Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title complex, {[Cu(C6H5O3)Cl(H2O)]·H2O}n, the CuII atom has a deformed square-pyramidal coordination geometry formed by two O atoms of the maltolate ligand, two bridging Cl atoms and the coordinated water O atom. The Cu atoms are bridged by Cl atoms to form a polymeric chain. The deprotonated hydroxyl and ketone O atoms of the maltolate ligand form a five-membered chelate ring with the Cu atom. Stacking interactions and hydrogen bonds exist in the crystal.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102015226/ob1078sup1.cif
Contains datablocks global, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102015226/ob1078IIsup2.hkl
Contains datablock II

CCDC reference: 197319

Comment top

Maltol (3-hydroxy-2-methyl-4H-pyran-4-one, (I), is a naturally occurring non-toxic compound. This compound has the ability to be deprotonated readily (pKa = 8.38; Hedlund & Öhman, 1988) and can act as an anionic chelating O,O'-bidentate ligand towards a number of biologically active metal ions. The metal complexes of (I) can be solubilized in water, and many biological studies have been reported employing this compound as a ligand. For instance, the AlIII complex has been studied in relation to apoptosis (Tsubouchi et al., 2001) and Alzheimer's disease (Finnegan et al., 1986), the FeIII complex has been used in the treatment of iron deficiency anaemia (Harvey et al., 1998), and the VIV complex is a potent insulin mimic (Caravan et al., 1995). The efficacy of the CuII and SnII complexes in oral care formations (Creeth et al., 2000) has also been reported. A number of crystal structures of maltolate–metal complexes have been reported, viz. AlIII (Finnegan et al., 1986; Yu et al., 2002), VIV (Caravan et al., 1995; Sun et al., 1996, 1998), FeIII (Ahmet et al., 1988), ZnII (Ahmed et al., 2000), MoIV (Lord et al., 1999), RuIV (Fryzuk et al., 1997), SnII (Barret et al., 2001) and SnIV (Denekamp et al., 1992; Bhattacharya et al., 1994). In this study, to obtain further evidence for the chelating mode of maltol with divalent metal ions, we have analyzed the crystal structure of the maltolate–CuII complex, (II).

The crystal structure of (II) is shown in Fig. 1. In this compound, the Cu atom is surrounded by five atoms in a square-pyramidal coordination geometry (Fig. 1), in which the basal plane is made up of two O atoms of the maltolate ligand, one Cl atom and one water O atom, and the Cl atom of the next complex occupies the apical position. The Cu atom is shifted about 0.15 Å from the average basal plane toward the apical Cl atom. The deprotonated hydroxyl and ketone O atoms of the ligand form a five-membered chelate ring with the Cu atom. The ketone C1—O2 bond length [1.272 (2) Å] is longer than that of free maltol [1.244 (3)–1.254 (3) Å; Burgess et al., 1996], and is shorter than the enol bond length [C2—O3 = 1.339 (2) Å] (Table 1). This indicates a distinction between Lewis acid–base interactions for the two types of O atoms. The Cl atom coordinates from the apical position more weakly to the tetracoordinate basal plane around the Cu atom, forming a square-pyramidal geometry, then the complexes related by the a glide form polymeric chain [Cl1—Cu1 = 2.2445 (6) Å, Cl1—Cu1i = 2.7546 (9) Å, Cu1—Cl1—Cu1i = 124.04 (3)° and Cl1—Cu1i—Cl1i 101.38 (2)°; symmetry code: (i) -1/2 + x, 1/2 - y, z] (Fig. 1). The two different Cu—Cl distances in the title compound are similar to those in the 5-formyluracil thioosemicarbazone–CuII complex [apical Cu—Cl = 2.665 (3) Å and basal Cu—Cl = 2.260 (3) Å], and the longer appical Cu—Cl bond is due to a Jahn–Teller effect (Ferrari et al., 1998). The polymeric chain and the analogous coordination sphere were observed in the crystal structure of catena-poly[bis(2-aminopyrimidine)aquacopper(II)-µ2-sulfato dihydrate] (Lumme et al., 1996).

In the crystal structure of (II), there are O—H···O hydrogen-bond interactions between solvate water molecules and the deprotonated O atoms of the maltolate ligands, and between solvate water and the copper-coordinated water molecules (Table 2). Also, stacking interactions exist between neighboring pyran rings [O1···C1ii 3.493 (3) Å, C2···C4ii 3.506 (3) Å and C3···C5ii 3.515 (4) Å; symmetry code: (ii) -x, -y, 1 - z].

The title compound is composed of maltolate and metal in a 1:1 ratio. This is the first observation of a 1:1 metal complex of maltol, although 2:1 and 3:1 maltolate–metal complexes, with ZnII (2:1), SnII (2:1), FeIII (3:1) and AlIII (3:1), have been reported. In all the metal complexes of maltol reported, the bidentate maltolate ligand forms a five-membered chelate ring.

Experimental top

Maltol and CuCl2·2H2O were dissolved in a 50% ethanol–water mixture in a 4:1 molar ratio. Green plate-shaped crystals of (II) were obtained by slow evaporation at room temperature.

Refinement top

The H atoms of the ligand molecule were allowed for as riding atoms. Those of water molecules were located from difference Fourier maps and their coordinates refined with fixed isotropic vibration parameters.

Computing details top

Data collection: MSC/AFC Diffractometer Control (Molecular Structure Corporation, 1992); cell refinement: MSC/AFC Diffractometer Control; data reduction: TEXSAN (Molecular Structure Corporation, 2000); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP II (Johnson, 1976); software used to prepare material for publication: TEXSAN.

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) drawing of the title compound with the atomic numbering scheme. Ellipsoids for non-H atoms are shown at the 50% probability level.
(II) top
Crystal data top
[Cu(C6H5O3)Cl(H2O)]·H2OF(000) = 524
Mr = 260.13Dx = 1.920 Mg m3
Monoclinic, P21/aMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2yabCell parameters from 22 reflections
a = 7.163 (2) Åθ = 14.6–15.0°
b = 18.604 (2) ŵ = 2.71 mm1
c = 7.357 (2) ÅT = 296 K
β = 113.38 (2)°Plate, green
V = 899.9 (4) Å30.40 × 0.20 × 0.10 mm
Z = 4
Data collection top
Rigaku AFC-5R
diffractometer
Rint = 0.009
ω–2θ scansθmax = 27.5°, θmin = 3.0°
Absorption correction: ψ scan
(North et al., 1968)
h = 09
Tmin = 0.527, Tmax = 0.763k = 024
2302 measured reflectionsl = 98
2069 independent reflections3 standard reflections every 150 reflections
1778 reflections with I > 2σ(I) intensity decay: 0.5%
Refinement top
Refinement on F2 w = 1/[σ2(Fo2) + (0.027P)2 + 0.3833P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.021(Δ/σ)max = 0.001
wR(F2) = 0.058Δρmax = 0.34 e Å3
S = 1.07Δρmin = 0.28 e Å3
2069 reflectionsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
132 parametersExtinction coefficient: 0.0047 (8)
H atoms treated by a mixture of independent and constrained refinement
Crystal data top
[Cu(C6H5O3)Cl(H2O)]·H2OV = 899.9 (4) Å3
Mr = 260.13Z = 4
Monoclinic, P21/aMo Kα radiation
a = 7.163 (2) ŵ = 2.71 mm1
b = 18.604 (2) ÅT = 296 K
c = 7.357 (2) Å0.40 × 0.20 × 0.10 mm
β = 113.38 (2)°
Data collection top
Rigaku AFC-5R
diffractometer
1778 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.009
Tmin = 0.527, Tmax = 0.7633 standard reflections every 150 reflections
2302 measured reflections intensity decay: 0.5%
2069 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.021132 parameters
wR(F2) = 0.058H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.34 e Å3
2069 reflectionsΔρmin = 0.28 e Å3
Special details top

Refinement. Refinement using reflections with F2 > -10.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.15307 (8)0.29022 (3)0.79480 (7)0.0319 (1)
Cu10.29255 (4)0.18032 (1)0.83113 (3)0.02541 (9)
O10.1738 (2)0.01327 (8)0.3219 (2)0.0350 (3)
O20.3677 (2)0.07854 (7)0.8616 (2)0.0333 (3)
O30.1566 (2)0.15755 (7)0.5507 (2)0.0272 (3)
O4W0.4171 (2)0.18564 (8)1.1217 (2)0.0321 (3)
O5W0.7954 (2)0.23087 (9)1.3565 (2)0.0337 (3)
C10.3117 (3)0.0479 (1)0.6938 (3)0.0256 (4)
C20.1949 (3)0.0891 (1)0.5207 (3)0.0241 (4)
C30.1290 (3)0.0572 (1)0.3388 (3)0.0290 (4)
C40.2865 (3)0.0518 (1)0.4834 (3)0.0355 (5)
C50.3568 (3)0.0246 (1)0.6671 (3)0.0323 (4)
C60.0068 (4)0.0906 (1)0.1453 (3)0.0401 (5)
H40.31680.09930.46670.0426*
H4WA0.369 (4)0.212 (1)1.175 (4)0.0385*
H4WB0.534 (3)0.197 (1)1.170 (4)0.0385*
H50.43390.05280.77540.0388*
H5WA0.774 (4)0.257 (1)1.428 (4)0.0404*
H5WB0.895 (3)0.209 (1)1.420 (4)0.0404*
H6A0.07500.08430.05730.0481*
H6B0.00930.14100.16350.0481*
H6C0.12450.06810.08950.0481*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0350 (3)0.0259 (2)0.0323 (3)0.0043 (2)0.0107 (2)0.0013 (2)
Cu10.0315 (1)0.0223 (1)0.0179 (1)0.00096 (9)0.0049 (1)0.00092 (8)
O10.0450 (9)0.0291 (7)0.0298 (8)0.0012 (7)0.0137 (7)0.0091 (6)
O20.0474 (8)0.0248 (7)0.0204 (7)0.0026 (6)0.0057 (6)0.0014 (5)
O30.0329 (7)0.0226 (6)0.0194 (6)0.0030 (6)0.0033 (5)0.0014 (5)
O4W0.0339 (8)0.0368 (8)0.0212 (7)0.0003 (7)0.0062 (6)0.0046 (6)
O5W0.0308 (8)0.0438 (9)0.0219 (7)0.0024 (7)0.0055 (6)0.0027 (6)
C10.0278 (9)0.0231 (9)0.0247 (9)0.0012 (7)0.0091 (8)0.0013 (7)
C20.0250 (9)0.0230 (9)0.0225 (9)0.0002 (7)0.0073 (7)0.0006 (7)
C30.032 (1)0.0275 (10)0.0256 (9)0.0019 (8)0.0094 (8)0.0039 (8)
C40.045 (1)0.0219 (9)0.042 (1)0.0033 (9)0.020 (1)0.0017 (8)
C50.038 (1)0.0235 (9)0.033 (1)0.0033 (8)0.0114 (9)0.0035 (8)
C60.049 (1)0.043 (1)0.0208 (9)0.000 (1)0.0067 (9)0.0029 (9)
Geometric parameters (Å, º) top
Cl1—Cu12.2445 (6)O5W—H5WB0.79 (2)
Cl1—Cu1i2.7546 (9)C1—C21.437 (2)
Cu1—O21.957 (1)C1—C51.418 (3)
Cu1—O31.947 (1)C2—C31.365 (3)
Cu1—O4W1.965 (1)C3—C61.480 (3)
O1—C31.367 (3)C4—C51.340 (3)
O1—C41.348 (2)C4—H40.930
O2—C11.272 (2)C5—H50.930
O3—C21.339 (2)C6—H6A0.960
O4W—H4WA0.786 (19)C6—H6B0.960
O4W—H4WB0.798 (19)C6—H6C0.960
O5W—H5WA0.772 (19)
Cl1···O2i3.343 (2)O3···O5Wii2.768 (2)
Cl1···O5Wii3.409 (1)O3···O5Wviii2.910 (2)
Cl1···O3i3.428 (2)O4W···O5Wi2.711 (3)
Cl1···O4Wi3.474 (2)O4W···C5vii3.467 (3)
Cl1···C6iii3.578 (2)O4W···C6ix3.492 (3)
O1···C5iv3.405 (3)C2···C4vi3.506 (3)
O1···C6v3.467 (3)C3···C5vi3.515 (4)
O1···C1vi3.493 (3)C4···C5iv3.467 (4)
O1···C2vi3.569 (3)C4···C4iv3.541 (5)
O2···C5vii3.390 (2)
Cl1—Cu1—O2169.82 (6)C2—C1—C5118.0 (2)
Cl1—Cu1—O393.45 (4)O3—C2—C1116.5 (2)
Cl1—Cu1—O4W94.13 (5)O3—C2—C3124.1 (2)
Cu1—Cl1—Cu1i124.04 (3)C1—C2—C3119.3 (2)
Cl1x—Cu1—Cl1101.38 (2)O1—C3—C2120.3 (2)
O2—Cu1—Cl1x88.72 (6)O1—C3—C6112.6 (2)
O2—Cu1—O384.84 (5)C2—C3—C6127.1 (2)
O2—Cu1—O4W86.49 (6)O1—C4—C5122.8 (2)
O3—Cu1—Cl1x91.98 (5)O1—C4—H4118.6
O3—Cu1—O4W169.75 (6)C5—C4—H4118.6
C3—O1—C4120.6 (2)C1—C5—C4118.9 (2)
Cu1—O2—C1110.9 (1)C1—C5—H5120.5
Cu1—O3—C2109.4 (1)C4—C5—H5120.5
Cu1—O4W—H4WA118 (2)C3—C6—H6A109.5
Cu1—O4W—H4WB116.2 (19)C3—C6—H6B109.5
H4WA—O4W—H4WB102 (3)C3—C6—H6C109.5
H5WA—O5W—H5WB107 (3)H6A—C6—H6B109.5
O2—C1—C2118.0 (2)H6A—C6—H6C109.5
O2—C1—C5124.0 (2)H6B—C6—H6C109.5
Cl1—Cu1—O2—C185.9 (3)O3—Cu1—O2—C15.2 (2)
Cl1—Cu1—O3—C2174.6 (1)O3—C2—C1—C5179.4 (2)
Cu1—O2—C1—C24.6 (3)O3—C2—C3—C60.2 (4)
Cu1—O2—C1—C5175.5 (2)O4W—Cu1—O2—C1179.7 (2)
Cu1—O3—C2—C13.5 (2)O4W—Cu1—O3—C236.9 (5)
Cu1—O3—C2—C3177.1 (2)C1—C2—C3—C6179.6 (2)
O1—C3—C2—O3179.4 (2)C2—C1—C5—C41.1 (4)
O1—C3—C2—C10.0 (3)C2—C3—O1—C41.3 (3)
O1—C4—C5—C10.2 (4)C3—O1—C4—C51.4 (4)
O2—Cu1—O3—C24.6 (1)C3—C2—C1—C51.2 (3)
O2—C1—C2—O30.8 (3)C4—O1—C3—C6179.1 (2)
O2—C1—C2—C3178.7 (2)C4—O1—C3—C6179.1 (2)
O2—C1—C5—C4178.7 (2)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x1, y, z1; (iii) x+1/2, y+1/2, z+1; (iv) x+1, y, z+1; (v) x, y, z; (vi) x, y, z+1; (vii) x+1, y, z+2; (viii) x1/2, y+1/2, z1; (ix) x, y, z+1; (x) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4W—H4WA···O5Wi0.79 (3)1.94 (2)2.711 (2)168 (3)
O4W—H4WB···O5W0.80 (2)1.94 (2)2.706 (2)162 (2)
O5W—H5WA···O3iii0.77 (3)2.16 (2)2.910 (2)164 (3)
O5W—H5WB···O3xi0.79 (2)1.98 (2)2.768 (2)172 (3)
Symmetry codes: (i) x1/2, y+1/2, z; (iii) x+1/2, y+1/2, z+1; (xi) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C6H5O3)Cl(H2O)]·H2O
Mr260.13
Crystal system, space groupMonoclinic, P21/a
Temperature (K)296
a, b, c (Å)7.163 (2), 18.604 (2), 7.357 (2)
β (°) 113.38 (2)
V3)899.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.71
Crystal size (mm)0.40 × 0.20 × 0.10
Data collection
DiffractometerRigaku AFC-5R
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.527, 0.763
No. of measured, independent and
observed [I > 2σ(I)] reflections
2302, 2069, 1778
Rint0.009
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.058, 1.07
No. of reflections2069
No. of parameters132
No. of restraints?
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.28

Computer programs: MSC/AFC Diffractometer Control (Molecular Structure Corporation, 1992), MSC/AFC Diffractometer Control, TEXSAN (Molecular Structure Corporation, 2000), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEP II (Johnson, 1976), TEXSAN.

Selected geometric parameters (Å, º) top
Cl1—Cu12.2445 (6)Cu1—O4W1.965 (1)
Cl1—Cu1i2.7546 (9)O2—C11.272 (2)
Cu1—O21.957 (1)O3—C21.339 (2)
Cu1—O31.947 (1)
Cl1—Cu1—O2169.82 (6)O2—Cu1—O4W86.49 (6)
Cl1—Cu1—O393.45 (4)O3—Cu1—Cl1ii91.98 (5)
Cl1—Cu1—O4W94.13 (5)O3—Cu1—O4W169.75 (6)
Cu1—Cl1—Cu1i124.04 (3)Cu1—O2—C1110.9 (1)
Cl1ii—Cu1—Cl1101.38 (2)Cu1—O3—C2109.4 (1)
O2—Cu1—Cl1ii88.72 (6)O2—C1—C2118.0 (2)
O2—Cu1—O384.84 (5)O3—C2—C1116.5 (2)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4W—H4WA···O5Wi0.79 (3)1.94 (2)2.711 (2)168 (3)
O4W—H4WB···O5W0.80 (2)1.94 (2)2.706 (2)162 (2)
O5W—H5WA···O3iii0.77 (3)2.16 (2)2.910 (2)164 (3)
O5W—H5WB···O3iv0.79 (2)1.98 (2)2.768 (2)172 (3)
Symmetry codes: (i) x1/2, y+1/2, z; (iii) x+1/2, y+1/2, z+1; (iv) x+1, y, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds