Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Bis(8-quinolinolato-N,O)­platinum(II), [Pt(C9H6NO)2], (I), has a centrosymmetric planar structure with trans coordination. The molecules form an inclined π stack, with an interplanar spacing of 3.400 (6) Å. 8-Hydroxy­quinolinium dichloro(8-quinolinolato-N,O)­platinate(II) tetrahydrate, (C9H8NO)[PtCl2(C9H6NO)]·4H2O, (II), is soluble in water and is regarded as the synthetic intermediate of the insoluble neutral compound (I). The uncoordinated 8-hydroxy­quinolinium cations and the monoquinolinolate complexes form an alternating π stack. The origins of fluorescence and phosphorescence in (II) are assigned to the 8-hydroxy­quinolinium cation and the monoquinolinolate–Pt complex, respectively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102000045/oa1121sup1.cif
Contains datablocks global, I, (II)

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102000045/oa1121Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102000045/oa1121IIsup3.hkl
Contains datablock II

CCDC references: 182968; 182969

Comment top

The metal complexes of 8-quinolinol (qH), such as [Alq3], have attracted much attention recently as luminescent materials. In contrast with [Alq3], which emits yellow-green fluorescence, bis(8-quinolinolato)platinum(II), [Ptq2], (I), was reported to emit red phosphorescence with a relatively long lifetime (Ballardini et al., 1986). The origin was deduced to be a ligand-centred excited state, on the basis of the similarity of the emission properties to those of tris(8-quinolinolato)rhodium(III) and -iridium(III) complexes. \sch

In the course of the synthesis of the red crystal of (I), we found a new orange crystal of (II), which showed both yellow fluorescence and red phosphorescence in solution. The emission maxima are 480 and 600 nm in EtOH-MeOH (1:1 v/v) at 77 K, respectively. The phosphorescence spectrum is similar to that for (I) (λmax = 620 nm).

Compound (II) is soluble in water, and very soluble in organic solvents such as methanol and dimethylsulfoxide, while the neutral compound (I) is much less soluble. However, once compound (II) had dissolved, the red crystal (I) crystallized from the solution. Therefore, (II) can be regarded as the synthetic intermediate of the more stable (I).

X-ray crystallography proved that (II) is an unexpected composite crystal of an uncoordinated 8-hydroxyquinolinium ion and the mono-quinolinolato complex, (qH2)[PtCl2q]·4H2O. In addition, the structure of (I) has also been determined, owing to the successful selection of a single-crystal from mostly twin crystals.

As shown in Fig.1, the molecular structure of (I) is planar and the two 8-quinolinolato ligands are coordinated in a trans geometry. The Pt atom lies on the crystallographic inversion centre. The deviations of atoms from the least squares plane of (I) are within 0.03 Å.

The crystal structure of (I) is isomorphous with the corresponding PdII complex (Prout & Wheeler, 1966). The bond lengths and angles for (I) are essentially identical with those for the charge transfer complex [Ptq2]·TCNQ (TCNQ is 7,7,8,8-tetacyanoquinodimethane; Bergamini et al., 1987). The Pt complexes in (I) are stacked in an inclined fashion, the interplanar spacing of the ππ stack being 3.400 (6) Å. The long Pt—Pt distance of 4.704 (2) Å, which is equal to the cell length of the b axis, suggests no Pt—Pt electronic interaction.

Fig. 2 shows the perspective view of (II). The crystal consists of uncoordinated 8-hydroxyquinolinium cations and mono-quinolinolato Pt complex anions, stacked alternately to form a π stack. The interplanar spacings are found to be typical values for π stacks, 3.44 (1) and 3.47 (1) Å, respectively. The structural features of the integrated stack are similar to those for (ethylenediamine)(α-diimine)platinum(II) complexes and phenanthroline (Kato et al., 2001).

The water molecules in (II) form hydrogen bonds with the Cl- and quinolinolato ligands in the Pt complex. Differential Fourier synthesis confirmed the exsistence of the 8-hydroxyquinolinium cation in (II), showing the peaks of the H atoms bonded to N and O atoms. The geometry of the 8-hydroxyquinolinium cation is very similar to those of the coordinated quinolinolate ions in (I) and (II).

An additional interesting feature for (II) is the inequality of the coordination angles, in contrast with the symmetrical structure of (II): the Cl2—Pt1—N1 angle is much larger than Cl1—Pt1—O1 (Table 2). This is due to the steric effect of the large Cl atoms and the α-H of the quinolinolato ligand (Cl2···H1 2.70 Å).

On the basis of the structures of (I) and (II), the origin of fluorescence for (II) is assigned to the 8-hydroxyquinolinium cation, while phosphorescence is due to the mono-quinolinolato Pt complex; the latter would have the same origin as that for (I).

Experimental top

To an aqueous solution of K2[PtCl4] adjusted to ca pH 10, two equimolar amounts of 8-quinolinol (qH) were added and the solution heated for a few minutes. After cooling to room temperature, a dark-orange precipitate was deposited. This was recrystallized from dimethylsulfoxide (DMSO) to give red crystals of (I). The filtrate of the reaction solution was allowed to stand for several days at room temperature to give orange plate crystals of (II). Spectroscopic analysis: 1H NMR (DMSO-d6, δ, p.p.m.): for (I): 7.00 (d, 7H), 7.12 (d, 5H), 7.48 (t, 6H), 7.71 (dd, 3H), 8.65 (d, 4H), 8.80 (d, 2H); for (II): 7.01 (d, 7Hc), 7.17 (d, 5Hc), 7.48 (t, 6Hc), 7.71 (dd, 3Hc), 8.67 (d, 4Hc), 9.38 (d, 2Hc), 7.30 (d, 7Hu), 7.57 (m, 5H and 6Hu), 7.79 (dd, 3Hu), 8.71 (d, 4Hu), 8.95 (d, 2Hu), 10.92 (br, –OHu), where u and c denote the 8-hydroxyquinolinium ion and the coordinated 8-quinolinolate ion, respectively; ESI-MS(-) for (II): 410 ([M]-), 821 ([2M+H]-), 843 ([2M+Na]-).

Refinement top

The H atoms of the water molecules for (II) were not included because their positions could not be determined precisely. Other H atoms were treated as riding, with C—H = 0.96–0.98 Å in (I), and C—H = 0.94–0.96, O—H = 1.11 and N—H = 0.88 Å in (II); in both compounds, Uiso(H) = Ueq(C). Are these the correct constraints?

Computing details top

For both compounds, data collection: Rigaku/AFC Diffractometer Control Software (Rigaku, 1995); cell refinement: Rigaku/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 2000); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-numbering scheme and with displacement ellipsoids plotted at the 50% probability level. H atoms are shown as small spheres of arbitary radii.
[Figure 2] Fig. 2. A perspective view of (II) showing the atom-numbering scheme and with displacement ellipsoids plotted at the 50% probability level. H atoms are shown as small spheres of arbitary radii. The hydrate water molecules have been omitted for clarity.
(I) top
Crystal data top
[Pt(C9H6NO)2]F(000) = 456.00
Mr = 483.39Dx = 2.283 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.7107 Å
a = 11.349 (2) ÅCell parameters from 25 reflections
b = 4.704 (2) Åθ = 14.6–15.0°
c = 13.731 (1) ŵ = 9.95 mm1
β = 106.43 (1)°T = 294 K
V = 703.0 (3) Å3Plate, orange
Z = 20.21 × 0.10 × 0.02 mm
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.015
ω/2θ scansθmax = 27.5°, θmin = 2.1°
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
h = 014
Tmin = 0.397, Tmax = 0.822k = 60
1685 measured reflectionsl = 1717
1607 independent reflections3 standard reflections every 150 reflections
1053 reflections with I > 2σ(I) intensity decay: 1.7%
Refinement top
Refinement on F2 w = 1/[σ2(Fo2) + (0.0181P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.018(Δ/σ)max = 0.005
wR(F2) = 0.045Δρmax = 0.83 e Å3
S = 0.97Δρmin = 0.43 e Å3
1607 reflectionsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
107 parametersExtinction coefficient: 0.0006
H-atom parameters constrained
Crystal data top
[Pt(C9H6NO)2]V = 703.0 (3) Å3
Mr = 483.39Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.349 (2) ŵ = 9.95 mm1
b = 4.704 (2) ÅT = 294 K
c = 13.731 (1) Å0.21 × 0.10 × 0.02 mm
β = 106.43 (1)°
Data collection top
Rigaku AFC-7R
diffractometer
1053 reflections with I > 2σ(I)
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
Rint = 0.015
Tmin = 0.397, Tmax = 0.8223 standard reflections every 150 reflections
1685 measured reflections intensity decay: 1.7%
1607 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.018107 parameters
wR(F2) = 0.045H-atom parameters constrained
S = 0.97Δρmax = 0.83 e Å3
1607 reflectionsΔρmin = 0.43 e Å3
Special details top

Refinement. Refinement using reflections with F2 > 0.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.00000.00000.00000.02828 (9)
O10.1716 (3)0.1457 (7)0.0629 (2)0.0351 (7)
N10.0042 (3)0.2755 (8)0.1092 (3)0.0303 (8)
C10.0835 (4)0.338 (1)0.1928 (3)0.035 (1)
C20.0646 (4)0.536 (1)0.2631 (3)0.043 (1)
C30.0448 (4)0.672 (1)0.2469 (3)0.040 (1)
C40.1410 (4)0.615 (1)0.1570 (3)0.033 (1)
C50.2580 (4)0.742 (1)0.1312 (4)0.041 (1)
C60.3420 (4)0.668 (1)0.0424 (4)0.043 (1)
C70.3170 (4)0.465 (1)0.0246 (4)0.041 (1)
C80.2039 (4)0.335 (1)0.0036 (3)0.0316 (10)
C90.1157 (4)0.4122 (9)0.0897 (3)0.0293 (10)
H10.16200.24570.20570.0349*
H20.13030.58320.32390.0427*
H30.06030.80290.29650.0397*
H40.27720.88200.17690.0412*
H50.42120.75660.02460.0428*
H60.37940.42110.08630.0408*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.0273 (1)0.0268 (1)0.0309 (1)0.0001 (1)0.00834 (8)0.0000 (2)
O10.027 (1)0.037 (2)0.038 (2)0.001 (2)0.002 (1)0.003 (2)
N10.030 (2)0.028 (2)0.033 (2)0.001 (2)0.009 (1)0.003 (2)
C10.031 (2)0.034 (3)0.039 (2)0.004 (2)0.008 (2)0.002 (2)
C20.042 (2)0.047 (4)0.037 (2)0.007 (3)0.008 (2)0.008 (2)
C30.047 (3)0.037 (3)0.036 (2)0.003 (2)0.013 (2)0.010 (2)
C40.038 (2)0.030 (2)0.035 (2)0.002 (2)0.016 (2)0.002 (2)
C50.043 (3)0.040 (3)0.046 (3)0.002 (2)0.022 (2)0.001 (2)
C60.034 (2)0.044 (3)0.051 (3)0.012 (2)0.014 (2)0.006 (3)
C70.033 (2)0.039 (3)0.046 (2)0.003 (2)0.005 (2)0.000 (2)
C80.031 (2)0.029 (2)0.037 (2)0.000 (2)0.013 (2)0.002 (2)
C90.035 (2)0.025 (2)0.031 (2)0.002 (2)0.014 (2)0.007 (2)
Geometric parameters (Å, º) top
Pt1—O12.014 (3)C3—H30.971
Pt1—N11.992 (4)C4—C51.408 (6)
O1—C81.325 (6)C4—C91.413 (7)
N1—C11.322 (5)C5—C61.363 (6)
N1—C91.377 (6)C5—H40.977
C1—C21.401 (7)C6—C71.407 (8)
C1—H10.961C6—H50.959
C2—C31.359 (7)C7—C81.379 (6)
C2—H20.974C7—H60.961
C3—C41.423 (6)C8—C91.432 (5)
Pt1···C9i3.435 (4)O1···C2iii3.369 (5)
Pt1···C9ii3.435 (4)O1···C6i3.531 (6)
Pt1···C4i3.527 (5)O1···N1ii3.537 (5)
Pt1···C4ii3.527 (5)N1···C3i3.513 (6)
O1···C1ii3.330 (6)C5···C8iv3.496 (7)
O1—Pt1—N182.8 (1)C5—C4—C9118.2 (4)
O1—Pt1—N1v97.2 (1)C4—C5—C6119.2 (5)
Pt1—O1—C8111.5 (2)C4—C5—H4119.3
Pt1—N1—C1128.7 (3)C6—C5—H4121.5
Pt1—N1—C9111.9 (2)C5—C6—C7122.6 (4)
C1—N1—C9119.3 (4)C5—C6—H5118.9
N1—C1—C2121.5 (4)C7—C6—H5118.4
N1—C1—H1119.4C6—C7—C8120.8 (4)
C2—C1—H1119.1C6—C7—H6119.2
C1—C2—C3120.7 (4)C8—C7—H6119.9
C1—C2—H2120.9O1—C8—C7125.0 (4)
C3—C2—H2118.3O1—C8—C9118.4 (4)
C2—C3—C4119.6 (5)C7—C8—C9116.6 (4)
C2—C3—H3121.5N1—C9—C4122.2 (3)
C4—C3—H3118.8N1—C9—C8115.3 (4)
C3—C4—C5125.2 (5)C4—C9—C8122.5 (4)
C3—C4—C9116.6 (4)
Pt1—O1—C8—C7177.9 (4)N1—C1—C2—C30.6 (8)
Pt1—O1—C8—C92.2 (5)N1—C9—C4—C30.1 (7)
Pt1—O1v—C8v—C7v177.9 (4)N1—C9—C4—C5179.4 (4)
Pt1—O1v—C8v—C9v2.2 (5)N1—C9—C8—C7179.1 (4)
Pt1—N1—C1—C2179.0 (4)C1—N1—C9—C41.2 (7)
Pt1—N1—C9—C4179.2 (4)C1—N1—C9—C8178.8 (4)
Pt1—N1—C9—C80.9 (5)C1—C2—C3—C40.6 (8)
Pt1—N1v—C1v—C2v179.0 (4)C2—C1—N1—C91.4 (7)
Pt1—N1v—C9v—C4v179.2 (4)C2—C3—C4—C5179.8 (5)
Pt1—N1v—C9v—C8v0.9 (5)C2—C3—C4—C90.8 (7)
O1—Pt1—N1—C1178.1 (4)C3—C4—C5—C6180.0 (5)
O1—Pt1—N1—C91.6 (3)C3—C4—C9—C8179.9 (4)
O1—Pt1—N1v—C1v1.9 (4)C4—C5—C6—C70.7 (8)
O1—Pt1—N1v—C9v178.4 (3)C4—C9—C8—C70.9 (7)
O1—C8—C7—C6178.8 (5)C5—C4—C9—C80.6 (7)
O1—C8—C9—N10.9 (6)C5—C6—C7—C81.0 (8)
O1—C8—C9—C4179.0 (4)C6—C5—C4—C90.5 (7)
N1—Pt1—O1—C82.1 (3)C6—C7—C8—C91.1 (7)
N1—Pt1—O1v—C8v177.9 (3)C6—C7—C8—C91.1 (7)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x1/2, y+1/2, z1/2; (iv) x, y+1, z; (v) x, y, z.
(II) top
Crystal data top
(C9H8NO)[PtCl2(C9H6NO)]·4H2OZ = 2
Mr = 628.38F(000) = 608.00
Triclinic, P1Dx = 1.949 Mg m3
a = 10.665 (3) ÅMo Kα radiation, λ = 0.7107 Å
b = 14.492 (3) ÅCell parameters from 25 reflections
c = 7.266 (2) Åθ = 14.7–15.0°
α = 100.46 (2)°µ = 6.81 mm1
β = 104.13 (2)°T = 294 K
γ = 85.93 (2)°Plate query, orange
V = 1070.5 (5) Å30.28 × 0.08 × 0.06 mm
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.023
ω/2θ scansθmax = 27.5°, θmin = 2.4°
Absorption correction: ψ scan
(North et al., 1968)
h = 1313
Tmin = 0.426, Tmax = 0.664k = 1818
5828 measured reflectionsl = 91
4929 independent reflections3 standard reflections every 150 reflections
3788 reflections with I > 2σ(I) intensity decay: 0.1%
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.0847P)2 + 1.3493P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.136(Δ/σ)max = 0.001
S = 1.03Δρmax = 3.46 e Å3
4929 reflectionsΔρmin = 1.51 e Å3
262 parameters
Crystal data top
(C9H8NO)[PtCl2(C9H6NO)]·4H2Oγ = 85.93 (2)°
Mr = 628.38V = 1070.5 (5) Å3
Triclinic, P1Z = 2
a = 10.665 (3) ÅMo Kα radiation
b = 14.492 (3) ŵ = 6.81 mm1
c = 7.266 (2) ÅT = 294 K
α = 100.46 (2)°0.28 × 0.08 × 0.06 mm
β = 104.13 (2)°
Data collection top
Rigaku AFC-7R
diffractometer
3788 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.023
Tmin = 0.426, Tmax = 0.6643 standard reflections every 150 reflections
5828 measured reflections intensity decay: 0.1%
4929 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044262 parameters
wR(F2) = 0.136H-atom parameters constrained
S = 1.03Δρmax = 3.46 e Å3
4929 reflectionsΔρmin = 1.51 e Å3
Special details top

Refinement. Refinement using reflections with F2 > 0.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.52666 (3)0.24946 (2)0.27521 (4)0.0386 (1)
Cl10.7165 (2)0.3297 (2)0.3921 (4)0.0629 (6)
Cl20.6358 (2)0.1146 (2)0.1755 (4)0.0577 (6)
O10.4252 (6)0.3650 (4)0.3587 (9)0.047 (1)
O20.1050 (7)0.0600 (5)0.479 (1)0.065 (2)
O30.5152 (8)0.4663 (5)0.744 (1)0.066 (2)
O40.730 (1)0.3961 (7)0.019 (1)0.097 (3)
O50.7586 (9)0.2051 (6)0.105 (1)0.085 (3)
O60.8344 (7)0.1237 (5)0.415 (1)0.065 (2)
N10.3520 (7)0.1928 (4)0.1890 (9)0.038 (1)
N20.0555 (8)0.2348 (5)0.314 (1)0.052 (2)
C10.3201 (9)0.1062 (5)0.100 (1)0.048 (2)
C20.190 (1)0.0770 (6)0.053 (2)0.057 (2)
C30.0957 (10)0.1375 (7)0.098 (1)0.056 (2)
C40.1274 (9)0.2316 (6)0.191 (1)0.047 (2)
C50.0351 (9)0.3016 (8)0.242 (1)0.057 (2)
C60.076 (1)0.3891 (7)0.328 (1)0.059 (2)
C70.2062 (10)0.4138 (7)0.369 (1)0.052 (2)
C80.2988 (9)0.3475 (6)0.323 (1)0.043 (2)
C90.2570 (8)0.2563 (5)0.234 (1)0.038 (2)
C100.024 (1)0.3192 (7)0.233 (2)0.058 (2)
C110.119 (1)0.3866 (7)0.154 (2)0.068 (3)
C120.243 (1)0.3622 (7)0.161 (2)0.057 (2)
C130.2797 (10)0.2726 (6)0.244 (1)0.048 (2)
C140.406 (1)0.2429 (9)0.254 (2)0.072 (3)
C150.4329 (10)0.1555 (8)0.338 (2)0.058 (2)
C160.333 (1)0.0909 (8)0.413 (2)0.061 (3)
C170.207 (1)0.1156 (7)0.408 (1)0.052 (2)
C180.1786 (9)0.2074 (6)0.325 (1)0.048 (2)
H10.38570.06290.06800.0476*
H20.17010.01480.01170.0565*
H30.00910.11780.06940.0559*
H40.05340.28730.21690.0566*
H50.01500.43590.36080.0590*
H60.23120.47630.42990.0523*
H70.00620.19440.36500.0520*
H80.06340.33610.23160.0577*
H90.09910.44760.09550.0678*
H100.30810.40640.10510.0574*
H110.47300.28730.19940.0722*
H120.51870.13760.34460.0577*
H130.35330.02940.46850.0610*
H140.12010.01330.54870.0646*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.0403 (2)0.0338 (2)0.0402 (2)0.0005 (1)0.0093 (1)0.0031 (1)
Cl10.044 (1)0.055 (1)0.081 (2)0.010 (1)0.009 (1)0.005 (1)
Cl20.054 (1)0.043 (1)0.070 (1)0.0105 (9)0.015 (1)0.001 (1)
O10.050 (4)0.032 (3)0.057 (4)0.003 (2)0.017 (3)0.003 (2)
O20.051 (4)0.049 (4)0.090 (5)0.013 (3)0.018 (4)0.006 (3)
O30.080 (5)0.060 (4)0.056 (4)0.017 (4)0.006 (4)0.011 (3)
O40.110 (8)0.082 (6)0.089 (7)0.021 (6)0.004 (6)0.020 (5)
O50.081 (6)0.081 (6)0.100 (7)0.008 (5)0.039 (5)0.007 (5)
O60.055 (4)0.057 (4)0.079 (5)0.000 (3)0.013 (4)0.006 (4)
N10.041 (4)0.036 (3)0.036 (3)0.002 (3)0.008 (3)0.002 (3)
N20.054 (4)0.052 (4)0.049 (4)0.012 (4)0.009 (4)0.008 (3)
C10.055 (5)0.030 (4)0.059 (5)0.001 (3)0.021 (4)0.001 (3)
C20.056 (6)0.037 (4)0.070 (6)0.014 (4)0.011 (5)0.006 (4)
C30.051 (5)0.055 (5)0.059 (6)0.023 (4)0.011 (4)0.002 (4)
C40.046 (5)0.053 (5)0.044 (4)0.000 (4)0.011 (4)0.012 (4)
C50.044 (5)0.073 (6)0.052 (5)0.007 (4)0.014 (4)0.009 (5)
C60.061 (6)0.060 (6)0.053 (5)0.022 (5)0.016 (5)0.009 (4)
C70.055 (5)0.051 (5)0.045 (5)0.007 (4)0.007 (4)0.001 (4)
C80.044 (4)0.046 (4)0.039 (4)0.000 (3)0.011 (3)0.006 (3)
C90.039 (4)0.040 (4)0.035 (4)0.002 (3)0.006 (3)0.006 (3)
C100.062 (6)0.051 (5)0.063 (6)0.007 (4)0.018 (5)0.015 (4)
C110.110 (10)0.044 (5)0.048 (5)0.005 (5)0.019 (6)0.003 (4)
C120.067 (7)0.047 (5)0.056 (6)0.011 (5)0.007 (5)0.011 (4)
C130.060 (5)0.052 (5)0.032 (4)0.012 (4)0.003 (4)0.011 (3)
C140.069 (7)0.087 (8)0.063 (7)0.031 (7)0.005 (6)0.023 (6)
C150.043 (5)0.066 (6)0.066 (6)0.006 (4)0.011 (4)0.017 (5)
C160.064 (6)0.057 (6)0.066 (6)0.006 (5)0.022 (5)0.016 (5)
C170.061 (6)0.049 (5)0.049 (5)0.013 (4)0.014 (4)0.009 (4)
C180.050 (5)0.052 (5)0.045 (4)0.003 (4)0.014 (4)0.014 (4)
Geometric parameters (Å, º) top
Pt1—Cl12.304 (3)C5—H40.948
Pt1—Cl22.297 (2)C6—C71.40 (2)
Pt1—O12.010 (6)C6—H50.948
Pt1—N11.999 (7)C7—C81.39 (1)
O1—C81.34 (1)C7—H60.959
O2—C171.34 (1)C8—C91.41 (1)
O2—H141.108C10—C111.41 (2)
N1—C11.329 (10)C10—H80.944
N1—C91.38 (1)C11—C121.36 (2)
N2—C101.32 (1)C11—H90.944
N2—C181.36 (1)C12—C131.40 (1)
N2—H70.877C12—H100.941
C1—C21.42 (1)C13—C141.39 (2)
C1—H10.950C13—C181.43 (1)
C2—C31.35 (1)C14—C151.35 (2)
C2—H20.952C14—H110.960
C3—C41.43 (1)C15—C161.41 (2)
C3—H30.949C15—H120.945
C4—C51.43 (1)C16—C171.37 (2)
C4—C91.40 (1)C16—H130.943
C5—C61.36 (1)C17—C181.40 (1)
Cl1—Pt1—Cl291.55 (9)C8—C7—H6119.9
Cl1—Pt1—O190.5 (2)O1—C8—C7123.7 (8)
Cl1—Pt1—N1173.3 (2)O1—C8—C9118.7 (7)
Cl2—Pt1—O1178.0 (2)C7—C8—C9117.6 (8)
Cl2—Pt1—N195.0 (2)N1—C9—C4121.6 (7)
O1—Pt1—N182.9 (3)N1—C9—C8115.7 (7)
Pt1—O1—C8111.1 (5)C4—C9—C8122.7 (8)
C17—O2—H14119.3N2—C10—C11120 (1)
Pt1—N1—C1129.0 (6)N2—C10—H8121.1
Pt1—N1—C9111.5 (5)C11—C10—H8119.2
C1—N1—C9119.5 (7)C10—C11—C12118.7 (9)
C10—N2—C18123.6 (9)C10—C11—H9121.5
C10—N2—H7118.1C12—C11—H9119.8
C18—N2—H7118.4C11—C12—C13122.6 (10)
N1—C1—C2121.5 (8)C11—C12—H10119.0
N1—C1—H1119.2C13—C12—H10118.3
C2—C1—H1119.3C12—C13—C14125.3 (10)
C1—C2—C3120.2 (8)C12—C13—C18116.4 (9)
C1—C2—H2119.7C14—C13—C18118.3 (9)
C3—C2—H2120.1C13—C14—C15121 (1)
C2—C3—C4119.4 (9)C13—C14—H11117.8
C2—C3—H3120.4C15—C14—H11120.4
C4—C3—H3120.2C14—C15—C16119 (1)
C3—C4—C5124.1 (9)C14—C15—H12120.1
C3—C4—C9117.9 (8)C16—C15—H12120.4
C5—C4—C9118.0 (8)C15—C16—C17121.6 (9)
C4—C5—C6119.0 (9)C15—C16—H13118.7
C4—C5—H4120.6C17—C16—H13119.7
C6—C5—H4120.3O2—C17—C16125.9 (9)
C5—C6—C7122.7 (10)O2—C17—C18115.5 (9)
C5—C6—H5119.3C16—C17—C18118.6 (9)
C7—C6—H5118.0N2—C18—C13119.0 (8)
C6—C7—C8119.9 (8)N2—C18—C17120.7 (9)
C6—C7—H6120.1C13—C18—C17120.2 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H7···O20.882.342.674 (9)103
O2—H14···O2i1.112.602.86 (1)92
O2—H14···O6ii1.111.632.711 (9)163
N2—H7···O6iii0.881.972.82 (1)163
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z1; (iii) x1, y, z.

Experimental details

(I)(II)
Crystal data
Chemical formula[Pt(C9H6NO)2](C9H8NO)[PtCl2(C9H6NO)]·4H2O
Mr483.39628.38
Crystal system, space groupMonoclinic, P21/nTriclinic, P1
Temperature (K)294294
a, b, c (Å)11.349 (2), 4.704 (2), 13.731 (1)10.665 (3), 14.492 (3), 7.266 (2)
α, β, γ (°)90, 106.43 (1), 90100.46 (2), 104.13 (2), 85.93 (2)
V3)703.0 (3)1070.5 (5)
Z22
Radiation typeMo KαMo Kα
µ (mm1)9.956.81
Crystal size (mm)0.21 × 0.10 × 0.020.28 × 0.08 × 0.06
Data collection
DiffractometerRigaku AFC-7R
diffractometer
Rigaku AFC-7R
diffractometer
Absorption correctionAnalytical
(de Meulenaer & Tompa, 1965)
ψ scan
(North et al., 1968)
Tmin, Tmax0.397, 0.8220.426, 0.664
No. of measured, independent and
observed [I > 2σ(I)] reflections
1685, 1607, 1053 5828, 4929, 3788
Rint0.0150.023
(sin θ/λ)max1)0.6490.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.045, 0.97 0.044, 0.136, 1.03
No. of reflections16074929
No. of parameters107262
No. of restraints??
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.83, 0.433.46, 1.51

Computer programs: Rigaku/AFC Diffractometer Control Software (Rigaku, 1995), Rigaku/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 2000), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), TEXSAN.

Selected geometric parameters (Å, º) for (I) top
Pt1—O12.014 (3)Pt1—N11.992 (4)
O1—Pt1—N182.8 (1)O1—Pt1—N1i97.2 (1)
Symmetry code: (i) x, y, z.
Selected geometric parameters (Å, º) for (II) top
Pt1—Cl12.304 (3)Pt1—O12.010 (6)
Pt1—Cl22.297 (2)Pt1—N11.999 (7)
Cl1—Pt1—Cl291.55 (9)Cl2—Pt1—O1178.0 (2)
Cl1—Pt1—O190.5 (2)Cl2—Pt1—N195.0 (2)
Cl1—Pt1—N1173.3 (2)O1—Pt1—N182.9 (3)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds