Download citation
Download citation
link to html
The molecules of 8-hydroxy­quinolinium-2-carboxyl­ate, C10H7NO3, have a planar structure, in which the carboxyl group is ionized and the ring N atom is protonated. The derived nickel(II) complex, bis(8-hydroxy­quinoline-2-carboxyl­ato-[kappa]3O2,N,O8)­nickel(II) trihydrate, [Ni(C10H6NO3)2]·3H2O, contains an octahedral central NiII ion coordinated by the hydroxyl O atom, the ring N atom and the carboxyl­ate O atom of each of the two tridentate ligands, with a perpendicular orientation of the quinoline rings.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102013628/ob1077sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102013628/ob1077Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102013628/ob1077IIsup3.hkl
Contains datablock II

CCDC references: 195606; 195607

Comment top

8-Hydroxyquinaldic acid (8-hydroxyquinoline-2-carboxylic acid), (I), is one of the tryptophan metabolites formed through the kynurenine metabolic pathway (Rodwell, 1983). This compound is known as a tridentate chelating agent with three ligand atoms, the hydroxyl O atom, the quinoline ring N atom, and the carboxyl O atom (Irving & Pinnington, 1954; Moberg & Weber, 1984). The physiological role of this compound or of its metal complexes are as yet unclear, but the analogous compound 8-hydroxyquinoline and its metal complexes have various biological properties, such as antimicrobial or fungicidal activity (Okide et al., 2000; Patel et al., 1999) or antitumour activity (Smith et al., 1998). These findings drive structural research of various quinoline derivatives because of their therapeutic value.

Until now, the solid-state structures of 8-hydroxyquinaldinic acid and its metal complexes have not been determined, apart from the structure of the cobalt(II) complex which we reported recently (Okabe & Muranishi; 2002). Therefore, it is of interest to clarify the detailed structure of this compound and the coordinating behaviour of its metal complexes in connection with their physiological role, as well as their use as selective chelating reagents for metal ions (Högberg et al. 1985). In this study, the structure of (I) and of its nickel(II) complex, (II), have been determined and the results are presented here. \sch

The structure of (I) is shown in Fig. 1. It is planar, with a slight torsion of the carboxylate group [O2—C10—C1—N1 - 4.2 (3)°]. The carboxyl group is ionized, the ring N atom is protonated, and the hydroxyl group remains unchanged. The net charge of the molecule is kept neutral by this H-atom transfer. Bifurcated hydrogen bonds are formed intramolecularly between the protonated NH+ group and the carboxyl O atom, and between NH+ and the hydroxyl O atoms (Table 2). Neighbouring molecules are linked together by intermolecular hydrogen bonds between the carboxylate and hydroxyl groups along the c axis (Fig. 2). The quinoline rings are stacked together along the a axis, with a mean distance between the rings of 3.380 (5) Å.

The molecular structure of complex (II) is shown in Fig. 3. In this complex, two tridentate ligand molecules coordinate to the central NiII ion in a bisected octahedral coordination geometry, in which two quinoline rings are oriented perpendicularly. The two carboxyl groups of the two ligand molecules are ionized and are essentially coplanar with the quinoline ring planes, as shown by the relevant torsion angles [O2—C10—C1—N1 - 4.2 (3)° and O5—C20—C11—N2 - 8.2 (4)°].

The overall structure of (II) is the same as the cobalt(II) complex (Okabe & Muranishi, 2002). Three ligand atoms (the hydroxyl O, the quinoline N and the carboxyl O atoms) and the central NiII ion form five-membered rings. The distances between NiII and the carboxylato O atoms, [2.080 (3)–2.124 (2) Å] are shorter than those between NiII and the hydroxyl O atoms [2.227 (2)–2.290 (3) Å]. The Ni—N distance is the shortest of those involving the three coordinated ligand atoms.

In an NMR study of the manganese(II) complex of quinaldinic acid derivatives (Moberg & Weber, 1984), a bisected octahedral structure with a perpendicular orientation of the quinoline rings was postulated as one of the possible coordination modes around the central metal ion. However, the manganese(II) complex of 8-hydroxyquinaldinic acid could not be clearly deduced as a bisected octahedral structure from the NMR study. The bisected octahedral coordination mode of the cobalt(II) complex (Okabe & Muranishi, 2002) and the nickel(II) complex, (II), may be a common feature of the metal complexes of 8-hydroxyquinaldinic acid, although further structural studies are needed for confirmation.

In the crystal packing of (II), stacking interactions are present between the C1—C9/N1 quinoline rings and between the C11—C19/N2 rings. The mean distances are 3.454 (4) Å for the C1—C9/N1 rings and 3.378 (4) Å for the C11—C19/N2 rings. Neighbouring nickel(II) complex molecules are also connected together by a hydrogen-bonding network through the water molecules (Table 4).

Experimental top

Yellow plate crystals of (I) and light-yellow prismatic crystals of (II) were obtained by, respectively, slow evaporation of an ethanol-water solution (ca 70% does this mean 70:30 v/v?), and of an ethanol-water solution (ca 70% does this mean 70:30 v/v?) of a mixture of 8-hydroxyquinaldinic acid and nickel(II) acetate tetrahydrate (molar ratio 4:1).

Refinement top

For compound (I), all H atoms were initially located from the difference Fourier maps, and then they were refined at their ideal positions by a riding model, using the SHELXL97 HFIX instruction (Sheldrick, 1997) with C—H = 0.93, O—H = 0.82 and N—H = 0.86 Å. Is this added text OK? For complex (II), all H atoms were also initially located from the difference Fourier maps, and then all except those of the 8-hydroxyl groups were refined at their ideal positions by riding models using the SHELXL97 HFIX instruction, with C—H = 0.93 Å. Is this added text OK? The H atoms of the 8-hydroxyl groups were fixed in the positions located from the Fourier maps. The water H atoms were idealized using the SHELXL97 SADI restriction.

Computing details top

For both compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation & Rigaku Corporation, 1999); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation & Rigaku Corporation, 1999); program(s) used to solve structure: SIR97 (Altomare et al., 1999) and DIRDIF94 (Beurskens et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN.

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A packing diagram for (I) showing the hydrogen-bonding scheme.
[Figure 3] Fig. 3. A view of the molecule of (II), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
(I) 8-hydroxyquinolinium-2-carboxylate top
Crystal data top
C10H7NO3F(000) = 784.0
Mr = 189.17Dx = 1.583 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.7107 Å
Hall symbol: -C 2ycCell parameters from 16 reflections
a = 12.748 (2) Åθ = 10.2–12.9°
b = 7.476 (3) ŵ = 0.12 mm1
c = 16.657 (2) ÅT = 296 K
β = 90.68 (1)°Plate, yellow
V = 1587.3 (7) Å30.20 × 0.10 × 0.05 mm
Z = 8
Data collection top
Rigaku AFC-5R
diffractometer
θmax = 27.5°
ω/2θ scansh = 1216
2068 measured reflectionsk = 09
1838 independent reflectionsl = 2121
691 reflections with I > 2σ(I)3 standard reflections every 150 reflections
Rint = 0.066 intensity decay: 0.8%
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.053 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.197(Δ/σ)max < 0.001
S = 0.87Δρmax = 0.28 e Å3
1838 reflectionsΔρmin = 0.27 e Å3
128 parameters
Crystal data top
C10H7NO3V = 1587.3 (7) Å3
Mr = 189.17Z = 8
Monoclinic, C2/cMo Kα radiation
a = 12.748 (2) ŵ = 0.12 mm1
b = 7.476 (3) ÅT = 296 K
c = 16.657 (2) Å0.20 × 0.10 × 0.05 mm
β = 90.68 (1)°
Data collection top
Rigaku AFC-5R
diffractometer
Rint = 0.066
2068 measured reflections3 standard reflections every 150 reflections
1838 independent reflections intensity decay: 0.8%
691 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.053128 parameters
wR(F2) = 0.197H-atom parameters constrained
S = 0.87Δρmax = 0.28 e Å3
1838 reflectionsΔρmin = 0.27 e Å3
Special details top

Refinement. Refinement using reflections with F2 > -10.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3802 (2)0.1005 (4)0.7905 (2)0.0381 (8)
O20.3821 (3)0.1027 (4)0.6906 (2)0.0443 (9)
O3E0.4069 (3)0.0399 (4)0.4296 (2)0.0347 (8)
N10.3840 (3)0.1568 (4)0.5812 (2)0.0248 (8)
C10.3718 (3)0.2025 (5)0.6578 (2)0.0268 (9)
C20.3518 (4)0.3799 (5)0.6771 (2)0.033 (1)
C30.3478 (4)0.5061 (5)0.6176 (2)0.035 (1)
C40.3621 (3)0.4587 (5)0.5368 (2)0.0263 (9)
C50.3606 (3)0.5821 (6)0.4732 (2)0.034 (1)
C60.3749 (4)0.5240 (6)0.3965 (3)0.038 (1)
C70.3908 (4)0.3418 (6)0.3786 (2)0.035 (1)
C80.3927 (3)0.2162 (5)0.4383 (2)0.0257 (9)
C90.3799 (3)0.2773 (5)0.5195 (2)0.0230 (9)
C100.3792 (3)0.0492 (6)0.7188 (2)0.0288 (10)
H10.39500.04610.57000.0297*
H20.34120.41280.73020.0396*
H30.33550.62500.63080.0419*
H3E0.40210.01360.38190.0521*
H50.34990.70300.48330.0409*
H60.37420.60690.35480.0454*
H70.40020.30660.32560.0416*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.061 (2)0.035 (2)0.018 (1)0.006 (2)0.002 (1)0.004 (1)
O20.075 (3)0.027 (2)0.031 (2)0.002 (2)0.003 (2)0.001 (1)
O3E0.056 (2)0.030 (2)0.018 (1)0.012 (2)0.002 (1)0.003 (1)
N10.034 (2)0.020 (2)0.020 (1)0.000 (1)0.002 (1)0.005 (1)
C10.032 (2)0.027 (2)0.022 (2)0.000 (2)0.002 (2)0.001 (2)
C20.056 (3)0.024 (2)0.020 (2)0.002 (2)0.001 (2)0.002 (2)
C30.050 (3)0.025 (2)0.030 (2)0.003 (2)0.002 (2)0.006 (2)
C40.030 (2)0.025 (2)0.025 (2)0.001 (2)0.002 (2)0.004 (2)
C50.046 (3)0.026 (2)0.030 (2)0.002 (2)0.003 (2)0.003 (2)
C60.061 (3)0.032 (3)0.020 (2)0.002 (2)0.007 (2)0.006 (2)
C70.050 (3)0.038 (3)0.016 (2)0.001 (2)0.002 (2)0.001 (2)
C80.030 (2)0.026 (2)0.021 (2)0.004 (2)0.002 (2)0.000 (2)
C90.026 (2)0.026 (2)0.016 (2)0.003 (2)0.003 (2)0.000 (2)
C100.032 (2)0.033 (3)0.021 (2)0.002 (2)0.003 (2)0.004 (2)
Geometric parameters (Å, º) top
O1—C101.255 (4)C3—C41.405 (6)
O2—C101.230 (5)C3—H30.930
O3E—C81.338 (5)C4—C51.405 (6)
O3E—H3E0.820C4—C91.406 (6)
N1—C11.332 (4)C5—C61.364 (6)
N1—C91.367 (5)C5—H50.930
N1—H10.860C6—C71.409 (6)
C1—C21.388 (6)C6—H60.930
C1—C101.533 (5)C7—C81.368 (6)
C2—C31.369 (6)C7—H70.930
C2—H20.930C8—C91.438 (5)
O1···O3Ei2.562 (4)O3E···C4vii3.480 (5)
O1···C10ii3.098 (5)O3E···C5v3.549 (5)
O1···C6iii3.317 (5)O3E···C10viii3.587 (4)
O1···O1ii3.354 (6)N1···C7vii3.574 (6)
O1···C1ii3.355 (5)N1···C6vii3.590 (6)
O1···C3iv3.375 (5)C1···C7vii3.411 (6)
O1···O2ii3.401 (5)C3···C7ix3.520 (6)
O1···C8i3.418 (5)C3···C6ix3.552 (7)
O1···C2iv3.435 (5)C4···C6ix3.522 (6)
O2···C3v3.195 (5)C4···C8vii3.530 (6)
O2···O3Evi3.404 (4)C4···C5ix3.554 (6)
O2···C10ii3.567 (5)C5···C9ix3.472 (6)
O2···O2ii3.580 (7)C8···C9vii3.553 (5)
O3E···N1vi3.052 (4)C9···C9vii3.391 (7)
O3E···C3vii3.349 (5)C10···C10ii3.240 (8)
O3E···O3Evi3.371 (6)
C8—O3E—H3E109.5C4—C5—H5120.1
C1—N1—C9123.2 (3)C6—C5—H5120.1
C1—N1—H1118.4C5—C6—C7121.8 (4)
C9—N1—H1118.4C5—C6—H6119.1
N1—C1—C2119.3 (3)C7—C6—H6119.1
N1—C1—C10115.8 (3)C6—C7—C8120.8 (4)
C2—C1—C10124.8 (3)C6—C7—H7119.6
C1—C2—C3119.8 (4)C8—C7—H7119.6
C1—C2—H2120.1O3E—C8—C7126.7 (3)
C3—C2—H2120.1O3E—C8—C9115.6 (3)
C2—C3—C4121.0 (4)C7—C8—C9117.7 (4)
C2—C3—H3119.5N1—C9—C4119.1 (3)
C4—C3—H3119.5N1—C9—C8119.6 (3)
C3—C4—C5123.8 (4)C4—C9—C8121.3 (3)
C3—C4—C9117.6 (3)O1—C10—O2130.2 (4)
C5—C4—C9118.6 (3)O1—C10—C1113.7 (3)
C4—C5—C6119.8 (4)O2—C10—C1116.0 (3)
O1—C10—C1—N1171.7 (4)C2—C1—N1—C91.3 (6)
O1—C10—C1—C29.5 (6)C2—C3—C4—C5178.9 (4)
O2—C10—C1—N19.0 (5)C2—C3—C4—C90.4 (6)
O2—C10—C1—C2169.8 (4)C3—C2—C1—C10179.5 (4)
O3E—C8—C7—C6179.9 (4)C3—C4—C5—C6179.9 (4)
O3E—C8—C9—N10.8 (5)C3—C4—C9—C8178.4 (4)
O3E—C8—C9—C4178.6 (3)C4—C5—C6—C70.4 (7)
N1—C1—C2—C31.8 (6)C4—C9—C8—C72.4 (6)
N1—C9—C4—C30.9 (5)C5—C4—C9—C82.2 (6)
N1—C9—C4—C5178.4 (4)C5—C6—C7—C80.2 (7)
N1—C9—C8—C7178.3 (4)C6—C5—C4—C90.9 (6)
C1—N1—C9—C40.1 (5)C6—C7—C8—C91.1 (6)
C1—N1—C9—C8179.3 (4)C9—N1—C1—C10179.8 (3)
C1—C2—C3—C41.0 (7)C9—N1—C1—C10179.8 (3)
Symmetry codes: (i) x, y, z+1/2; (ii) x+1, y, z+3/2; (iii) x, y+1, z+1/2; (iv) x+1/2, y1/2, z+3/2; (v) x, y1, z; (vi) x+1, y, z+1; (vii) x+1/2, y+1/2, z+1; (viii) x, y, z1/2; (ix) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.862.302.662 (4)105
N1—H1···O3E0.862.352.692 (4)104
O3E—H3E···O1viii0.821.762.562 (4)164
Symmetry code: (viii) x, y, z1/2.
(II) bis(8-hydroxyquinoline-2-carboxylato-κ3O2,N,O8)nickel(II) trihydrate top
Crystal data top
[Ni(C10H6NO3)2](H2O)3Z = 2
Mr = 489.05F(000) = 504.0
Triclinic, P1Dx = 1.681 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.7107 Å
a = 9.237 (1) ÅCell parameters from 25 reflections
b = 15.865 (3) Åθ = 14.5–15.0°
c = 7.200 (1) ŵ = 1.06 mm1
α = 97.63 (1)°T = 296 K
β = 106.95 (1)°Prismatic, yellow
γ = 101.90 (1)°0.25 × 0.10 × 0.10 mm
V = 966.4 (3) Å3
Data collection top
Rigaku AFC-5R
diffractometer
Rint = 0.024
ω/2θ scansθmax = 27.5°
Absorption correction: ψ scan
(North et al., 1968)
h = 011
Tmin = 0.880, Tmax = 0.899k = 2020
4703 measured reflectionsl = 98
4434 independent reflections3 standard reflections every 150 reflections
3202 reflections with I > 2σ(I) intensity decay: 0.3%
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.134(Δ/σ)max < 0.001
S = 0.90Δρmax = 0.64 e Å3
4434 reflectionsΔρmin = 0.32 e Å3
307 parameters
Crystal data top
[Ni(C10H6NO3)2](H2O)3γ = 101.90 (1)°
Mr = 489.05V = 966.4 (3) Å3
Triclinic, P1Z = 2
a = 9.237 (1) ÅMo Kα radiation
b = 15.865 (3) ŵ = 1.06 mm1
c = 7.200 (1) ÅT = 296 K
α = 97.63 (1)°0.25 × 0.10 × 0.10 mm
β = 106.95 (1)°
Data collection top
Rigaku AFC-5R
diffractometer
3202 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.024
Tmin = 0.880, Tmax = 0.8993 standard reflections every 150 reflections
4703 measured reflections intensity decay: 0.3%
4434 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040307 parameters
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 0.90Δρmax = 0.64 e Å3
4434 reflectionsΔρmin = 0.32 e Å3
Special details top

Refinement. Refinement using reflections with F2 > -10.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.35159 (4)0.24765 (2)0.51613 (5)0.0330 (1)
O10.5238 (3)0.1381 (2)0.1118 (3)0.0476 (5)
O20.4618 (3)0.2384 (1)0.3029 (3)0.0419 (5)
O3E0.2416 (3)0.1921 (2)0.7356 (3)0.0445 (5)
O40.0255 (3)0.3462 (2)0.2899 (4)0.0510 (6)
O50.1311 (2)0.2542 (1)0.3279 (3)0.0405 (5)
O6E0.5855 (2)0.3045 (1)0.7478 (3)0.0381 (4)
O70.7305 (3)0.2340 (2)0.9998 (3)0.0458 (5)
O80.8476 (5)0.3037 (3)0.6064 (6)0.098 (1)
O91.0476 (4)0.2373 (3)0.8940 (5)0.082 (1)
N10.3338 (3)0.1197 (2)0.4607 (3)0.0316 (5)
N20.3606 (3)0.3735 (1)0.5880 (3)0.0288 (4)
C10.3830 (3)0.0892 (2)0.3185 (4)0.0331 (6)
C20.3643 (4)0.0018 (2)0.2550 (5)0.0396 (6)
C30.2938 (4)0.0592 (2)0.3487 (5)0.0435 (7)
C40.2408 (3)0.0275 (2)0.5046 (5)0.0392 (7)
C50.1645 (4)0.0811 (2)0.6087 (5)0.0489 (8)
C60.1160 (4)0.0429 (2)0.7510 (6)0.0531 (9)
C70.1387 (4)0.0485 (2)0.8018 (5)0.0472 (8)
C80.2131 (3)0.1029 (2)0.7056 (4)0.0381 (6)
C90.2641 (3)0.0642 (2)0.5559 (4)0.0340 (6)
C100.4623 (3)0.1605 (2)0.2346 (4)0.0352 (6)
C110.2379 (3)0.4020 (2)0.5028 (4)0.0300 (5)
C120.2383 (4)0.4909 (2)0.5395 (4)0.0364 (6)
C130.3726 (4)0.5507 (2)0.6685 (4)0.0357 (6)
C140.5050 (3)0.5216 (2)0.7618 (4)0.0313 (5)
C150.6481 (4)0.5766 (2)0.8961 (4)0.0385 (6)
C160.7667 (4)0.5399 (2)0.9789 (4)0.0400 (7)
C170.7528 (3)0.4483 (2)0.9352 (4)0.0372 (6)
C180.6158 (3)0.3931 (2)0.8057 (4)0.0311 (5)
C190.4924 (3)0.4307 (2)0.7181 (4)0.0285 (5)
C200.1018 (3)0.3284 (2)0.3616 (4)0.0340 (6)
H20.39890.02220.15280.0475*
H30.28050.11940.30990.0522*
H3E0.18910.21360.78430.0609*
H50.14790.14190.57950.0586*
H60.06550.07860.81780.0637*
H6E0.62610.28010.83220.0609*
H70.10360.07220.90040.0566*
H7A0.672 (4)0.202 (2)1.050 (6)0.0687*
H7B0.798 (4)0.271 (2)1.099 (5)0.0687*
H8A0.756 (5)0.304 (5)0.532 (8)0.1463*
H8B0.893 (7)0.293 (5)0.519 (8)0.1463*
H9A0.982 (6)0.257 (4)0.814 (7)0.1233*
H9B1.018 (7)0.236 (4)0.994 (6)0.1233*
H120.15020.50940.47850.0436*
H130.37580.61020.69390.0428*
H150.66130.63700.92790.0462*
H160.86030.57661.06730.0480*
H170.83610.42570.99420.0447*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0366 (2)0.0275 (2)0.0335 (2)0.0076 (1)0.0102 (1)0.0060 (1)
O10.052 (1)0.048 (1)0.046 (1)0.009 (1)0.026 (1)0.0056 (10)
O20.054 (1)0.030 (1)0.045 (1)0.0055 (9)0.024 (1)0.0081 (9)
O3E0.053 (1)0.043 (1)0.045 (1)0.014 (1)0.024 (1)0.0122 (10)
O40.034 (1)0.056 (1)0.053 (1)0.012 (1)0.0004 (10)0.011 (1)
O50.037 (1)0.033 (1)0.042 (1)0.0043 (9)0.0029 (9)0.0048 (9)
O6E0.036 (1)0.034 (1)0.036 (1)0.0102 (8)0.0013 (8)0.0051 (8)
O70.050 (1)0.047 (1)0.035 (1)0.006 (1)0.0074 (9)0.0126 (9)
O80.093 (3)0.121 (3)0.120 (3)0.055 (3)0.069 (3)0.041 (3)
O90.064 (2)0.096 (2)0.081 (2)0.012 (2)0.037 (2)0.020 (2)
N10.030 (1)0.029 (1)0.033 (1)0.0055 (9)0.0063 (9)0.0083 (9)
N20.030 (1)0.029 (1)0.025 (1)0.0053 (9)0.0077 (9)0.0061 (8)
C10.031 (1)0.032 (1)0.031 (1)0.006 (1)0.005 (1)0.007 (1)
C20.042 (2)0.033 (1)0.037 (1)0.008 (1)0.007 (1)0.001 (1)
C30.043 (2)0.029 (1)0.050 (2)0.008 (1)0.004 (1)0.007 (1)
C40.032 (1)0.031 (1)0.044 (2)0.003 (1)0.001 (1)0.011 (1)
C50.043 (2)0.040 (2)0.055 (2)0.001 (1)0.005 (1)0.023 (1)
C60.045 (2)0.052 (2)0.058 (2)0.000 (2)0.011 (2)0.034 (2)
C70.040 (2)0.063 (2)0.042 (2)0.010 (1)0.015 (1)0.024 (2)
C80.034 (1)0.042 (2)0.038 (1)0.009 (1)0.009 (1)0.016 (1)
C90.027 (1)0.033 (1)0.038 (1)0.005 (1)0.003 (1)0.013 (1)
C100.037 (1)0.035 (1)0.029 (1)0.005 (1)0.007 (1)0.006 (1)
C110.030 (1)0.031 (1)0.028 (1)0.005 (1)0.011 (1)0.005 (1)
C120.038 (1)0.038 (1)0.040 (1)0.015 (1)0.016 (1)0.014 (1)
C130.047 (2)0.027 (1)0.037 (1)0.011 (1)0.018 (1)0.007 (1)
C140.038 (1)0.029 (1)0.028 (1)0.005 (1)0.016 (1)0.0057 (10)
C150.048 (2)0.028 (1)0.035 (1)0.001 (1)0.017 (1)0.002 (1)
C160.037 (2)0.041 (2)0.031 (1)0.006 (1)0.008 (1)0.001 (1)
C170.031 (1)0.043 (2)0.032 (1)0.004 (1)0.007 (1)0.006 (1)
C180.034 (1)0.032 (1)0.026 (1)0.006 (1)0.009 (1)0.005 (1)
C190.032 (1)0.031 (1)0.023 (1)0.006 (1)0.011 (1)0.0051 (10)
C200.031 (1)0.038 (1)0.030 (1)0.006 (1)0.006 (1)0.008 (1)
Geometric parameters (Å, º) top
Ni1—O22.080 (3)C2—H20.930
Ni1—O3E2.290 (3)C3—C41.423 (5)
Ni1—O52.124 (2)C3—H30.930
Ni1—O6E2.227 (2)C4—C51.418 (5)
Ni1—N11.979 (2)C4—C91.408 (4)
Ni1—N21.972 (2)C5—C61.354 (6)
O1—C101.234 (4)C5—H50.930
O2—C101.269 (4)C6—C71.403 (5)
O3E—C81.360 (4)C6—H60.930
O3E—H3E0.781C7—C81.374 (5)
O4—C201.245 (4)C7—H70.930
O5—C201.270 (4)C8—C91.415 (5)
O6E—C181.358 (3)C11—C121.401 (4)
O6E—H6E0.806C11—C201.520 (3)
O7—H7A0.85 (4)C12—C131.382 (3)
O7—H7B0.85 (3)C12—H120.930
O8—H8A0.86 (6)C13—C141.413 (4)
O8—H8B0.87 (6)C13—H130.930
O9—H9A0.85 (6)C14—C151.413 (3)
O9—H9B0.84 (5)C14—C191.407 (4)
N1—C11.311 (4)C15—C161.367 (5)
N1—C91.358 (4)C15—H150.930
N2—C111.321 (4)C16—C171.417 (4)
N2—C191.356 (3)C16—H160.930
C1—C21.414 (4)C17—C181.370 (3)
C1—C101.510 (4)C17—H170.930
C2—C31.372 (5)C18—C191.419 (4)
O1···O7i2.576 (4)O9···C3ii3.576 (4)
O1···C8i3.334 (3)N2···C14iii3.569 (4)
O1···C5ii3.368 (4)N2···C13iii3.599 (4)
O1···C7i3.478 (4)C1···C3ii3.406 (4)
O1···O3Ei3.505 (3)C2···C3ii3.435 (4)
O2···C13iii3.332 (3)C2···C4ii3.453 (4)
O3E···O9iv2.556 (5)C2···C6i3.572 (4)
O4···O7v2.689 (3)C4···C7vi3.476 (4)
O4···O8iv2.943 (6)C5···C8vi3.478 (4)
O4···O9v3.444 (5)C6···C9vi3.481 (4)
O4···C17v3.572 (4)C7···C10vii3.565 (4)
O5···O9v2.952 (4)C11···C15iii3.369 (5)
O5···C6vi3.515 (4)C11···C14iii3.578 (4)
O7···C3ii3.406 (4)C12···C16xi3.578 (5)
O7···C10vii3.482 (4)C13···C17xi3.377 (5)
O7···C20viii3.526 (3)C13···C19iii3.388 (5)
O8···C20ix3.315 (6)C13···C16xi3.505 (5)
O9···C8ix3.242 (6)C14···C15xi3.554 (5)
O9···C7ix3.311 (6)C14···C16xi3.598 (5)
O9···C20viii3.332 (5)C15···C19xi3.397 (5)
O9···C15x3.438 (4)C15···C20iii3.586 (5)
O9···C16x3.463 (5)
O2—Ni1—O3E153.13 (9)C6—C5—H5120.3
O2—Ni1—O597.86 (9)C5—C6—C7122.7 (4)
O2—Ni1—O6E89.13 (8)C5—C6—H6118.7
O2—Ni1—N178.96 (10)C7—C6—H6118.7
O2—Ni1—N2105.83 (9)C6—C7—C8119.9 (4)
O3E—Ni1—O591.84 (9)C6—C7—H7120.1
O3E—Ni1—O6E93.02 (8)C8—C7—H7120.1
O3E—Ni1—N174.6 (1)O3E—C8—C7126.8 (3)
O3E—Ni1—N2100.67 (10)O3E—C8—C9114.9 (3)
O5—Ni1—O6E154.03 (8)C7—C8—C9118.3 (3)
O5—Ni1—N1101.60 (8)N1—C9—C4121.5 (3)
O5—Ni1—N278.10 (8)N1—C9—C8116.7 (3)
O6E—Ni1—N1104.29 (8)C4—C9—C8121.8 (3)
O6E—Ni1—N275.93 (8)O1—C10—O2126.7 (3)
N1—Ni1—N2175.2 (1)O1—C10—C1117.6 (3)
Ni1—O2—C10114.3 (2)O2—C10—C1115.7 (3)
Ni1—O3E—C8111.8 (2)N2—C11—C12122.3 (2)
Ni1—O3E—H3E125.0N2—C11—C20112.6 (2)
C8—O3E—H3E117.0C12—C11—C20125.1 (3)
Ni1—O5—C20113.9 (1)C11—C12—C13118.5 (3)
Ni1—O6E—C18111.9 (2)C11—C12—H12120.8
Ni1—O6E—H6E124.9C13—C12—H12120.8
C18—O6E—H6E114.8C12—C13—C14120.1 (3)
H7A—O7—H7B104 (3)C12—C13—H13119.9
H8A—O8—H8B102 (5)C14—C13—H13119.9
H9A—O9—H9B105 (6)C13—C14—C15125.1 (3)
Ni1—N1—C1117.3 (2)C13—C14—C19117.2 (2)
Ni1—N1—C9121.8 (2)C15—C14—C19117.7 (3)
C1—N1—C9120.7 (3)C14—C15—C16119.4 (3)
Ni1—N2—C11119.1 (1)C14—C15—H15120.3
Ni1—N2—C19120.7 (2)C16—C15—H15120.3
C11—N2—C19120.1 (2)C15—C16—C17122.6 (2)
N1—C1—C2122.2 (3)C15—C16—H16118.7
N1—C1—C10113.4 (2)C17—C16—H16118.7
C2—C1—C10124.4 (3)C16—C17—C18119.6 (3)
C1—C2—C3118.1 (3)C16—C17—H17120.2
C1—C2—H2121.0C18—C17—H17120.2
C3—C2—H2121.0O6E—C18—C17126.4 (3)
C2—C3—C4120.6 (3)O6E—C18—C19115.5 (2)
C2—C3—H3119.7C17—C18—C19118.1 (3)
C4—C3—H3119.7N2—C19—C14121.7 (2)
C3—C4—C5125.2 (3)N2—C19—C18115.7 (2)
C3—C4—C9116.9 (3)C14—C19—C18122.6 (2)
C5—C4—C9118.0 (3)O4—C20—O5126.5 (2)
C4—C5—C6119.4 (3)O4—C20—C11117.9 (3)
C4—C5—H5120.3O5—C20—C11115.6 (2)
Ni1—O2—C10—O1177.8 (2)O6E—Ni1—N2—C194.3 (2)
Ni1—O2—C10—C10.3 (3)O6E—C18—C17—C16179.2 (3)
Ni1—O3E—C8—C7175.3 (2)O6E—C18—C19—N20.1 (4)
Ni1—O3E—C8—C93.3 (3)O6E—C18—C19—C14179.9 (3)
Ni1—O5—C20—O4170.6 (3)N1—Ni1—O2—C102.2 (2)
Ni1—O5—C20—C119.9 (3)N1—Ni1—O3E—C83.9 (2)
Ni1—O6E—C18—C17175.4 (3)N1—Ni1—O5—C20168.2 (2)
Ni1—O6E—C18—C193.3 (3)N1—Ni1—O6E—C18179.1 (2)
Ni1—N1—C1—C2174.7 (2)N1—C1—C2—C30.9 (4)
Ni1—N1—C1—C106.2 (3)N1—C9—C4—C30.1 (4)
Ni1—N1—C9—C4174.9 (2)N1—C9—C4—C5178.8 (3)
Ni1—N1—C9—C83.7 (3)N1—C9—C8—C7178.5 (3)
Ni1—N2—C11—C12177.0 (2)N2—Ni1—O2—C10177.9 (2)
Ni1—N2—C11—C202.0 (3)N2—Ni1—O3E—C8175.9 (2)
Ni1—N2—C19—C14175.9 (2)N2—Ni1—O5—C207.0 (2)
Ni1—N2—C19—C183.9 (4)N2—Ni1—O6E—C184.0 (2)
O1—C10—C1—N1174.1 (2)N2—C11—C12—C130.5 (5)
O1—C10—C1—C25.0 (4)N2—C19—C14—C131.7 (5)
O2—Ni1—O3E—C813.9 (3)N2—C19—C14—C15178.7 (3)
O2—Ni1—O5—C20111.6 (2)N2—C19—C18—C17178.7 (3)
O2—Ni1—O6E—C18102.5 (2)C1—N1—C9—C40.7 (4)
O2—Ni1—N1—C14.8 (2)C1—N1—C9—C8179.3 (2)
O2—Ni1—N1—C9179.5 (2)C1—C2—C3—C40.2 (4)
O2—Ni1—N2—C1197.2 (2)C2—C1—N1—C91.1 (4)
O2—Ni1—N2—C1980.7 (2)C2—C3—C4—C5179.0 (3)
O2—C10—C1—N14.2 (3)C2—C3—C4—C90.1 (4)
O2—C10—C1—C2176.7 (3)C3—C2—C1—C10178.1 (3)
O3E—Ni1—O2—C1012.0 (3)C3—C4—C5—C6178.3 (3)
O3E—Ni1—O5—C2093.6 (2)C3—C4—C9—C8178.6 (3)
O3E—Ni1—O6E—C18104.3 (2)C4—C5—C6—C70.4 (5)
O3E—Ni1—N1—C1179.8 (2)C4—C9—C8—C70.1 (4)
O3E—Ni1—N1—C94.0 (2)C5—C4—C9—C80.3 (4)
O3E—Ni1—N2—C1187.4 (2)C5—C6—C7—C80.1 (5)
O3E—Ni1—N2—C1994.8 (2)C6—C5—C4—C90.5 (4)
O3E—C8—C7—C6178.9 (3)C6—C7—C8—C90.3 (4)
O3E—C8—C9—N10.3 (4)C9—N1—C1—C10178.0 (2)
O3E—C8—C9—C4178.9 (2)C11—N2—C19—C142.0 (4)
O4—C20—C11—N2172.3 (3)C11—N2—C19—C18178.2 (3)
O4—C20—C11—C128.7 (5)C11—C12—C13—C140.7 (5)
O5—Ni1—O2—C1098.1 (2)C12—C11—N2—C190.9 (5)
O5—Ni1—O3E—C897.6 (2)C12—C13—C14—C15179.9 (3)
O5—Ni1—O6E—C183.8 (3)C12—C13—C14—C190.3 (5)
O5—Ni1—N1—C191.1 (2)C13—C12—C11—C20178.4 (3)
O5—Ni1—N1—C984.7 (2)C13—C14—C15—C16179.0 (3)
O5—Ni1—N2—C112.3 (2)C13—C14—C19—C18178.5 (3)
O5—Ni1—N2—C19175.6 (2)C14—C15—C16—C170.1 (5)
O5—C20—C11—N28.2 (4)C14—C19—C18—C171.1 (5)
O5—C20—C11—C12170.8 (3)C15—C14—C19—C181.1 (5)
O6E—Ni1—O2—C10107.0 (2)C15—C16—C17—C180.1 (5)
O6E—Ni1—O3E—C8107.9 (2)C16—C15—C14—C190.6 (5)
O6E—Ni1—O5—C207.2 (4)C16—C17—C18—C190.5 (5)
O6E—Ni1—N1—C191.0 (2)C19—N2—C11—C20179.8 (3)
O6E—Ni1—N1—C993.2 (2)C19—N2—C11—C20179.8 (3)
O6E—Ni1—N2—C11177.8 (2)
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z+1; (iii) x+1, y+1, z+1; (iv) x1, y, z; (v) x1, y, z1; (vi) x, y, z+1; (vii) x, y, z+1; (viii) x+1, y, z+1; (ix) x+1, y, z; (x) x+2, y+1, z+2; (xi) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3E—H3E···O9iv0.781.792.556 (4)167
O6E—H6E···O70.811.662.465 (3)173
O7—H7A···O1vii0.85 (2)1.73 (2)2.576 (3)169 (4)
O7—H7A···O2vii0.85 (2)3.10 (3)3.757 (3)135 (3)
O7—H7B···O4viii0.85 (2)1.85 (2)2.689 (3)168 (4)
O7—H7B···O5viii0.85 (2)3.12 (4)3.687 (3)126 (3)
O8—H8B···O4ix0.87 (3)2.20 (5)2.943 (4)144 (7)
O8—H8B···O5ix0.87 (3)3.03 (7)3.872 (4)162 (5)
O8—H8A···O6E0.87 (3)2.51 (6)2.888 (4)107 (5)
O8—H8A···O20.87 (3)2.63 (4)3.447 (5)157 (7)
O9—H9A···O80.85 (6)1.98 (5)2.821 (6)172 (6)
O9—H9B···O5viii0.84 (5)2.27 (4)2.952 (4)138 (5)
Symmetry codes: (iv) x1, y, z; (vii) x, y, z+1; (viii) x+1, y, z+1; (ix) x+1, y, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC10H7NO3[Ni(C10H6NO3)2](H2O)3
Mr189.17489.05
Crystal system, space groupMonoclinic, C2/cTriclinic, P1
Temperature (K)296296
a, b, c (Å)12.748 (2), 7.476 (3), 16.657 (2)9.237 (1), 15.865 (3), 7.200 (1)
α, β, γ (°)90, 90.68 (1), 9097.63 (1), 106.95 (1), 101.90 (1)
V3)1587.3 (7)966.4 (3)
Z82
Radiation typeMo KαMo Kα
µ (mm1)0.121.06
Crystal size (mm)0.20 × 0.10 × 0.050.25 × 0.10 × 0.10
Data collection
DiffractometerRigaku AFC-5R
diffractometer
Rigaku AFC-5R
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.880, 0.899
No. of measured, independent and
observed [I > 2σ(I)] reflections
2068, 1838, 691 4703, 4434, 3202
Rint0.0660.024
(sin θ/λ)max1)0.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.197, 0.87 0.040, 0.134, 0.90
No. of reflections18384434
No. of parameters128307
No. of restraints??
H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.270.64, 0.32

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation & Rigaku Corporation, 1999), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation & Rigaku Corporation, 1999), SIR97 (Altomare et al., 1999) and DIRDIF94 (Beurskens et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), TEXSAN.

Selected geometric parameters (Å, º) for (I) top
O1—C101.255 (4)C3—C41.405 (6)
O2—C101.230 (5)C4—C51.405 (6)
O3E—C81.338 (5)C4—C91.406 (6)
N1—C11.332 (4)C5—C61.364 (6)
N1—C91.367 (5)C6—C71.409 (6)
C1—C21.388 (6)C7—C81.368 (6)
C1—C101.533 (5)C8—C91.438 (5)
C2—C31.369 (6)
N1—C1—C10115.8 (3)O1—C10—O2130.2 (4)
C2—C1—C10124.8 (3)O1—C10—C1113.7 (3)
O3E—C8—C7126.7 (3)O2—C10—C1116.0 (3)
O3E—C8—C9115.6 (3)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.862.302.662 (4)105
N1—H1···O3E0.862.352.692 (4)104
O3E—H3E···O1i0.821.762.562 (4)164
Symmetry code: (i) x, y, z1/2.
Selected geometric parameters (Å, º) for (II) top
Ni1—O22.080 (3)Ni1—O6E2.227 (2)
Ni1—O3E2.290 (3)Ni1—N11.979 (2)
Ni1—O52.124 (2)Ni1—N21.972 (2)
O2—Ni1—O3E153.13 (9)O6E—Ni1—N1104.29 (8)
O2—Ni1—O597.86 (9)O6E—Ni1—N275.93 (8)
O2—Ni1—O6E89.13 (8)N1—Ni1—N2175.2 (1)
O2—Ni1—N178.96 (10)Ni1—O2—C10114.3 (2)
O2—Ni1—N2105.83 (9)Ni1—O3E—C8111.8 (2)
O3E—Ni1—O591.84 (9)Ni1—O5—C20113.9 (1)
O3E—Ni1—O6E93.02 (8)Ni1—O6E—C18111.9 (2)
O3E—Ni1—N174.6 (1)Ni1—N1—C1117.3 (2)
O3E—Ni1—N2100.67 (10)Ni1—N1—C9121.8 (2)
O5—Ni1—O6E154.03 (8)Ni1—N2—C11119.1 (1)
O5—Ni1—N1101.60 (8)Ni1—N2—C19120.7 (2)
O5—Ni1—N278.10 (8)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O3E—H3E···O9i0.781.792.556 (4)167
O6E—H6E···O70.811.662.465 (3)173
O7—H7A···O1ii0.85 (2)1.73 (2)2.576 (3)169 (4)
O7—H7A···O2ii0.85 (2)3.10 (3)3.757 (3)135 (3)
O7—H7B···O4iii0.85 (2)1.85 (2)2.689 (3)168 (4)
O7—H7B···O5iii0.85 (2)3.12 (4)3.687 (3)126 (3)
O8—H8B···O4iv0.87 (3)2.20 (5)2.943 (4)144 (7)
O8—H8B···O5iv0.87 (3)3.03 (7)3.872 (4)162 (5)
O8—H8A···O6E0.87 (3)2.51 (6)2.888 (4)107 (5)
O8—H8A···O20.87 (3)2.63 (4)3.447 (5)157 (7)
O9—H9A···O80.85 (6)1.98 (5)2.821 (6)172 (6)
O9—H9B···O5iii0.84 (5)2.27 (4)2.952 (4)138 (5)
Symmetry codes: (i) x1, y, z; (ii) x, y, z+1; (iii) x+1, y, z+1; (iv) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds