Download citation
Download citation
link to html
The synthesis and crystal structure of {tris­[2-(benzyl­amino)­ethyl]­amine-κ4N}silver(I) perchlorate, [Ag(C27H36N4)]ClO4 or [Ag(bz3tren)]ClO4 {bz3tren is tris­[2-(benzyl­amino)­ethyl]­amine or N,N′,N′′-tri­benzyl­tris(2-amino­ethyl)­amine} are reported. The Ag atom is coordinated to four N atoms of the tren unit and is located 0.604 (3) Å out of the trigonal plane described by the three secondary amine N atoms, away from the bridgehead N atom. Edge-to-face π–π interactions between the aromatic end groups, and weak interactions between Ag and arene, allow the formation of a pseudo-cage complex.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102000665/ob1051sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102000665/ob1051Isup2.hkl
Contains datablock I

CCDC reference: 182976

Comment top

Tripodal complexes with transition metals have been widely investigated. Most of the ligands used in this area were tren, the tripodal tetraamine N(CH2CH2NH2)3, and its derivatives (Zipp et al., 1974). Many cage complexes, such as dimetallic complexes with bis(tren) cryptands, have also been reported (Amendola et al., 2001). Acyclic ionophores with aromatic end groups, so-called podands, sometimes form unusual pseudo-cyclic complexes with alkali or soft metal ions via intramolecular ππ interactions between two aromatic end groups (Weber & Saenger, 1979). However, tripodal pseudo-cage complexes formed by ππ interactions between aromatic end groups have not yet been reported. As part of our continuing studies (Lee et al., 1995; Chung et al., 1997) involving such multipodal ligands and their pseudo-cyclic complexes, the present ligand was chosen with this aspect in mind. Herein, we report our result in this area, with the crystal structure of {tris[2-(benzylamino)ethyl]amine-κ4N}silver(I) perchlorate, [Ag(bz3tren)]ClO4, (I). \sch

As shown in Fig. 1, the Ag atom in (I) is coordinated to the bridgehead N atom, Nbr, and to three secondary amino N atoms (N2, N3 and N4). Upon complexation, the tren unit becomes quite rigid and maintains the endo conformation, with the Nbr atom displaced 0.387 (6) Å towards the Ag atom above the triangular plane through atoms C1, C10 and C19. The N1—C—C—N torsion angles are in the range 61.1 (6)–62.5 (6)°, suggesting gauche conformations. The Ag atom is displaced by 0.604 (3) Å out of the trigonal plane described by the three secondary amines, in the direction away from the Nbr atom. The Ag—Nbr bond [2.507 (5) Å] is at the upper end of the range for Ag—Nbr (Ferguson et al., 1989; Adam et al., 1995), and is significantly longer than other the Ag—N bonds in (I) [2.350 (3)–2.362 (3) Å]. Selected geometric parameters and the hydrogen-bonding geometry are listed in Tables 1 and 2, respectively.

The potential threefold symmetry of the complex cation in (I) is broken by the non-coordinating ClO4- ion and the three less well aligned aromatic end groups. The three aromatic rings are essentially planar and lie nearly perpendicular to each other, with dihedral angles of 73.1 (2), 67.0 (2) and 65.7 (2)°, respectively. This permits weak edge-to-face ππ interactions between aromatic end groups, with distances from atom C9 to the centroid of the neighbouring C22—C27 ring of 3.856 (8) Å, from atom C14 to the centroid of the neighbouring C4—C9 ring of 3.962 (8) Å and from atom C23 to the centroid of the neighbouring C13—C18 ring of 3.989 (8) Å.

The principle distortion of the coordination sphere arises from the shift of the Ag atom out of the trigonal plane. The shortest Ag···Carene distance is 3.383 (6) Å, well outside the normal Ag···π interaction range (2.47–2.76 Å; Munakata et al., 1998). The shift of the Ag atom towards the aromatic end groups, and the elongation of the Ag—Nbr bond, which is about 0.15 Å longer than the Ag—N bond, may reflect, at least in part, the presence of an additional long range Ag···arene interaction (Galka & Gade, 1999).

The ππ interactions between the benzylic end groups, and the partial contribution of weak Ag···arene interactions, allow little room for anion or solvent, which usually coordinates to a metal centre to give the five-coordinate geometry normally observed in tripodal ligands of similar structure.

Experimental top

The ligand was synthesized according to the procedure published by Ibrahim et al. (2001), with slight modifications. To a solution containing bz3tren in acetonitrile was added a solution of an equimolar amount of silver perchlorate dissolved in acetonitrile. Slow evaporation of the resulting solution in the dark afforded colourless crystals of (I), suitable for X-ray crystallographic analysis.

Refinement top

H atoms were added at calculated positions, with C—H = 0.96 Å and N—H = 0.90 Å, and refined using a riding model, with Uiso = 1.2Ueq of the parent atom.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SHELXTL (Siemens, 1996); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A perspective view of compound (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms have been omitted for clarity.
{tris[2-(benzylamino)ethyl]amine-κ4N}silver(I) perchlorate top
Crystal data top
[Ag(C27H36N4)]ClO4F(000) = 1288
Mr = 623.92Dx = 1.420 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 16.0287 (11) ÅCell parameters from 9303 reflections
b = 9.6132 (7) Åθ = 2.2–28.3°
c = 20.2697 (15) ŵ = 0.82 mm1
β = 110.906 (1)°T = 296 K
V = 2917.7 (4) Å3Block, colourless
Z = 40.5 × 0.4 × 0.4 mm
Data collection top
Siemens SMART Query CCD area-detector
diffractometer
4068 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 28.3°, θmin = 2.2°
ϕ and ω scansh = 1521
9303 measured reflectionsk = 1211
5264 independent reflectionsl = 2618
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0536P)2 + 0.2006P]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
5264 reflectionsΔρmax = 0.32 e Å3
334 parametersΔρmin = 0.31 e Å3
2 restraintsAbsolute structure: Flack (1983), 1637 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (3)
Crystal data top
[Ag(C27H36N4)]ClO4V = 2917.7 (4) Å3
Mr = 623.92Z = 4
Monoclinic, CcMo Kα radiation
a = 16.0287 (11) ŵ = 0.82 mm1
b = 9.6132 (7) ÅT = 296 K
c = 20.2697 (15) Å0.5 × 0.4 × 0.4 mm
β = 110.906 (1)°
Data collection top
Siemens SMART Query CCD area-detector
diffractometer
4068 reflections with I > 2σ(I)
9303 measured reflectionsRint = 0.026
5264 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.090Δρmax = 0.32 e Å3
S = 0.99Δρmin = 0.31 e Å3
5264 reflectionsAbsolute structure: Flack (1983), 1637 Friedel pairs
334 parametersAbsolute structure parameter: 0.02 (3)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag0.89617 (4)0.25974 (2)0.53959 (4)0.07364 (11)
Cl0.76646 (9)0.73679 (11)0.62325 (7)0.0846 (3)
O10.8309 (6)0.6945 (8)0.6863 (3)0.204 (3)
O20.6881 (4)0.6625 (6)0.6064 (4)0.190 (3)
O30.8010 (6)0.7116 (8)0.5720 (5)0.193 (3)
O40.7507 (4)0.8764 (4)0.6254 (3)0.166 (2)
N10.9306 (3)0.2523 (3)0.6703 (3)0.0856 (11)
N21.0202 (2)0.4070 (3)0.5875 (2)0.0799 (9)
H21.06930.35680.59210.096*
N30.9216 (3)0.0226 (3)0.5708 (2)0.0836 (10)
H30.86850.01770.56390.100*
N40.7686 (2)0.3534 (4)0.5547 (2)0.0833 (10)
H40.77590.44630.55870.100*
C11.0154 (4)0.3236 (6)0.7013 (3)0.0980 (14)
H1A1.02160.35430.74790.118*
H1B1.06280.25910.70580.118*
C21.0250 (4)0.4465 (5)0.6591 (3)0.0956 (14)
H2A1.08130.49100.68330.115*
H2B0.97860.51240.65550.115*
C31.0206 (4)0.5302 (4)0.5438 (3)0.0980 (15)
H3A0.96940.58690.53880.118*
H3B1.07310.58460.56710.118*
C41.0190 (3)0.4887 (4)0.4729 (3)0.0822 (12)
C51.0963 (4)0.4507 (5)0.4620 (3)0.1003 (15)
H51.15250.45200.50060.120*
C61.0928 (5)0.4115 (6)0.3965 (4)0.1142 (18)
H61.14710.38580.38980.137*
C71.0151 (6)0.4076 (7)0.3407 (4)0.1215 (19)
H71.01440.38040.29500.146*
C80.9379 (5)0.4428 (7)0.3503 (4)0.1138 (18)
H80.88220.43890.31130.137*
C90.9394 (4)0.4838 (5)0.4156 (4)0.1003 (16)
H90.88470.50940.42160.120*
C100.9340 (4)0.1043 (5)0.6886 (3)0.1036 (15)
H10A0.96810.09330.73800.124*
H10B0.87450.07180.68040.124*
C110.9748 (4)0.0168 (5)0.6468 (3)0.1044 (17)
H11A0.97880.07780.66270.125*
H11B1.03420.04920.65470.125*
C120.9651 (4)0.0544 (6)0.5290 (4)0.1089 (17)
H12A1.02420.01840.53910.131*
H12B0.97040.15060.54270.131*
C130.9143 (3)0.0437 (4)0.4523 (3)0.0931 (14)
C140.9284 (4)0.0650 (6)0.4117 (4)0.1063 (18)
H140.97290.13420.43360.128*
C150.8793 (5)0.0739 (7)0.3408 (4)0.121 (2)
H150.89020.14980.31410.146*
C160.8164 (5)0.0208 (8)0.3076 (4)0.128 (2)
H160.78230.01270.25800.153*
C170.8024 (5)0.1290 (8)0.3463 (5)0.139 (3)
H170.75830.19790.32340.166*
C180.8505 (5)0.1411 (6)0.4177 (4)0.1154 (18)
H180.83940.21820.44350.138*
C190.8551 (4)0.3254 (6)0.6809 (3)0.1004 (15)
H19A0.85060.29490.72460.120*
H19B0.86740.42340.68490.120*
C200.7670 (4)0.3012 (6)0.6222 (4)0.1043 (16)
H20A0.72050.34740.63320.125*
H20B0.75400.20340.61820.125*
C210.6828 (4)0.3262 (7)0.4956 (4)0.1114 (17)
H21A0.63500.37080.50550.134*
H21B0.67130.22790.49220.134*
C220.6845 (3)0.3779 (5)0.4270 (3)0.0893 (13)
C230.7132 (4)0.2928 (6)0.3852 (4)0.1009 (17)
H230.73180.19940.40000.121*
C240.7154 (4)0.3422 (8)0.3214 (4)0.1166 (19)
H240.73730.28300.29310.140*
C250.6876 (4)0.4700 (8)0.2987 (4)0.122 (2)
H250.68900.50220.25430.147*
C260.6574 (4)0.5542 (7)0.3388 (4)0.126 (2)
H260.63670.64600.32220.151*
C270.6556 (4)0.5099 (6)0.4038 (4)0.1125 (18)
H270.63450.57080.43200.135*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag0.07163 (16)0.06678 (15)0.09265 (19)0.0029 (2)0.04170 (13)0.0023 (3)
Cl0.0949 (8)0.0745 (6)0.0857 (7)0.0068 (6)0.0337 (6)0.0030 (6)
O10.251 (8)0.190 (5)0.133 (5)0.090 (6)0.022 (5)0.030 (4)
O20.164 (5)0.143 (4)0.296 (9)0.051 (4)0.121 (5)0.027 (5)
O30.211 (7)0.244 (6)0.177 (6)0.038 (6)0.134 (6)0.039 (5)
O40.158 (4)0.090 (3)0.187 (5)0.016 (3)0.014 (4)0.031 (3)
N10.092 (3)0.083 (2)0.094 (3)0.0038 (17)0.047 (2)0.0094 (17)
N20.077 (2)0.0642 (18)0.105 (3)0.0026 (15)0.0404 (19)0.0011 (17)
N30.083 (2)0.0603 (17)0.119 (3)0.0085 (14)0.051 (2)0.0036 (16)
N40.074 (2)0.074 (2)0.118 (3)0.0019 (16)0.053 (2)0.0054 (18)
C10.108 (4)0.096 (3)0.088 (3)0.009 (3)0.033 (3)0.000 (3)
C20.094 (3)0.084 (3)0.107 (4)0.009 (2)0.035 (3)0.013 (3)
C30.113 (4)0.059 (2)0.128 (4)0.017 (2)0.051 (3)0.004 (2)
C40.087 (3)0.0555 (19)0.111 (4)0.0090 (18)0.043 (3)0.014 (2)
C50.086 (3)0.090 (3)0.124 (5)0.003 (2)0.036 (3)0.015 (3)
C60.111 (4)0.105 (4)0.151 (6)0.002 (3)0.075 (4)0.008 (4)
C70.153 (6)0.114 (4)0.120 (5)0.002 (4)0.075 (5)0.017 (3)
C80.114 (5)0.116 (4)0.104 (5)0.005 (3)0.030 (4)0.020 (3)
C90.085 (3)0.092 (3)0.126 (5)0.003 (2)0.040 (3)0.015 (3)
C100.125 (4)0.090 (3)0.103 (4)0.009 (3)0.050 (3)0.023 (3)
C110.119 (4)0.074 (3)0.129 (5)0.016 (3)0.054 (4)0.024 (3)
C120.107 (4)0.082 (3)0.150 (5)0.027 (3)0.060 (4)0.001 (3)
C130.095 (3)0.066 (2)0.144 (5)0.008 (2)0.073 (3)0.013 (3)
C140.100 (4)0.079 (3)0.168 (6)0.000 (3)0.081 (4)0.011 (3)
C150.148 (6)0.097 (4)0.155 (7)0.012 (4)0.098 (5)0.009 (4)
C160.139 (6)0.138 (5)0.139 (6)0.007 (4)0.090 (5)0.022 (4)
C170.158 (6)0.133 (5)0.163 (7)0.042 (5)0.104 (6)0.061 (5)
C180.147 (5)0.088 (3)0.145 (6)0.016 (3)0.093 (4)0.020 (3)
C190.122 (4)0.094 (3)0.110 (4)0.010 (3)0.071 (3)0.002 (3)
C200.096 (4)0.103 (3)0.145 (5)0.003 (3)0.081 (4)0.001 (3)
C210.070 (3)0.130 (4)0.146 (5)0.009 (3)0.052 (3)0.015 (4)
C220.058 (2)0.091 (3)0.119 (4)0.007 (2)0.032 (2)0.013 (3)
C230.078 (3)0.091 (3)0.131 (5)0.001 (2)0.033 (3)0.021 (3)
C240.098 (4)0.126 (5)0.121 (5)0.001 (3)0.034 (4)0.028 (4)
C250.095 (4)0.138 (6)0.115 (5)0.012 (4)0.015 (3)0.005 (4)
C260.097 (4)0.106 (4)0.156 (7)0.003 (3)0.023 (4)0.009 (4)
C270.084 (3)0.099 (4)0.156 (6)0.007 (3)0.045 (3)0.020 (4)
Geometric parameters (Å, º) top
Ag—N42.353 (3)C25—C261.354 (9)
Ag—N22.350 (3)C26—C271.393 (9)
Ag—N32.362 (3)N2—H20.900
Ag—N12.507 (5)N3—H30.900
Cl—O31.363 (7)N4—H40.900
Cl—O41.370 (4)C1—H1A0.960
Cl—O21.377 (5)C1—H1B0.960
Cl—O11.388 (6)C2—H2A0.960
N1—C11.450 (7)C2—H2B0.960
N1—C101.467 (6)C3—H3A0.960
N1—C191.479 (7)C3—H3B0.960
N2—C21.475 (6)C5—H50.960
N2—C31.480 (6)C6—H60.960
N3—C111.472 (7)C7—H70.960
N3—C121.473 (6)C8—H80.960
N4—C201.465 (7)C9—H90.960
N4—C211.490 (7)C10—H10A0.960
C1—C21.500 (8)C10—H10B0.960
C3—C41.482 (7)C11—H11A0.960
C4—C51.383 (7)C11—H11B0.960
C4—C91.387 (7)C12—H12A0.960
C5—C61.362 (8)C12—H12B0.960
C6—C71.351 (9)C14—H140.960
C7—C81.362 (9)C15—H150.960
C8—C91.371 (9)C16—H160.960
C10—C111.500 (7)C17—H170.960
C12—C131.479 (8)C18—H180.960
C13—C181.380 (8)C19—H19A0.960
C13—C141.397 (8)C19—H19B0.960
C14—C151.373 (9)C20—H20A0.960
C15—C161.347 (9)C20—H20B0.960
C16—C171.369 (10)C21—H21A0.960
C17—C181.380 (9)C21—H21B0.960
C19—C201.506 (8)C23—H230.960
C21—C221.486 (8)C24—H240.960
C22—C231.370 (8)C25—H250.960
C22—C271.376 (7)C26—H260.960
C23—C241.390 (9)C27—H270.960
C24—C251.331 (9)
N4—Ag—N2111.22 (13)C2—C1—H1B108.9
N4—Ag—N3114.19 (13)H1A—C1—H1B107.7
N2—Ag—N3115.53 (13)N2—C2—H2A109.2
N4—Ag—N175.34 (14)N2—C2—H2B109.2
N2—Ag—N175.27 (14)C1—C2—H2A109.2
N3—Ag—N174.79 (13)C1—C2—H2B109.2
O3—Cl—O4109.2 (4)H2A—C2—H2B107.9
O3—Cl—O2107.5 (5)N2—C3—H3A109.4
O4—Cl—O2110.7 (4)N2—C3—H3B109.4
O3—Cl—O1106.2 (6)C4—C3—H3A109.4
O4—Cl—O1110.1 (4)C4—C3—H3B109.4
O2—Cl—O1112.9 (5)H3A—C3—H3B108.0
C1—N1—C10113.8 (4)C4—C5—H5120.0
C1—N1—C19113.6 (4)C6—C5—H5120.0
C10—N1—C19112.5 (4)C5—C6—H6119.0
C1—N1—Ag105.3 (3)C7—C6—H6119.0
C10—N1—Ag105.6 (3)C6—C7—H7120.5
C19—N1—Ag105.0 (3)C8—C7—H7120.5
C2—N2—C3111.9 (4)C7—C8—H8119.9
C2—N2—Ag107.6 (3)C9—C8—H8119.9
C3—N2—Ag114.7 (3)C4—C9—H9119.6
C11—N3—C12111.5 (4)C8—C9—H9119.6
C11—N3—Ag107.3 (3)N1—C10—H10A109.1
C12—N3—Ag113.8 (3)N1—C10—H10B109.1
C20—N4—C21111.8 (4)C11—C10—H10A109.1
C20—N4—Ag107.2 (3)C11—C10—H10B109.1
C21—N4—Ag115.1 (3)H10A—C10—H10B107.8
N1—C1—C2113.3 (4)N3—C11—H11A109.3
N2—C2—C1112.3 (4)N3—C11—H11B109.4
N2—C3—C4111.3 (4)C10—C11—H11A109.4
C5—C4—C9117.7 (5)C10—C11—H11B109.4
C5—C4—C3121.3 (5)H11A—C11—H11B108.0
C9—C4—C3120.9 (5)N3—C12—H12A109.2
C6—C5—C4120.1 (5)N3—C12—H12B109.2
C7—C6—C5121.9 (6)C13—C12—H12A109.2
C6—C7—C8119.1 (7)C13—C12—H12B109.2
C7—C8—C9120.3 (6)H12A—C12—H12B107.9
C8—C9—C4120.8 (6)C13—C14—H14119.7
N1—C10—C11112.6 (4)C15—C14—H14119.7
N3—C11—C10111.4 (4)C14—C15—H15119.1
N3—C12—C13111.9 (4)C16—C15—H15119.1
C18—C13—C14117.0 (6)C15—C16—H16120.9
C18—C13—C12121.1 (5)C17—C16—H16120.9
C14—C13—C12121.9 (5)C16—C17—H17119.3
C15—C14—C13120.7 (6)C18—C17—H17119.3
C16—C15—C14121.9 (7)C13—C18—H18119.7
C15—C16—C17118.2 (8)C17—C18—H18119.7
C16—C17—C18121.4 (7)N1—C19—H19A108.9
C17—C18—C13120.7 (6)N1—C19—H19B108.9
N1—C19—C20113.3 (4)C20—C19—H19A108.9
N4—C20—C19111.2 (4)C20—C19—H19B108.9
C22—C21—N4111.9 (4)H19A—C19—H19B107.8
C23—C22—C27119.0 (6)N4—C20—H20A109.4
C23—C22—C21120.1 (5)N4—C20—H20B109.4
C27—C22—C21120.9 (6)C19—C20—H20A109.4
C22—C23—C24119.8 (6)C19—C20—H20B109.4
C25—C24—C23121.3 (7)H20A—C20—H20B108.0
C24—C25—C26119.5 (7)N4—C21—H21A109.2
C25—C26—C27121.1 (7)N4—C21—H21B109.2
C22—C27—C26119.2 (6)C22—C21—H21A109.2
C2—N2—H2107.5C22—C21—H21B109.2
C3—N2—H2107.5H21A—C21—H21B107.9
Ag—N2—H2107.5C22—C23—H23120.1
C12—N3—H3108.0C24—C23—H23120.1
Ag—N3—H3108.0C23—C24—H24119.4
C11—N3—H3108.0C25—C24—H24119.4
Ag—N4—H4107.5C24—C25—H25120.2
C21—N4—H4107.5C26—C25—H25120.2
C20—N4—H4107.5C25—C26—H26119.4
N1—C1—H1A108.9C27—C26—H26119.4
N1—C1—H1B108.9C22—C27—H27120.5
C2—C1—H1A108.9C26—C27—H27120.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O30.902.583.481 (8)179

Experimental details

Crystal data
Chemical formula[Ag(C27H36N4)]ClO4
Mr623.92
Crystal system, space groupMonoclinic, Cc
Temperature (K)296
a, b, c (Å)16.0287 (11), 9.6132 (7), 20.2697 (15)
β (°) 110.906 (1)
V3)2917.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.82
Crystal size (mm)0.5 × 0.4 × 0.4
Data collection
DiffractometerSiemens SMART Query CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9303, 5264, 4068
Rint0.026
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.090, 0.99
No. of reflections5264
No. of parameters334
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.31
Absolute structureFlack (1983), 1637 Friedel pairs
Absolute structure parameter0.02 (3)

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXTL (Siemens, 1996), SHELXTL.

Selected geometric parameters (Å, º) top
Ag—N42.353 (3)Ag—N32.362 (3)
Ag—N22.350 (3)Ag—N12.507 (5)
N4—Ag—N2111.22 (13)N4—Ag—N175.34 (14)
N4—Ag—N3114.19 (13)N2—Ag—N175.27 (14)
N2—Ag—N3115.53 (13)N3—Ag—N174.79 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O30.902.583.481 (8)179
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds