Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [CuCl(C16H14N4)2]ClO4, consists of a mononuclear complex cation and a perchlorate anion. The coordination of the copper(II) ion exhibits a trigonal bipyramidal geometry, where the equatorial plane is composed of the Cl atom and two N atoms of the two pyridazine rings, and the axial positions are occupied by the N atoms of two methyl­pyridine rings.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100015171/oa1109sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100015171/oa1109Isup2.hkl
Contains datablock I

CCDC reference: 158242

Comment top

The existence of a dinuclear complex with two 3,6-bis(6-methyl-2-pyridyl)pyridazine ligands is not thought to be possible, due to steric hindrance between the 6-methyl groups on the pyridyl rings in the intermolecular reaction. The most interesting feature of the title compound, (I), is an unusual pentacoordination of the Cu atom with the organic ligands, which showed reasonable hydrolysis reactivity for phosphodiester and DNA model compounds (Sung et al., 2000). \sch

The crystal structure of (I) can best be described as a pseudo-trigonal bipyramidal geometry, with two N atoms (N4 and N5) of the two methylpyridine rings in the axial positions and one Cl and two N atoms [Cl1, N3 and N6] in the equatorial plane. The interaxial N4—Cu—N5 angle of 173.6 (2)° is nearly linear. The Cu atom deviates slightly from the basal N2Cl plane by 0.044 (3) Å, shifted toward the axially coordinated N4 atom.

The geometry is somewhat distorted from a perfect trigonal bipyramid, as is apparent from the observed τ value of 0.70 (values of 0 and 1 are indicative of idealized square pyramidal and trigonal bipyramidal geometries, respectively; Addison et al., 1984). The axial Cu—N bond distances [2.021 (4) and 2.030 (4) Å] are considerably longer than those in chlorobis[3,6-di(2-pyridyl)pyridazine]copper(II) chloride pentahydrate [1.970 (5) and 1.976 (5) Å; Manotti Lanfredi et al., 1982]. These long axial Cu—N distances may be due to steric hindrance between the 6-methyl groups and the pyridazine rings. It might be ascribed to the hydrolysis reactivity. The axial Cu—N bonds are not perfectly perpendicular to the CuN2Cl plane, with N—Cu—N and N—Cu—Cl angles ranging from 79.5 (2) to 131.6 (1)°. All atoms in each of the two ligands are planar to within 0.572 (6) Å and the dihedral angle between the two ligands is 52.47 (6)°.

Experimental top

The ligand 3,6-bis(6-methyl-2-pyridyl)pyridazine was prepared as described previously by Sung et al. (2000). The green CuII complex, (I), was prepared by mixing the free ligand and CuCl2·6H2O in the ratio 1:2 in acetone solution and then adding NaClO4 (1 eq.) to the solution. The final solution was left in the refrigerator for a week, after which time green crystals of (I) had formed. The crystals were washed with absolute ethanol and dried at room temperature.

Refinement top

The O1 atom in the perchlorate is disordered over two positions and the two split atoms, designated as O1 and O1', were refined isotropically using PART (ref?). The final occupancy factors of O1 and O1' are 0.54 (3) and 0.46 (3), respectively. The positional parameters of all H atoms were calculated geometrically and constrained to ride on their attached atoms (C—H = ?), with isotropic displacement parameters fixed at 1.2 or 1.5 (for methyl group) times the equivalent isotropic displacement parameters of their parent atoms. The highest peak and the deepest hole in the final difference density map are 0.58 e Å-3 at 1.57 Å from O4 and -0.38 e Å-3 at 1.22 Å from the Cu atom.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP-3 for Windows (Farrugia, 1997) diagram of (I) showing 35% probability displacement ellipsoids. H atoms are drawn as small spheres of arbitrary radii.
Bis-[3,6-bis(6-methyl-2-pyridyl)pyridazine-κ2N2,N3]chlorocopper(II) perchlorate top
Crystal data top
[Cu(C16H14N4)2Cl]·ClO4Z = 2
Mr = 723.06F(000) = 742
Triclinic, P1Dx = 1.524 Mg m3
a = 7.3928 (18) ÅMo Kα radiation, λ = 0.71073 Å
b = 14.1176 (11) ÅCell parameters from 25 reflections
c = 15.7262 (16) Åθ = 11.4–14.3°
α = 92.439 (8)°µ = 0.92 mm1
β = 96.573 (14)°T = 293 K
γ = 104.249 (11)°Plate, green
V = 1576.1 (4) Å30.53 × 0.25 × 0.01 mm
Data collection top
Enraf Nonius CAD4
diffractometer
3839 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
Graphite monochromatorθmax = 25.5°, θmin = 2.1°
non–profiled ω/2θ scansh = 88
Absorption correction: ψ-scan
(North et al., 1968)
k = 1717
Tmin = 0.666, Tmax = 0.987l = 019
6050 measured reflections3 standard reflections every 300 min
5821 independent reflections intensity decay: 8%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 1.02Calculated w = 1/[σ2(Fo2) + (0.0632P)2 + 1.292P]
where P = (Fo2 + 2Fc2)/3
5821 reflections(Δ/σ)max < 0.001
424 parametersΔρmax = 0.58 e Å3
11 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Cu(C16H14N4)2Cl]·ClO4γ = 104.249 (11)°
Mr = 723.06V = 1576.1 (4) Å3
Triclinic, P1Z = 2
a = 7.3928 (18) ÅMo Kα radiation
b = 14.1176 (11) ŵ = 0.92 mm1
c = 15.7262 (16) ÅT = 293 K
α = 92.439 (8)°0.53 × 0.25 × 0.01 mm
β = 96.573 (14)°
Data collection top
Enraf Nonius CAD4
diffractometer
3839 reflections with I > 2σ(I)
Absorption correction: ψ-scan
(North et al., 1968)
Rint = 0.041
Tmin = 0.666, Tmax = 0.9873 standard reflections every 300 min
6050 measured reflections intensity decay: 8%
5821 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06011 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 1.02Δρmax = 0.58 e Å3
5821 reflectionsΔρmin = 0.38 e Å3
424 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu0.01526 (9)0.91042 (4)0.27180 (4)0.0395 (2)
Cl10.2838 (2)0.90723 (11)0.32656 (9)0.0629 (4)
N10.5880 (6)0.6905 (3)0.5378 (3)0.0506 (11)
N20.3221 (6)0.8009 (3)0.3762 (2)0.0409 (9)
N30.2151 (5)0.8878 (3)0.3604 (2)0.0367 (9)
N40.0241 (6)1.0495 (3)0.3231 (2)0.0399 (9)
N50.0771 (5)0.7750 (3)0.2113 (2)0.0382 (9)
N60.1245 (5)0.9401 (3)0.1529 (2)0.0385 (9)
N70.1575 (6)1.0272 (3)0.1356 (2)0.0415 (10)
N80.3086 (5)1.1505 (3)0.0428 (2)0.0418 (10)
C10.7454 (9)0.5994 (5)0.6468 (4)0.081 (2)
HC1A0.81930.53470.65380.121*
HC1B0.81740.64610.65610.121*
HC1C0.63340.61450.68750.121*
C20.6922 (7)0.6040 (4)0.5572 (4)0.0554 (14)
C30.7405 (9)0.5222 (5)0.4987 (4)0.0682 (17)
HC30.81220.46280.51340.082*
C40.6816 (8)0.5302 (4)0.4199 (4)0.0649 (16)
HC40.71520.47640.37990.078*
C50.5720 (7)0.6182 (4)0.3991 (3)0.0510 (13)
HC50.52900.62470.34580.061*
C60.5287 (7)0.6958 (4)0.4599 (3)0.0446 (12)
C70.4147 (7)0.7943 (3)0.4451 (3)0.0392 (11)
C80.4004 (7)0.8763 (4)0.5011 (3)0.0453 (12)
HC80.46200.87030.54970.054*
C90.2963 (7)0.9638 (4)0.4837 (3)0.0428 (12)
HC90.28611.01960.51930.051*
C100.2036 (6)0.9688 (3)0.4106 (3)0.0376 (11)
C110.0826 (7)1.0597 (3)0.3853 (3)0.0409 (11)
C120.0760 (8)1.1501 (4)0.4248 (4)0.0568 (15)
HC120.15061.15580.46760.068*
C130.0438 (9)1.2314 (4)0.3990 (4)0.0712 (18)
HC130.04981.29320.42400.085*
C140.1542 (9)1.2219 (4)0.3368 (4)0.0633 (16)
HC140.23561.27690.31950.076*
C150.1440 (8)1.1293 (4)0.2997 (3)0.0504 (13)
C160.2691 (9)1.1184 (4)0.2339 (4)0.0723 (18)
H16A0.24591.05040.21490.108*
H16B0.39821.14260.25860.108*
H16C0.24381.15510.18600.108*
C170.0121 (9)0.6899 (4)0.3402 (3)0.0664 (17)
H17A0.00360.75330.36740.100*
H17B0.10630.67350.35250.100*
H17C0.10880.64190.36170.100*
C180.0590 (7)0.6915 (4)0.2452 (3)0.0445 (12)
C190.0801 (8)0.6068 (4)0.1920 (4)0.0566 (15)
HC190.06600.54960.21600.068*
C200.1211 (8)0.6070 (4)0.1055 (4)0.0591 (15)
HC200.13220.55080.07020.071*
C210.1459 (7)0.6918 (4)0.0707 (3)0.0510 (13)
HC210.17660.69340.01180.061*
C220.1241 (6)0.7738 (3)0.1250 (3)0.0373 (11)
C230.1580 (6)0.8657 (3)0.0930 (3)0.0335 (10)
C240.2265 (7)0.8769 (3)0.0084 (3)0.0403 (11)
HC240.24840.82590.03390.048*
C250.2600 (6)0.9646 (3)0.0102 (3)0.0417 (11)
HC250.30570.97490.06570.050*
C260.2243 (6)1.0397 (3)0.0559 (3)0.0376 (11)
C270.2599 (6)1.1370 (3)0.0401 (3)0.0397 (11)
C280.2464 (8)1.2068 (4)0.1057 (4)0.0598 (15)
HC280.21231.19490.16220.072*
C290.2845 (9)1.2949 (4)0.0861 (4)0.0699 (17)
HC290.27531.34370.12920.084*
C300.3361 (8)1.3091 (4)0.0019 (4)0.0601 (15)
HC300.36491.36740.01250.072*
C310.3455 (7)1.2361 (4)0.0619 (3)0.0465 (13)
C320.3994 (8)1.2492 (4)0.1552 (3)0.0579 (15)
H32A0.42251.31280.16080.087*
H32B0.51131.19970.17730.087*
H32C0.29891.24340.18710.087*
Cl20.2736 (3)0.42687 (12)0.16774 (10)0.0739 (5)
O10.332 (3)0.3423 (9)0.1464 (6)0.078 (4)*0.54 (3)
O1'0.239 (3)0.3212 (8)0.1428 (6)0.065 (5)*0.46 (3)
O20.1330 (9)0.4159 (4)0.2270 (4)0.126 (2)
O30.4353 (10)0.4847 (6)0.2123 (5)0.178 (3)
O40.2007 (10)0.4683 (4)0.0971 (3)0.122 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0486 (4)0.0422 (4)0.0309 (3)0.0176 (3)0.0045 (3)0.0043 (2)
Cl10.0584 (9)0.0857 (11)0.0490 (8)0.0379 (8)0.0097 (7)0.0177 (7)
N10.050 (3)0.061 (3)0.046 (3)0.018 (2)0.011 (2)0.012 (2)
N20.047 (2)0.041 (2)0.036 (2)0.013 (2)0.0082 (19)0.0026 (18)
N30.042 (2)0.040 (2)0.032 (2)0.0169 (19)0.0065 (17)0.0003 (17)
N40.048 (2)0.041 (2)0.030 (2)0.0121 (19)0.0022 (18)0.0050 (17)
N50.039 (2)0.039 (2)0.041 (2)0.0161 (18)0.0104 (18)0.0073 (18)
N60.046 (2)0.037 (2)0.033 (2)0.0115 (18)0.0050 (18)0.0040 (17)
N70.053 (3)0.037 (2)0.035 (2)0.0152 (19)0.0010 (19)0.0044 (18)
N80.040 (2)0.049 (2)0.040 (2)0.0151 (19)0.0085 (18)0.0145 (19)
C10.081 (5)0.097 (5)0.071 (4)0.022 (4)0.030 (4)0.039 (4)
C20.046 (3)0.065 (4)0.060 (4)0.018 (3)0.011 (3)0.022 (3)
C30.062 (4)0.057 (4)0.084 (5)0.008 (3)0.013 (3)0.020 (3)
C40.067 (4)0.051 (4)0.073 (4)0.009 (3)0.004 (3)0.003 (3)
C50.054 (3)0.048 (3)0.052 (3)0.014 (3)0.005 (3)0.006 (3)
C60.043 (3)0.053 (3)0.042 (3)0.019 (2)0.005 (2)0.009 (2)
C70.041 (3)0.041 (3)0.038 (3)0.018 (2)0.001 (2)0.004 (2)
C80.046 (3)0.060 (3)0.033 (3)0.020 (3)0.007 (2)0.004 (2)
C90.046 (3)0.052 (3)0.033 (3)0.021 (3)0.001 (2)0.008 (2)
C100.033 (3)0.043 (3)0.039 (3)0.018 (2)0.002 (2)0.000 (2)
C110.043 (3)0.042 (3)0.039 (3)0.017 (2)0.004 (2)0.000 (2)
C120.056 (4)0.043 (3)0.073 (4)0.019 (3)0.003 (3)0.008 (3)
C130.083 (5)0.042 (3)0.086 (5)0.019 (3)0.005 (4)0.007 (3)
C140.076 (4)0.043 (3)0.062 (4)0.001 (3)0.003 (3)0.018 (3)
C150.055 (3)0.052 (3)0.040 (3)0.008 (3)0.002 (2)0.012 (2)
C160.083 (5)0.066 (4)0.058 (4)0.003 (3)0.014 (3)0.011 (3)
C170.094 (5)0.068 (4)0.053 (3)0.043 (4)0.018 (3)0.021 (3)
C180.045 (3)0.044 (3)0.053 (3)0.021 (2)0.016 (2)0.014 (2)
C190.068 (4)0.041 (3)0.067 (4)0.019 (3)0.019 (3)0.018 (3)
C200.072 (4)0.042 (3)0.064 (4)0.015 (3)0.013 (3)0.004 (3)
C210.061 (4)0.041 (3)0.050 (3)0.010 (3)0.009 (3)0.002 (2)
C220.032 (3)0.039 (3)0.041 (3)0.008 (2)0.008 (2)0.005 (2)
C230.029 (2)0.040 (3)0.031 (2)0.006 (2)0.0065 (19)0.001 (2)
C240.045 (3)0.043 (3)0.032 (2)0.010 (2)0.004 (2)0.001 (2)
C250.039 (3)0.052 (3)0.033 (3)0.012 (2)0.001 (2)0.005 (2)
C260.035 (3)0.042 (3)0.038 (3)0.010 (2)0.009 (2)0.009 (2)
C270.037 (3)0.046 (3)0.038 (3)0.012 (2)0.006 (2)0.009 (2)
C280.079 (4)0.056 (3)0.046 (3)0.025 (3)0.006 (3)0.003 (3)
C290.097 (5)0.054 (4)0.058 (4)0.026 (3)0.007 (3)0.005 (3)
C300.070 (4)0.044 (3)0.070 (4)0.022 (3)0.004 (3)0.014 (3)
C310.037 (3)0.053 (3)0.053 (3)0.014 (2)0.011 (2)0.020 (3)
C320.064 (4)0.069 (4)0.053 (3)0.031 (3)0.020 (3)0.029 (3)
Cl20.1064 (14)0.0671 (10)0.0546 (9)0.0401 (10)0.0028 (9)0.0029 (8)
O20.168 (6)0.141 (5)0.101 (4)0.078 (4)0.056 (4)0.024 (4)
O30.134 (6)0.212 (8)0.155 (6)0.021 (5)0.044 (5)0.045 (6)
O40.211 (7)0.095 (4)0.073 (3)0.070 (4)0.002 (4)0.020 (3)
Geometric parameters (Å, º) top
Cu—N52.021 (4)C9—C101.400 (6)
Cu—N42.030 (4)C10—C111.472 (7)
Cu—N62.052 (4)C11—C121.383 (7)
Cu—N32.122 (4)C12—C131.374 (8)
Cu—Cl12.2912 (16)C13—C141.366 (8)
N1—C21.342 (7)C14—C151.388 (7)
N1—C61.348 (6)C15—C161.492 (8)
N2—N31.337 (5)C17—C181.497 (7)
N2—C71.341 (6)C18—C191.395 (7)
N3—C101.341 (5)C19—C201.360 (7)
N4—C151.345 (6)C20—C211.381 (7)
N4—C111.350 (6)C21—C221.374 (6)
N5—C181.344 (6)C22—C231.478 (6)
N5—C221.361 (6)C23—C241.398 (6)
N6—C231.336 (5)C24—C251.358 (6)
N6—N71.344 (5)C25—C261.407 (6)
N7—C261.328 (6)C26—C271.488 (6)
N8—C311.341 (6)C27—C281.373 (7)
N8—C271.346 (6)C28—C291.381 (7)
C1—C21.505 (8)C29—C301.373 (8)
C2—C31.392 (8)C30—C311.390 (7)
C3—C41.361 (8)C31—C321.508 (7)
C4—C51.381 (7)Cl2—O31.366 (6)
C5—C61.373 (7)Cl2—O41.393 (5)
C6—C71.482 (7)Cl2—O11.405 (8)
C7—C81.399 (6)Cl2—O21.459 (5)
C8—C91.342 (7)Cl2—O1'1.478 (9)
N5—Cu—N4173.63 (15)N4—C11—C10116.3 (4)
N5—Cu—N680.37 (15)C12—C11—C10121.6 (5)
N4—Cu—N693.88 (14)C13—C12—C11118.1 (6)
N5—Cu—N3100.18 (15)C14—C13—C12120.3 (6)
N4—Cu—N379.46 (15)C13—C14—C15119.4 (5)
N6—Cu—N3112.91 (15)N4—C15—C14120.8 (5)
N5—Cu—Cl194.40 (11)N4—C15—C16119.7 (5)
N4—Cu—Cl191.47 (12)C14—C15—C16119.5 (5)
N6—Cu—Cl1131.55 (12)N5—C18—C19120.3 (5)
N3—Cu—Cl1115.41 (11)N5—C18—C17119.9 (4)
C2—N1—C6117.8 (5)C19—C18—C17119.9 (4)
N3—N2—C7119.2 (4)C20—C19—C18120.7 (5)
N2—N3—C10121.2 (4)C19—C20—C21119.2 (5)
N2—N3—Cu125.4 (3)C22—C21—C20118.5 (5)
C10—N3—Cu112.6 (3)N5—C22—C21122.7 (4)
C15—N4—C11119.2 (4)N5—C22—C23115.7 (4)
C15—N4—Cu125.6 (3)C21—C22—C23121.6 (4)
C11—N4—Cu115.2 (3)N6—C23—C24120.4 (4)
C18—N5—C22118.6 (4)N6—C23—C22114.7 (4)
C18—N5—Cu127.5 (3)C24—C23—C22124.9 (4)
C22—N5—Cu113.6 (3)C25—C24—C23118.0 (4)
C23—N6—N7122.3 (4)C24—C25—C26118.9 (4)
C23—N6—Cu114.4 (3)N7—C26—C25121.8 (4)
N7—N6—Cu123.3 (3)N7—C26—C27116.6 (4)
C26—N7—N6118.6 (4)C25—C26—C27121.6 (4)
C31—N8—C27118.3 (4)N8—C27—C28123.0 (4)
N1—C2—C3121.6 (5)N8—C27—C26114.9 (4)
N1—C2—C1116.2 (5)C28—C27—C26122.0 (4)
C3—C2—C1122.1 (5)C27—C28—C29118.8 (5)
C4—C3—C2119.3 (6)C30—C29—C28118.7 (5)
C3—C4—C5120.0 (6)C29—C30—C31119.9 (5)
C6—C5—C4117.6 (5)N8—C31—C30121.3 (5)
N1—C6—C5123.6 (5)N8—C31—C32117.1 (5)
N1—C6—C7113.5 (4)C30—C31—C32121.6 (5)
C5—C6—C7122.9 (5)O3—Cl2—O4114.6 (5)
N2—C7—C8121.4 (4)O3—Cl2—O1101.2 (9)
N2—C7—C6116.7 (4)O4—Cl2—O1113.8 (5)
C8—C7—C6121.9 (4)O3—Cl2—O2105.5 (4)
C9—C8—C7119.0 (5)O4—Cl2—O2105.5 (4)
C8—C9—C10118.4 (4)O1—Cl2—O2116.2 (7)
N3—C10—C9120.7 (4)O3—Cl2—O1'125.5 (8)
N3—C10—C11115.6 (4)O4—Cl2—O1'106.3 (5)
C9—C10—C11123.7 (4)O1—Cl2—O1'26.7 (5)
N4—C11—C12122.2 (5)O2—Cl2—O1'96.0 (7)
C7—N2—N3—C102.2 (6)C15—N4—C11—C121.5 (7)
C7—N2—N3—Cu166.9 (3)Cu—N4—C11—C12178.1 (4)
N5—Cu—N3—N29.9 (4)C15—N4—C11—C10177.1 (4)
N4—Cu—N3—N2176.6 (4)Cu—N4—C11—C103.3 (5)
N6—Cu—N3—N293.6 (3)N3—C10—C11—N49.4 (6)
Cl1—Cu—N3—N290.0 (3)C9—C10—C11—N4167.9 (4)
N5—Cu—N3—C10179.7 (3)N3—C10—C11—C12172.0 (4)
N4—Cu—N3—C106.7 (3)C9—C10—C11—C1210.6 (7)
N6—Cu—N3—C1096.5 (3)N4—C11—C12—C130.0 (8)
Cl1—Cu—N3—C1079.9 (3)C10—C11—C12—C13178.5 (5)
N5—Cu—N4—C1590.6 (15)C11—C12—C13—C140.8 (9)
N6—Cu—N4—C1565.3 (4)C12—C13—C14—C150.2 (9)
N3—Cu—N4—C15177.9 (4)C11—N4—C15—C142.1 (7)
Cl1—Cu—N4—C1566.5 (4)Cu—N4—C15—C14177.4 (4)
N5—Cu—N4—C1189.0 (15)C11—N4—C15—C16177.1 (5)
N6—Cu—N4—C11114.2 (3)Cu—N4—C15—C163.3 (7)
N3—Cu—N4—C111.6 (3)C13—C14—C15—N41.3 (8)
Cl1—Cu—N4—C11113.9 (3)C13—C14—C15—C16177.9 (5)
N4—Cu—N5—C18150.7 (13)C22—N5—C18—C192.7 (7)
N6—Cu—N5—C18176.4 (4)Cu—N5—C18—C19170.0 (4)
N3—Cu—N5—C1864.6 (4)C22—N5—C18—C17178.5 (4)
Cl1—Cu—N5—C1852.2 (4)Cu—N5—C18—C178.8 (7)
N4—Cu—N5—C2236.2 (16)N5—C18—C19—C200.6 (8)
N6—Cu—N5—C2210.6 (3)C17—C18—C19—C20179.4 (5)
N3—Cu—N5—C22122.4 (3)C18—C19—C20—C211.5 (9)
Cl1—Cu—N5—C22120.8 (3)C19—C20—C21—C221.4 (8)
N5—Cu—N6—C238.2 (3)C18—N5—C22—C212.8 (7)
N4—Cu—N6—C23174.5 (3)Cu—N5—C22—C21170.9 (4)
N3—Cu—N6—C23105.3 (3)C18—N5—C22—C23174.8 (4)
Cl1—Cu—N6—C2379.1 (3)Cu—N5—C22—C2311.5 (5)
N5—Cu—N6—N7172.8 (4)C20—C21—C22—N50.7 (8)
N4—Cu—N6—N74.5 (4)C20—C21—C22—C23176.8 (5)
N3—Cu—N6—N775.7 (4)N7—N6—C23—C241.2 (7)
Cl1—Cu—N6—N799.9 (3)Cu—N6—C23—C24177.8 (3)
C23—N6—N7—C260.6 (6)N7—N6—C23—C22176.5 (4)
Cu—N6—N7—C26178.4 (3)Cu—N6—C23—C224.5 (5)
C6—N1—C2—C30.9 (8)N5—C22—C23—N64.6 (6)
C6—N1—C2—C1176.3 (5)C21—C22—C23—N6177.7 (4)
N1—C2—C3—C40.3 (9)N5—C22—C23—C24173.0 (4)
C1—C2—C3—C4177.3 (6)C21—C22—C23—C244.7 (7)
C2—C3—C4—C51.3 (9)N6—C23—C24—C250.9 (7)
C3—C4—C5—C60.9 (8)C22—C23—C24—C25176.5 (4)
C2—N1—C6—C51.2 (7)C23—C24—C25—C260.1 (7)
C2—N1—C6—C7179.9 (4)N6—N7—C26—C250.3 (7)
C4—C5—C6—N10.3 (8)N6—N7—C26—C27179.5 (4)
C4—C5—C6—C7179.1 (5)C24—C25—C26—N70.6 (7)
N3—N2—C7—C80.5 (7)C24—C25—C26—C27179.3 (4)
N3—N2—C7—C6179.1 (4)C31—N8—C27—C280.0 (7)
N1—C6—C7—N2167.9 (4)C31—N8—C27—C26179.1 (4)
C5—C6—C7—N213.2 (7)N7—C26—C27—N8173.4 (4)
N1—C6—C7—C810.6 (7)C25—C26—C27—N86.7 (6)
C5—C6—C7—C8168.3 (5)N7—C26—C27—C287.5 (7)
N2—C7—C8—C92.2 (7)C25—C26—C27—C28172.4 (5)
C6—C7—C8—C9179.4 (4)N8—C27—C28—C290.0 (9)
C7—C8—C9—C101.1 (7)C26—C27—C28—C29179.0 (5)
N2—N3—C10—C93.3 (6)C27—C28—C29—C300.6 (9)
Cu—N3—C10—C9167.1 (3)C28—C29—C30—C311.3 (9)
N2—N3—C10—C11179.3 (4)C27—N8—C31—C300.7 (7)
Cu—N3—C10—C1110.4 (5)C27—N8—C31—C32179.9 (4)
C8—C9—C10—N31.6 (7)C29—C30—C31—N81.4 (9)
C8—C9—C10—C11178.8 (4)C29—C30—C31—C32179.3 (5)

Experimental details

Crystal data
Chemical formula[Cu(C16H14N4)2Cl]·ClO4
Mr723.06
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.3928 (18), 14.1176 (11), 15.7262 (16)
α, β, γ (°)92.439 (8), 96.573 (14), 104.249 (11)
V3)1576.1 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.92
Crystal size (mm)0.53 × 0.25 × 0.01
Data collection
DiffractometerEnraf Nonius CAD4
diffractometer
Absorption correctionψ-scan
(North et al., 1968)
Tmin, Tmax0.666, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
6050, 5821, 3839
Rint0.041
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.153, 1.02
No. of reflections5821
No. of parameters424
No. of restraints11
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.38

Computer programs: CAD-4 EXPRESS (Enraf Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Cu—N52.021 (4)Cu—N32.122 (4)
Cu—N42.030 (4)Cu—Cl12.2912 (16)
Cu—N62.052 (4)
N5—Cu—N4173.63 (15)N6—Cu—N3112.91 (15)
N5—Cu—N680.37 (15)N5—Cu—Cl194.40 (11)
N4—Cu—N693.88 (14)N4—Cu—Cl191.47 (12)
N5—Cu—N3100.18 (15)N6—Cu—Cl1131.55 (12)
N4—Cu—N379.46 (15)N3—Cu—Cl1115.41 (11)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds