) ÅT = 296 K
β = 99.88 (2)°Plate, blue
V = 1182.7 (9) Å30.5 × 0.4 × 0.2 mm
Z = 2
Data collection top
Rigaku AFC-5R
diffractometer
Rint = 0.023
ω/2θ scansθmax = 27.5°
Absorption correction: ψ scan
(North et al., 1968)
h = 010
Tmin = 0.636, Tmax = 0.825k = 08
3139 measured reflectionsl = 2727
2707 independent reflections3 standard reflections every 150 reflections
1998 reflections with I > 2σ(I) intensity decay: 20.2%
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.166(Δ/σ)max < 0.001
S = 1.22Δρmax = 0.34 e Å3
2707 reflectionsΔρmin = 0.77 e Å3
145 parameters
Crystal data top
[Cu(C10H12NO2)2(CH4O)2]V = 1182.7 (9) Å3
Mr = 484.05Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.462 (4) ŵ = 0.96 mm1
b = 6.612 (4) ÅT = 296 K
c = 21.456 (3) Å0.5 × 0.4 × 0.2 mm
β = 99.88 (2)°
Data collection top
Rigaku AFC-5R
diffractometer
1998 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.023
Tmin = 0.636, Tmax = 0.8253 standard reflections every 150 reflections
3139 measured reflections intensity decay: 20.2%
2707 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045145 parameters
wR(F2) = 0.166H-atom parameters constrained
S = 1.22Δρmax = 0.34 e Å3
2707 reflectionsΔρmin = 0.77 e Å3
Special details top

Refinement. Refinement using reflections with F2 > 0.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu11.00000.50001.00000.0504 (2)
O11.2595 (3)0.9717 (3)0.9689 (2)0.0656 (7)
O21.0586 (2)0.7512 (3)0.9619 (1)0.0557 (6)
O3M0.9219 (3)0.7222 (3)1.0898 (2)0.0718 (7)
N11.2271 (3)0.5014 (3)1.0419 (1)0.0433 (5)
C21.3026 (3)0.6691 (4)1.0272 (1)0.0428 (6)
C31.4620 (3)0.7025 (4)1.0516 (2)0.0508 (7)
C41.5427 (3)0.5608 (5)1.0924 (2)0.0533 (7)
C51.4660 (3)0.3876 (5)1.1084 (2)0.0505 (7)
C61.3051 (3)0.3657 (4)1.0814 (2)0.0493 (7)
C71.2004 (3)0.8104 (4)0.9825 (2)0.0480 (6)
C81.5542 (4)0.2338 (6)1.1530 (2)0.0704 (10)
C91.4605 (4)0.0864 (6)1.1833 (2)0.0639 (8)
C101.5649 (5)0.0517 (7)1.2296 (2)0.079 (1)
C111.4681 (7)0.2034 (9)1.2602 (4)0.128 (2)
C121.0385 (6)0.8093 (7)1.1356 (2)0.090 (1)
H31.51400.81781.04080.0610*
H3M0.87710.81081.06640.1078*
H41.65010.58171.10940.0640*
H61.25010.25181.09140.0592*
H8A1.62370.15811.13000.0845*
H8B1.62300.30681.18640.0845*
H9A1.39670.00461.15080.0767*
H9B1.38740.15901.20550.0767*
H10A1.63850.12371.20760.0945*
H10B1.62810.02981.26240.0945*
H11A1.39020.13341.27980.1917*
H11B1.53850.27901.29160.1917*
H11C1.41440.29411.22850.1917*
H12A1.08980.91801.11710.1355*
H12B1.11700.70921.15190.1355*
H12C0.98910.86091.16950.1355*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0314 (3)0.0423 (3)0.0728 (4)0.0144 (2)0.0046 (2)0.0189 (2)
O10.045 (1)0.041 (1)0.110 (2)0.0130 (9)0.009 (1)0.021 (1)
O20.0363 (9)0.045 (1)0.082 (2)0.0116 (8)0.0015 (9)0.0185 (10)
O3M0.060 (1)0.051 (1)0.102 (2)0.006 (1)0.005 (1)0.008 (1)
N10.032 (1)0.040 (1)0.056 (1)0.0106 (8)0.0022 (9)0.0049 (9)
C20.034 (1)0.035 (1)0.060 (2)0.0096 (10)0.010 (1)0.003 (1)
C30.037 (1)0.045 (1)0.070 (2)0.017 (1)0.009 (1)0.002 (1)
C40.031 (1)0.057 (2)0.069 (2)0.014 (1)0.001 (1)0.001 (1)
C50.035 (1)0.054 (2)0.060 (2)0.006 (1)0.002 (1)0.004 (1)
C60.037 (1)0.044 (1)0.066 (2)0.010 (1)0.004 (1)0.008 (1)
C70.037 (1)0.035 (1)0.072 (2)0.008 (1)0.012 (1)0.004 (1)
C80.038 (1)0.081 (2)0.087 (3)0.003 (2)0.004 (2)0.023 (2)
C90.051 (2)0.065 (2)0.073 (2)0.005 (2)0.002 (2)0.013 (2)
C100.065 (2)0.078 (2)0.087 (3)0.004 (2)0.005 (2)0.027 (2)
C110.108 (4)0.108 (4)0.158 (5)0.014 (3)0.004 (4)0.065 (4)
C120.094 (3)0.086 (3)0.086 (3)0.002 (2)0.000 (2)0.011 (2)
Geometric parameters (Å, º) top
Cu1—O21.952 (2)C5—C61.392 (4)
Cu1—O2i1.952 (2)C5—C81.504 (5)
Cu1—O3M2.596 (3)C6—H60.930
Cu1—O3Mi2.596 (3)C8—C91.477 (6)
Cu1—N11.977 (2)C8—H8A0.970
Cu1—N1i1.977 (2)C8—H8B0.970
O1—C71.234 (4)C9—C101.516 (6)
O2—C71.268 (3)C9—H9A0.970
O3M—C121.393 (5)C9—H9B0.970
O3M—H3M0.820C10—C111.513 (8)
N1—C21.344 (3)C10—H10A0.970
N1—C61.329 (4)C10—H10B0.970
C2—C31.378 (4)C11—H11A0.960
C2—C71.502 (4)C11—H11B0.960
C3—C41.380 (4)C11—H11C0.960
C3—H30.930C12—H12A0.960
C4—C51.388 (4)C12—H12B0.960
C4—H40.930C12—H12C0.960
O2—Cu1—O2i180.0N1—C6—H6118.7
O2—Cu1—O3M86.80 (9)C5—C6—H6118.7
O2—Cu1—O3Mi93.20 (9)O1—C7—O2125.6 (3)
O2—Cu1—N183.66 (9)O1—C7—C2118.5 (2)
O2—Cu1—N1i96.34 (9)O2—C7—C2116.0 (2)
O2i—Cu1—O3M93.20 (9)C5—C8—C9118.8 (3)
O2i—Cu1—O3Mi86.80 (9)C5—C8—H8A107.6
O2i—Cu1—N196.34 (9)C5—C8—H8B107.6
O2i—Cu1—N1i83.66 (9)C9—C8—H8A107.6
O3M—Cu1—O3Mi180.0C9—C8—H8B107.6
O3M—Cu1—N190.65 (9)H8A—C8—H8B107.1
O3M—Cu1—N1i89.35 (9)C8—C9—C10113.0 (3)
O3Mi—Cu1—N189.35 (9)C8—C9—H9A109.0
O3Mi—Cu1—N1i90.65 (9)C8—C9—H9B109.0
N1—Cu1—N1i180.0C10—C9—H9A109.0
Cu1—O2—C7114.2 (2)C10—C9—H9B109.0
Cu1—O3M—C12121.2 (3)H9A—C9—H9B107.8
Cu1—O3M—H3M95.8C9—C10—C11112.7 (4)
C12—O3M—H3M109.5C9—C10—H10A109.1
Cu1—N1—C2111.2 (2)C9—C10—H10B109.1
Cu1—N1—C6128.6 (2)C11—C10—H10A109.1
C2—N1—C6120.2 (2)C11—C10—H10B109.1
N1—C2—C3121.1 (2)H10A—C10—H10B107.8
N1—C2—C7114.7 (2)C10—C11—H11A109.5
C3—C2—C7124.2 (2)C10—C11—H11B109.5
C2—C3—C4118.5 (3)C10—C11—H11C109.5
C2—C3—H3120.7H11A—C11—H11B109.5
C4—C3—H3120.7H11A—C11—H11C109.5
C3—C4—C5121.0 (3)H11B—C11—H11C109.5
C3—C4—H4119.5O3M—C12—H12A109.5
C5—C4—H4119.5O3M—C12—H12B109.5
C4—C5—C6116.7 (3)O3M—C12—H12C109.5
C4—C5—C8120.8 (3)H12A—C12—H12B109.5
C6—C5—C8122.5 (3)H12A—C12—H12C109.5
N1—C6—C5122.5 (3)H12B—C12—H12C109.5
Cu1—O2—C7—O1174.4 (3)O3M—Cu1—N1—C283.5 (2)
Cu1—O2—C7—C25.7 (4)O3M—Cu1—N1—C694.7 (3)
Cu1—O2i—C7i—O1i174.4 (3)O3M—Cu1—N1i—C2i96.5 (2)
Cu1—O2i—C7i—C2i5.7 (4)O3M—Cu1—N1i—C6i85.3 (3)
Cu1—N1—C2—C3179.6 (2)N1—Cu1—O2—C75.1 (2)
Cu1—N1—C2—C71.2 (3)N1—Cu1—O2i—C7i174.9 (2)
Cu1—N1—C6—C5179.0 (2)N1—Cu1—O3M—C129.0 (3)
Cu1—N1i—C2i—C3i179.6 (2)N1—Cu1—O3Mi—C12i171.0 (3)
Cu1—N1i—C2i—C7i1.2 (3)N1—C2—C3—C41.0 (5)
Cu1—N1i—C6i—C5i179.0 (2)N1—C6—C5—C40.5 (5)
O1—C7—C2—N1177.1 (3)N1—C6—C5—C8179.9 (3)
O1—C7—C2—C33.8 (5)C2—N1—C6—C51.0 (5)
O2—Cu1—O3M—C1274.6 (3)C2—C3—C4—C50.4 (5)
O2—Cu1—O3Mi—C12i105.4 (3)C3—C2—N1—C61.2 (4)
O2—Cu1—N1—C23.2 (2)C3—C4—C5—C60.2 (5)
O2—Cu1—N1—C6178.6 (3)C3—C4—C5—C8179.8 (3)
O2—Cu1—N1i—C2i176.8 (2)C4—C3—C2—C7179.9 (3)
O2—Cu1—N1i—C6i1.4 (3)C4—C5—C8—C9162.1 (3)
O2—C7—C2—N13.0 (4)C5—C8—C9—C10177.0 (3)
O2—C7—C2—C3176.2 (3)C6—N1—C2—C7179.5 (3)
O3M—Cu1—O2—C785.9 (2)C6—C5—C8—C917.5 (5)
O3M—Cu1—O2i—C7i94.1 (2)C8—C9—C10—C11179.6 (4)
Symmetry code: (i) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3M—H3M···O1ii0.821.922.716 (4)164.0
Symmetry code: (ii) x+2, y+2, z+2.
(II) top
Crystal data top
[Fe(C10H12NO2)3]F(000) = 1244.0
Mr = 590.47Dx = 1.272 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ynCell parameters from 24 reflections
a = 9.946 (5) Åθ = 10.2–11.5°
b = 22.271 (5) ŵ = 0.53 mm1
c = 14.072 (4) ÅT = 296 K
β = 98.40 (3)°Prismatic, colourless
V = 3083.6 (19) Å30.2 × 0.1 × 0.1 mm
Z = 4
Data collection top
Rigaku AFC-5R
diffractometer
θmax = 27.5°
ω/2θ scansh = 012
7678 measured reflectionsk = 028
7090 independent reflectionsl = 1818
2368 reflections with I > 2σ(I)3 standard reflections every 150 reflections
Rint = 0.075 intensity decay: 0.7%
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.062 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.225(Δ/σ)max < 0.001
S = 0.93Δρmax = 0.50 e Å3
7090 reflectionsΔρmin = 0.55 e Å3
364 parameters
Crystal data top
[Fe(C10H12NO2)3]V = 3083.6 (19) Å3
Mr = 590.47Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.946 (5) ŵ = 0.53 mm1
b = 22.271 (5) ÅT = 296 K
c = 14.072 (4) Å0.2 × 0.1 × 0.1 mm
β = 98.40 (3)°
Data collection top
Rigaku AFC-5R
diffractometer
Rint = 0.075
7678 measured reflections3 standard reflections every 150 reflections
7090 independent reflections intensity decay: 0.7%
2368 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.062364 parameters
wR(F2) = 0.225H-atom parameters constrained
S = 0.93Δρmax = 0.50 e Å3
7090 reflectionsΔρmin = 0.55 e Å3
Special details top

Refinement. Refinement using reflections with F2 > -10.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.17773 (7)0.14451 (4)0.37310 (6)0.0500 (3)
O10.1874 (4)0.1029 (2)0.2289 (4)0.092 (2)
O20.0284 (4)0.1301 (2)0.2696 (3)0.062 (1)
O30.4686 (4)0.0223 (2)0.3490 (3)0.079 (1)
O40.2871 (4)0.0705 (2)0.3868 (3)0.0564 (10)
O50.1690 (5)0.3184 (2)0.4514 (3)0.083 (1)
O60.1352 (4)0.2308 (2)0.3748 (3)0.058 (1)
N10.0275 (4)0.1051 (2)0.4506 (3)0.050 (1)
N20.2962 (4)0.1736 (2)0.5060 (3)0.051 (1)
N30.3114 (4)0.1585 (2)0.2712 (3)0.050 (1)
C20.0896 (5)0.0930 (2)0.3909 (4)0.052 (1)
C30.1997 (6)0.0673 (3)0.4243 (5)0.066 (2)
C40.1894 (6)0.0537 (3)0.5210 (5)0.069 (2)
C50.0705 (7)0.0628 (3)0.5818 (5)0.064 (2)
C60.0350 (6)0.0906 (3)0.5434 (4)0.061 (2)
C70.0869 (6)0.1092 (3)0.2877 (5)0.060 (2)
C80.0484 (8)0.0464 (4)0.6887 (5)0.088 (2)
C90.109 (1)0.0868 (5)0.7468 (6)0.144 (4)
C100.084 (2)0.0699 (7)0.8565 (8)0.180 (6)
C110.136 (2)0.019 (1)0.881 (1)0.28 (1)
C120.2806 (5)0.2322 (3)0.5227 (4)0.052 (1)
C130.3425 (6)0.2592 (3)0.6052 (4)0.063 (2)
C140.4159 (6)0.2245 (3)0.6756 (5)0.069 (2)
C150.4326 (6)0.1635 (3)0.6593 (4)0.060 (2)
C160.3728 (5)0.1403 (3)0.5725 (4)0.053 (1)
C170.1895 (6)0.2645 (3)0.4450 (4)0.057 (2)
C180.5005 (7)0.1226 (3)0.7358 (5)0.074 (2)
C190.3902 (9)0.0935 (4)0.7927 (5)0.106 (3)
C200.4459 (10)0.0578 (4)0.8748 (6)0.120 (3)
C210.332 (1)0.0303 (5)0.9239 (8)0.156 (4)
C220.4005 (5)0.1134 (3)0.2669 (4)0.048 (1)
C230.4900 (6)0.1128 (3)0.2021 (4)0.062 (2)
C240.4868 (6)0.1598 (3)0.1393 (5)0.069 (2)
C250.3972 (6)0.2069 (3)0.1410 (5)0.064 (2)
C260.3108 (6)0.2043 (3)0.2091 (4)0.058 (2)
C270.3882 (6)0.0636 (3)0.3389 (4)0.055 (1)
C280.3928 (9)0.2584 (4)0.0726 (6)0.097 (3)
C290.318 (1)0.2469 (6)0.0243 (9)0.160 (5)
C300.180 (1)0.2404 (8)0.0288 (10)0.206 (7)
C310.107 (1)0.2427 (7)0.127 (1)0.246 (8)
H30.27930.05940.38270.0788*
H40.26430.03800.54510.0833*
H60.11460.09960.58430.0729*
H8A0.08510.00660.69610.1061*
H8B0.04850.04480.71110.1061*
H9A0.20580.08800.72510.1724*
H9B0.07280.12670.73900.1724*
H10A0.01360.06850.87720.2165*
H10B0.11980.10200.89190.2165*
H11A0.21930.01170.83940.4214*
H11B0.15300.02200.94630.4214*
H11C0.07290.01270.87550.4214*
H130.33510.30050.61360.0757*
H140.45400.24170.73360.0827*
H160.38610.10000.55950.0636*
H18A0.56600.14500.77990.0886*
H18B0.54870.09120.70700.0886*
H19A0.33560.12550.81440.1277*
H19B0.33040.06840.74890.1277*
H20A0.50340.08280.92040.1440*
H20B0.50160.02600.85420.1440*
H21A0.29030.06120.95700.2333*
H21B0.37010.00030.96910.2333*
H21C0.26560.01220.87640.2333*
H230.55140.08140.20080.0747*
H240.54650.16000.09420.0825*
H260.24960.23560.21220.0697*
H28A0.35140.29250.10010.1169*
H28B0.48540.26950.06630.1169*
H29A0.33510.27990.06590.1920*
H29B0.35410.21080.04950.1920*
H30A0.14610.27190.00890.2468*
H30B0.16160.20220.00020.2468*
H31A0.01530.25520.12500.3685*
H31B0.10770.20370.15530.3685*
H31C0.15120.27090.16360.3685*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0417 (4)0.0603 (5)0.0485 (5)0.0039 (4)0.0085 (3)0.0002 (5)
O10.055 (3)0.133 (5)0.082 (3)0.025 (3)0.012 (3)0.017 (3)
O20.049 (2)0.084 (3)0.051 (2)0.009 (2)0.007 (2)0.006 (2)
O30.070 (3)0.067 (3)0.103 (4)0.015 (2)0.025 (3)0.011 (3)
O40.054 (2)0.055 (2)0.064 (2)0.003 (2)0.018 (2)0.000 (2)
O50.108 (4)0.067 (3)0.071 (3)0.019 (3)0.007 (3)0.004 (3)
O60.055 (2)0.065 (3)0.052 (2)0.013 (2)0.003 (2)0.002 (2)
N10.044 (3)0.053 (3)0.055 (3)0.001 (2)0.010 (2)0.000 (2)
N20.049 (3)0.053 (3)0.052 (3)0.000 (2)0.009 (2)0.005 (2)
N30.046 (2)0.049 (3)0.057 (3)0.006 (2)0.011 (2)0.003 (2)
C20.042 (3)0.048 (3)0.066 (4)0.001 (3)0.008 (3)0.006 (3)
C30.054 (4)0.059 (4)0.086 (5)0.010 (3)0.016 (3)0.005 (4)
C40.053 (4)0.065 (4)0.094 (5)0.008 (3)0.025 (4)0.009 (4)
C50.073 (4)0.057 (4)0.064 (4)0.005 (4)0.022 (3)0.004 (3)
C60.062 (4)0.064 (4)0.058 (4)0.004 (3)0.016 (3)0.000 (3)
C70.054 (4)0.059 (4)0.067 (4)0.007 (3)0.008 (3)0.008 (3)
C80.092 (5)0.098 (6)0.084 (5)0.001 (4)0.042 (4)0.009 (5)
C90.18 (1)0.17 (1)0.082 (6)0.047 (8)0.039 (7)0.002 (7)
C100.21 (1)0.25 (2)0.094 (8)0.05 (1)0.059 (9)0.031 (10)
C110.21 (2)0.50 (4)0.14 (1)0.01 (2)0.06 (1)0.11 (2)
C120.041 (3)0.060 (4)0.054 (4)0.001 (3)0.007 (3)0.003 (3)
C130.066 (4)0.054 (4)0.069 (4)0.001 (3)0.008 (3)0.010 (3)
C140.065 (4)0.072 (5)0.067 (4)0.005 (4)0.001 (3)0.013 (4)
C150.053 (3)0.070 (4)0.055 (4)0.001 (3)0.003 (3)0.007 (3)
C160.047 (3)0.046 (3)0.065 (4)0.003 (3)0.005 (3)0.003 (3)
C170.062 (4)0.058 (4)0.053 (4)0.008 (3)0.021 (3)0.000 (3)
C180.073 (4)0.075 (5)0.067 (4)0.002 (4)0.012 (4)0.009 (4)
C190.134 (7)0.119 (7)0.066 (5)0.046 (6)0.015 (5)0.023 (5)
C200.150 (9)0.095 (7)0.108 (7)0.003 (6)0.006 (6)0.016 (6)
C210.153 (10)0.16 (1)0.17 (1)0.021 (8)0.054 (8)0.042 (8)
C220.044 (3)0.050 (3)0.051 (3)0.007 (3)0.008 (3)0.003 (3)
C230.050 (3)0.072 (4)0.069 (4)0.002 (3)0.021 (3)0.003 (4)
C240.069 (4)0.082 (5)0.062 (4)0.018 (4)0.031 (3)0.004 (4)
C250.070 (4)0.065 (4)0.060 (4)0.009 (4)0.024 (3)0.001 (3)
C260.056 (3)0.055 (4)0.065 (4)0.003 (3)0.013 (3)0.002 (3)
C270.051 (3)0.054 (4)0.058 (4)0.005 (3)0.003 (3)0.014 (3)
C280.103 (6)0.106 (7)0.089 (6)0.000 (5)0.036 (5)0.029 (5)
C290.129 (10)0.18 (1)0.17 (1)0.016 (8)0.022 (9)0.087 (9)
C300.13 (1)0.30 (2)0.19 (1)0.04 (1)0.027 (10)0.10 (1)
C310.22 (2)0.27 (2)0.22 (2)0.09 (1)0.04 (1)0.09 (1)
Geometric parameters (Å, º) top
Fe1—O21.949 (4)C13—C141.379 (9)
Fe1—O41.970 (4)C13—H130.930
Fe1—O61.969 (4)C14—C151.392 (10)
Fe1—N12.161 (5)C14—H140.930
Fe1—N22.159 (4)C15—C161.379 (8)
Fe1—N32.116 (5)C15—C181.494 (9)
O1—C71.209 (7)C16—H160.930
O2—C71.296 (7)C18—C191.59 (1)
O3—C271.214 (7)C18—H18A0.970
O4—C271.298 (7)C18—H18B0.970
O5—C171.223 (8)C19—C201.44 (1)
O6—C171.293 (7)C19—H19A0.970
N1—C21.359 (7)C19—H19B0.970
N1—C61.336 (8)C20—C211.53 (2)
N2—C121.339 (8)C20—H20A0.970
N2—C161.341 (7)C20—H20B0.970
N3—C221.347 (7)C21—H21A0.960
N3—C261.343 (8)C21—H21B0.960
C2—C31.377 (9)C21—H21C0.960
C2—C71.501 (9)C22—C231.365 (8)
C3—C41.38 (1)C22—C271.518 (8)
C3—H30.930C23—C241.367 (9)
C4—C51.371 (9)C23—H230.930
C4—H40.930C24—C251.380 (9)
C5—C61.394 (9)C24—H240.930
C5—C81.532 (9)C25—C261.379 (9)
C6—H60.930C25—C281.49 (1)
C8—C91.41 (1)C26—H260.930
C8—H8A0.970C28—C291.48 (1)
C8—H8B0.970C28—H28A0.970
C9—C101.57 (1)C28—H28B0.970
C9—H9A0.970C29—C301.37 (2)
C9—H9B0.970C29—H29A0.970
C10—C111.30 (3)C29—H29B0.970
C10—H10A0.970C30—C311.46 (2)
C10—H10B0.970C30—H30A0.970
C11—H11A0.960C30—H30B0.970
C11—H11B0.960C31—H31A0.960
C11—H11C0.960C31—H31B0.960
C12—C131.372 (8)C31—H31C0.960
C12—C171.497 (8)
O1···C23i3.183 (7)O4···C4v3.261 (8)
O1···C24i3.536 (8)O4···C8v3.578 (8)
O1···C13ii3.563 (8)O5···C24vi3.452 (8)
O3···C3iii3.463 (7)O5···C18ii3.500 (8)
O3···C18iv3.470 (8)O6···C14ii3.438 (7)
O2—Fe1—O4106.5 (2)C15—C14—H14120.3
O2—Fe1—O691.6 (2)C14—C15—C16117.7 (5)
O2—Fe1—N178.6 (2)C14—C15—C18121.9 (5)
O2—Fe1—N2163.1 (2)C16—C15—C18120.1 (6)
O2—Fe1—N390.2 (2)N2—C16—C15122.6 (6)
O4—Fe1—O6158.9 (2)N2—C16—H16118.7
O4—Fe1—N191.4 (2)C15—C16—H16118.7
O4—Fe1—N286.7 (2)O5—C17—O6124.7 (5)
O4—Fe1—N378.3 (2)O5—C17—C12120.4 (5)
O6—Fe1—N1103.0 (2)O6—C17—C12114.9 (5)
O6—Fe1—N277.7 (2)C15—C18—C19109.9 (5)
O6—Fe1—N391.3 (2)C15—C18—H18A109.7
N1—Fe1—N290.9 (2)C15—C18—H18B109.7
N1—Fe1—N3162.0 (2)C19—C18—H18A109.7
N2—Fe1—N3103.0 (2)C19—C18—H18B109.7
Fe1—O2—C7120.8 (4)H18A—C18—H18B108.2
Fe1—O4—C27120.4 (4)C18—C19—C20114.6 (7)
Fe1—O6—C17120.6 (4)C18—C19—H19A108.6
Fe1—N1—C2111.3 (4)C18—C19—H19B108.6
Fe1—N1—C6130.3 (4)C20—C19—H19A108.6
C2—N1—C6118.4 (5)C20—C19—H19B108.6
Fe1—N2—C12112.4 (3)H19A—C19—H19B107.6
Fe1—N2—C16128.4 (4)C19—C20—C21111.0 (8)
C12—N2—C16119.1 (5)C19—C20—H20A109.4
Fe1—N3—C22113.8 (4)C19—C20—H20B109.4
Fe1—N3—C26127.5 (4)C21—C20—H20A109.4
C22—N3—C26118.6 (5)C21—C20—H20B109.4
N1—C2—C3121.6 (5)H20A—C20—H20B108.0
N1—C2—C7114.5 (5)C20—C21—H21A109.5
C3—C2—C7123.9 (5)C20—C21—H21B109.5
C2—C3—C4118.6 (5)C20—C21—H21C109.5
C2—C3—H3120.7H21A—C21—H21B109.5
C4—C3—H3120.7H21A—C21—H21C109.5
C3—C4—C5120.9 (6)H21B—C21—H21C109.5
C3—C4—H4119.5N3—C22—C23122.3 (5)
C5—C4—H4119.5N3—C22—C27113.4 (5)
C4—C5—C6117.0 (6)C23—C22—C27124.3 (5)
C4—C5—C8124.4 (6)C22—C23—C24118.0 (6)
C6—C5—C8118.6 (5)C22—C23—H23121.0
N1—C6—C5123.3 (5)C24—C23—H23121.0
N1—C6—H6118.4C23—C24—C25121.7 (6)
C5—C6—H6118.4C23—C24—H24119.2
O1—C7—O2125.0 (6)C25—C24—H24119.2
O1—C7—C2120.3 (6)C24—C25—C26116.7 (6)
O2—C7—C2114.7 (5)C24—C25—C28122.1 (7)
C5—C8—C9114.0 (7)C26—C25—C28121.2 (6)
C5—C8—H8A108.8N3—C26—C25122.7 (5)
C5—C8—H8B108.8N3—C26—H26118.6
C9—C8—H8A108.8C25—C26—H26118.6
C9—C8—H8B108.8O3—C27—O4125.1 (6)
H8A—C8—H8B107.7O3—C27—C22121.0 (5)
C8—C9—C10113.4 (9)O4—C27—C22113.9 (5)
C8—C9—H9A108.9C25—C28—C29115.2 (8)
C8—C9—H9B108.9C25—C28—H28A108.5
C10—C9—H9A108.9C25—C28—H28B108.5
C10—C9—H9B108.9C29—C28—H28A108.5
H9A—C9—H9B107.7C29—C28—H28B108.5
C9—C10—C11117 (1)H28A—C28—H28B107.5
C9—C10—H10A108.0C28—C29—C30115 (1)
C9—C10—H10B108.0C28—C29—H29A108.4
C11—C10—H10A108.0C28—C29—H29B108.4
C11—C10—H10B108.0C30—C29—H29A108.4
H10A—C10—H10B107.3C30—C29—H29B108.5
C10—C11—H11A109.5H29A—C29—H29B107.5
C10—C11—H11B109.5C29—C30—C31113 (1)
C10—C11—H11C109.5C29—C30—H30A108.9
H11A—C11—H11B109.5C29—C30—H30B108.9
H11A—C11—H11C109.5C31—C30—H30A108.9
H11B—C11—H11C109.5C31—C30—H30B108.9
N2—C12—C13121.8 (5)H30A—C30—H30B107.7
N2—C12—C17114.4 (5)C30—C31—H31A109.5
C13—C12—C17123.9 (6)C30—C31—H31B109.5
C12—C13—C14119.2 (6)C30—C31—H31C109.5
C12—C13—H13120.4H31A—C31—H31B109.5
C14—C13—H13120.4H31A—C31—H31C109.5
C13—C14—C15119.5 (6)H31B—C31—H31C109.5
C13—C14—H14120.2
Fe1—O2—C7—O1174.5 (5)N1—Fe1—N3—C26119.3 (6)
Fe1—O2—C7—C24.8 (7)N1—C2—C3—C40.2 (9)
Fe1—O4—C27—O3172.9 (4)N1—C6—C5—C44.0 (9)
Fe1—O4—C27—C226.4 (6)N1—C6—C5—C8177.9 (6)
Fe1—O6—C17—O5179.7 (5)N2—Fe1—O2—C748.6 (8)
Fe1—O6—C17—C121.7 (7)N2—Fe1—O4—C2799.9 (4)
Fe1—N1—C2—C3179.6 (4)N2—Fe1—O6—C170.5 (4)
Fe1—N1—C2—C70.2 (6)N2—Fe1—N1—C2164.7 (4)
Fe1—N1—C6—C5177.1 (4)N2—Fe1—N1—C617.0 (5)
Fe1—N2—C12—C13177.2 (5)N2—Fe1—N3—C2283.0 (4)
Fe1—N2—C12—C172.0 (6)N2—Fe1—N3—C26101.0 (4)
Fe1—N2—C16—C15173.1 (4)N2—C12—C13—C144.1 (9)
Fe1—N3—C22—C23176.5 (4)N2—C16—C15—C142.5 (9)
Fe1—N3—C22—C272.1 (5)N2—C16—C15—C18171.5 (5)
Fe1—N3—C26—C25175.5 (4)N3—Fe1—O2—C7169.6 (4)
O1—C7—C2—N1176.6 (6)N3—Fe1—O4—C274.2 (4)
O1—C7—C2—C34.0 (9)N3—Fe1—O6—C17102.6 (4)
O2—Fe1—O4—C2790.9 (4)N3—Fe1—N1—C254.3 (7)
O2—Fe1—O6—C17167.2 (4)N3—Fe1—N1—C6123.9 (6)
O2—Fe1—N1—C21.9 (3)N3—Fe1—N2—C1289.4 (4)
O2—Fe1—N1—C6176.3 (5)N3—Fe1—N2—C1694.9 (5)
O2—Fe1—N2—C1251.2 (8)N3—C22—C23—C240.7 (8)
O2—Fe1—N2—C16124.5 (6)N3—C26—C25—C240.3 (9)
O2—Fe1—N3—C22107.6 (4)N3—C26—C25—C28179.5 (6)
O2—Fe1—N3—C2668.3 (4)C2—N1—C6—C51.0 (8)
O2—C7—C2—N12.8 (7)C2—C3—C4—C52.9 (10)
O2—C7—C2—C3176.7 (5)C3—C2—N1—C61.2 (8)
O3—C27—C22—N3174.0 (5)C3—C4—C5—C64.8 (9)
O3—C27—C22—C237.4 (8)C3—C4—C5—C8177.2 (6)
O4—Fe1—O2—C791.8 (4)C4—C3—C2—C7179.2 (6)
O4—Fe1—O6—C1743.0 (7)C4—C5—C8—C976.7 (10)
O4—Fe1—N1—C2108.5 (4)C5—C8—C9—C10179.3 (8)
O4—Fe1—N1—C669.7 (5)C6—N1—C2—C7178.3 (5)
O4—Fe1—N2—C12166.5 (4)C6—C5—C8—C9101.2 (8)
O4—Fe1—N2—C1617.7 (5)C8—C9—C10—C1163 (1)
O4—Fe1—N3—C220.8 (3)C12—N2—C16—C152.3 (8)
O4—Fe1—N3—C26175.2 (5)C12—C13—C14—C153.8 (10)
O4—C27—C22—N35.3 (7)C13—C12—N2—C161.1 (8)
O4—C27—C22—C23173.2 (5)C13—C14—C15—C160.7 (9)
O5—C17—C12—N2178.9 (6)C13—C14—C15—C18174.5 (6)
O5—C17—C12—C132.0 (10)C14—C13—C12—C17175.0 (6)
O6—Fe1—O2—C799.1 (4)C14—C15—C18—C1992.0 (7)
O6—Fe1—O4—C2757.5 (6)C15—C18—C19—C20174.1 (7)
O6—Fe1—N1—C287.1 (4)C16—N2—C12—C17178.1 (5)
O6—Fe1—N1—C694.6 (5)C16—C15—C18—C1981.8 (7)
O6—Fe1—N2—C120.9 (4)C18—C19—C20—C21178.6 (7)
O6—Fe1—N2—C16176.6 (5)C22—N3—C26—C250.3 (8)
O6—Fe1—N3—C22160.7 (3)C22—C23—C24—C250.6 (9)
O6—Fe1—N3—C2623.3 (4)C23—C22—N3—C260.2 (8)
O6—C17—C12—N22.4 (8)C23—C24—C25—C260.1 (9)
O6—C17—C12—C13176.7 (6)C23—C24—C25—C28180.0 (6)
N1—Fe1—O2—C73.8 (4)C24—C23—C22—C27177.8 (5)
N1—Fe1—O4—C27169.3 (4)C24—C25—C28—C2980.0 (10)
N1—Fe1—O6—C1788.5 (4)C25—C28—C29—C3068 (1)
N1—Fe1—N2—C12102.2 (4)C26—N3—C22—C27178.4 (5)
N1—Fe1—N2—C1673.6 (5)C26—C25—C28—C2999.8 (9)
N1—Fe1—N3—C2256.7 (7)C28—C29—C30—C31166 (1)
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+1/2, z1/2; (iii) x+1, y, z; (iv) x+1, y, z+1; (v) x, y, z+1; (vi) x1/2, y+1/2, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formula[Cu(C10H12NO2)2(CH4O)2][Fe(C10H12NO2)3]
Mr484.05590.47
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/n
Temperature (K)296296
a, b, c (Å)8.462 (4), 6.612 (4), 21.456 (3)9.946 (5), 22.271 (5), 14.072 (4)
β (°) 99.88 (2) 98.40 (3)
V3)1182.7 (9)3083.6 (19)
Z24
Radiation typeMo KαMo Kα
µ (mm1)0.960.53
Crystal size (mm)0.5 × 0.4 × 0.20.2 × 0.1 × 0.1
Data collection
DiffractometerRigaku AFC-5R
diffractometer
Rigaku AFC-5R
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.636, 0.825
No. of measured, independent and
observed [I > 2σ(I)] reflections
3139, 2707, 1998 7678, 7090, 2368
Rint0.0230.075
(sin θ/λ)max1)0.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.166, 1.22 0.062, 0.225, 0.93
No. of reflections27077090
No. of parameters145364
No. of restraints??
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.770.50, 0.55

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation and Rigaku Corporation, 2000), MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, Rigaku Corporation, 2000), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation and Rigaku Corporation, 2000), TEXSAN (Molecular Structure Corporation, Rigaku Corporation, 2000), SIR88 (Burla et al., 1989) and DIRDIF94 (Beurskens et al., 1994), SIR92 (Altomare et al., 1999) and DIRDIF94 (Beurskens et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), TEXSAN.

Selected geometric parameters (Å, º) for (I) top
Cu1—O21.952 (2)O1—C71.234 (4)
Cu1—O3M2.596 (3)O2—C71.268 (3)
Cu1—N11.977 (2)
O2—Cu1—O3M86.80 (9)Cu1—O3M—C12121.2 (3)
O2—Cu1—N183.66 (9)Cu1—N1—C2111.2 (2)
O3M—Cu1—N190.65 (9)Cu1—N1—C6128.6 (2)
Cu1—O2—C7114.2 (2)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O3M—H3M···O1i0.821.922.716 (4)164.0
Symmetry code: (i) x+2, y+2, z+2.
Selected geometric parameters (Å, º) for (II) top
Fe1—O21.949 (4)O1—C71.209 (7)
Fe1—O41.970 (4)O2—C71.296 (7)
Fe1—O61.969 (4)O3—C271.214 (7)
Fe1—N12.161 (5)O4—C271.298 (7)
Fe1—N22.159 (4)O5—C171.223 (8)
Fe1—N32.116 (5)O6—C171.293 (7)
O2—Fe1—O4106.5 (2)N1—Fe1—N290.9 (2)
O2—Fe1—O691.6 (2)N1—Fe1—N3162.0 (2)
O2—Fe1—N178.6 (2)N2—Fe1—N3103.0 (2)
O2—Fe1—N2163.1 (2)Fe1—O2—C7120.8 (4)
O2—Fe1—N390.2 (2)Fe1—O4—C27120.4 (4)
O4—Fe1—O6158.9 (2)Fe1—O6—C17120.6 (4)
O4—Fe1—N191.4 (2)Fe1—N1—C2111.3 (4)
O4—Fe1—N286.7 (2)Fe1—N1—C6130.3 (4)
O4—Fe1—N378.3 (2)Fe1—N2—C12112.4 (3)
O6—Fe1—N1103.0 (2)Fe1—N2—C16128.4 (4)
O6—Fe1—N277.7 (2)Fe1—N3—C22113.8 (4)
O6—Fe1—N391.3 (2)Fe1—N3—C26127.5 (4)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds