Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C20H19NO2S2, is formed by a palladium–copper-catalyzed reaction between 4-methyl-N-[2-(prop-2-ynyl­sul­fanyl)­phenyl]­benzene­sul­fon­amide and p-iodo­toluene. The mol­ecules contain three essentially planar parts, namely an amino­thio­phenol moiety (A), a toluene­sulfone moiety excluding the oxo ligands (B) and a tolyl group (C), approximately orthogonal to each other; the dihedral angles A/B, A/C and B/C are 111.6 (1), 89.3 (1) and 101.4 (1)°, respectively. Intermolecular N—H...O hydrogen bonds link the mol­ecules into infinite one-dimensional chains.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100012725/oa1105sup1.cif
Contains datablocks cryst1, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100012725/oa1105IIIsup2.hkl
Contains datablock 3

CCDC reference: 156176

Comment top

Metal-catalyzed heteroannulation is an important synthetic tool for the formation of a variety of heterocyclic systems of biological importance (Mukherjee et al., 2000; Kundu et al., 1999). During the synthesis of a sulfur containing heterocyclic compound, benzothiazine, (II), via a palladium-copper catalyzed reaction between 4-methyl-N-[2-(prop-2-ynylsulfanyl)phenyl]benzenesulfonamide, (I), and p-iodotoluene, the title compound, 4-methyl-N-[2-(p-tolylsulfanyl)phenyl]benzenesulfonamide, (III), was obtained through a novel depropargylation and S-arylation. The X-ray structural study of (III) was undertaken in order to establish the regio- and stereospecificities of the reaction. \sch

The structure of (III) consists of three essentially planar parts, (A, B, C), approximately orthogonal to each other. The central aminothiophenol moiety A (atoms C8—C13, N1, S2) is planar to within 0.031 (4) Å. The other two parts, p-toluenesulfone excluding the two oxo ligands (B: atoms C1—C7,S1) and p-tolyl (C: atoms C14—C20) with a maximum deviation of 0.025 (4) Å for an in-plane atom (C1) from the corresponding least-squares plane, are inclined by 101.4 (1)° with respect to each other. The dihedral angles A/B and A/C are 111.6 (1) and 89.3 (1)°, respectively. The torsion angle C5—S1—N1—C8 62.4 (3)° establishes a gauche conformation of the molecule when viewed along the S—N axis.

The geometric parameters of (III) agree well with those found in other substituted p-toluenesulfonamide structures (Parvez et al., 1999; Goswami et al., 1998; Bachechi et al., 1996; Gainsford & Lensink, 1996). The N atom with a bond angle sum of 349.5 (2)° indicates a pyramidal configuration. The angular disposition of the bonds about the sulfonyl S atom (S1) deviate significantly from that of regular tetrahedron. The widening of the O1—S1—O2 angle 119.1 (1)° from the ideal tetrahedral value is presumably the result of the repulsive interaction between the short SO bonds (Table 1). The lack of π bonding in the branches among the phenyl rings precludes any possible π conjugation across the whole molecule. The aromatic nature of the rings is therefore localized within the rings and on their direct substituents. One of the sulfonyl O atoms, O1, is nearly coplanar with tolyl substituent [O1—S1—C5—C6 14.2 (3)°], the other sulfonyl O atom, O2, forms a torsion angle O2—S1—C5—C6 144.8 (3)°.

In the solid state, the molecules translated in the b direction are linked through N1—H8···O2 intermolecular hydrogen bonds (Table 2) to form infinite one-dimensional chains.

Experimental top

Compound (III) [m.p. 357 (1) K] was synthesized by stirring a mixture of 4-methyl-N-[2-(prop-2-ynylsulfanyl)phenyl]benzenesulfonamide, (I) (1.32 mmol) and p-iodotoluene (1.33 mmol) in the presence of bis(triphenylphosphine)palladium(II) chloride (0.04 mmol), cuprous iodide (0.52 mmol) and triethylamine (5.23 mmol) followed by refluxing with tetrahydrofuran for 36 h under an argon atmosphere. After usual workup, the crude product purified by column chromatography through silica gel using ethylacetate-petroleum spirit (333–353 K) mixture (1:9) as eluant yielded the title compound, (III). Single crystals suitable for X-ray analysis were obtained from CHCl3 -light petroleum (333–353 K) mixture.

Elemental analysis: calculated for C20H19NS2O2: C 65.01, H 5.18, N 3.79%; found C 65.32, H 5.25, N 3.74%.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1995); program(s) used to solve structure: MULTAN88 (Debaerdemaeker et al., 1988); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1995); software used to prepare material for publication: SHELXL97 and PARST95 (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. ZORTEP (Zsolnai, 1995) view (50% probability level) of the molecule.
4-methyl-N-[2-(p-tolylsulfanyl)phenyl]benzenesulfonamide top
Crystal data top
C20H19NO2S2F(000) = 388
Mr = 369.48Dx = 1.335 Mg m3
Triclinic, P1Melting point: 357(1) K K
a = 10.530 (4) ÅCu Kα radiation, λ = 1.54180 Å
b = 11.873 (3) ÅCell parameters from 25 reflections
c = 8.798 (4) Åθ = 33.5–39.8°
α = 90.76 (4)°µ = 2.73 mm1
β = 113.31 (4)°T = 293 K
γ = 112.05 (2)°Block, colourless
V = 919.2 (6) Å30.35 × 0.25 × 0.20 mm
Z = 2
Data collection top
Rigaku AFC5R
diffractometer
2610 reflections with I > 2σ(I)
Radiation source: Rigaku rotating anodeRint = 0.039
Graphite monochromatorθmax = 70.1°, θmin = 4.1°
ω–2θ scansh = 1212
Absorption correction: ψ scans
(North et al., 1968)
k = 1413
Tmin = 0.449, Tmax = 0.580l = 910
3497 measured reflections3 standard reflections every 150 reflections
3301 independent reflections intensity decay: <3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: mixed
wR(F2) = 0.147H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0764P)2 + 0.3704P]
where P = (Fo2 + 2Fc2)/3
3301 reflections(Δ/σ)max = 0.001
227 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C20H19NO2S2γ = 112.05 (2)°
Mr = 369.48V = 919.2 (6) Å3
Triclinic, P1Z = 2
a = 10.530 (4) ÅCu Kα radiation
b = 11.873 (3) ŵ = 2.73 mm1
c = 8.798 (4) ÅT = 293 K
α = 90.76 (4)°0.35 × 0.25 × 0.20 mm
β = 113.31 (4)°
Data collection top
Rigaku AFC5R
diffractometer
2610 reflections with I > 2σ(I)
Absorption correction: ψ scans
(North et al., 1968)
Rint = 0.039
Tmin = 0.449, Tmax = 0.5803 standard reflections every 150 reflections
3497 measured reflections intensity decay: <3%
3301 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.03Δρmax = 0.25 e Å3
3301 reflectionsΔρmin = 0.28 e Å3
227 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.18019 (7)0.44629 (6)0.18887 (9)0.0490 (2)
S20.22384 (10)0.13981 (7)0.17435 (10)0.0672 (3)
O10.2756 (2)0.45040 (19)0.3596 (3)0.0615 (5)
O20.1530 (2)0.55371 (17)0.1436 (3)0.0600 (5)
N10.0105 (2)0.3350 (2)0.1370 (3)0.0488 (5)
H80.06580.34440.03570.063 (9)*
C10.4277 (4)0.3007 (3)0.2599 (5)0.0727 (9)
H1A0.42530.35130.34440.109*
H1B0.36540.21540.31340.109*
H1C0.53040.31130.19380.109*
C20.3682 (3)0.3387 (2)0.1472 (4)0.0545 (7)
C30.2613 (3)0.3891 (3)0.2081 (4)0.0584 (7)
H30.22860.40120.31890.070*
C40.2029 (3)0.4213 (3)0.1069 (4)0.0577 (7)
H40.13090.45390.14950.069*
C50.2536 (3)0.4043 (2)0.0593 (4)0.0471 (6)
C60.3610 (3)0.3562 (3)0.1235 (4)0.0567 (7)
H60.39550.34580.23510.068*
C70.4163 (3)0.3237 (3)0.0190 (4)0.0601 (8)
H70.48790.29080.06180.072*
C80.0115 (3)0.2102 (2)0.1575 (3)0.0446 (6)
C90.0685 (3)0.1868 (3)0.3123 (4)0.0558 (7)
H90.13910.25280.40130.067*
C100.0453 (3)0.0667 (3)0.3370 (4)0.0629 (8)
H100.10170.05250.44080.076*
C110.0624 (4)0.0317 (3)0.2061 (4)0.0643 (8)
H110.07950.11250.22170.077*
C120.1439 (3)0.0095 (3)0.0535 (4)0.0601 (8)
H120.21660.07610.03360.072*
C130.1208 (3)0.1102 (2)0.0252 (3)0.0472 (6)
C140.3999 (3)0.0050 (3)0.2546 (3)0.0523 (7)
C150.4254 (3)0.0922 (3)0.3672 (4)0.0552 (7)
H150.34990.08870.39920.066*
C160.5640 (3)0.1950 (3)0.4326 (4)0.0549 (7)
H160.58030.25960.50890.066*
C170.6787 (3)0.2038 (3)0.3870 (4)0.0570 (7)
C180.6509 (4)0.1049 (3)0.2746 (4)0.0694 (9)
H180.72590.10780.24220.083*
C190.5129 (4)0.0016 (3)0.2096 (4)0.0655 (8)
H190.49690.06380.13480.079*
C200.8285 (4)0.3156 (4)0.4597 (5)0.0857 (12)
H20A0.88820.31120.40280.129*
H20B0.81080.38920.44500.129*
H20C0.88200.31770.57770.129*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0432 (4)0.0370 (3)0.0512 (4)0.0107 (3)0.0116 (3)0.0006 (3)
S20.0660 (5)0.0461 (4)0.0525 (5)0.0077 (3)0.0048 (4)0.0122 (3)
O10.0538 (12)0.0535 (12)0.0513 (12)0.0101 (9)0.0097 (9)0.0007 (9)
O20.0553 (11)0.0353 (10)0.0754 (14)0.0154 (9)0.0183 (10)0.0024 (9)
N10.0410 (12)0.0450 (12)0.0509 (13)0.0144 (10)0.0141 (10)0.0041 (10)
C10.0556 (18)0.066 (2)0.084 (2)0.0164 (16)0.0268 (17)0.0083 (17)
C20.0410 (14)0.0385 (14)0.0674 (19)0.0060 (11)0.0179 (13)0.0021 (12)
C30.0524 (16)0.0577 (17)0.0520 (17)0.0192 (14)0.0136 (13)0.0043 (13)
C40.0488 (16)0.0569 (17)0.0572 (18)0.0233 (14)0.0118 (13)0.0070 (13)
C50.0396 (13)0.0339 (12)0.0553 (16)0.0098 (10)0.0137 (12)0.0056 (11)
C60.0523 (16)0.0489 (16)0.0627 (18)0.0217 (13)0.0181 (14)0.0157 (13)
C70.0450 (15)0.0492 (16)0.080 (2)0.0198 (13)0.0205 (15)0.0118 (15)
C80.0386 (13)0.0451 (14)0.0485 (15)0.0139 (11)0.0207 (11)0.0095 (11)
C90.0445 (15)0.0562 (17)0.0478 (16)0.0096 (13)0.0125 (12)0.0100 (13)
C100.0469 (16)0.068 (2)0.0617 (19)0.0173 (14)0.0180 (14)0.0298 (16)
C110.0555 (17)0.0515 (17)0.074 (2)0.0161 (14)0.0222 (16)0.0267 (15)
C120.0564 (17)0.0411 (15)0.0620 (19)0.0098 (13)0.0154 (15)0.0093 (13)
C130.0451 (14)0.0402 (14)0.0470 (15)0.0109 (11)0.0173 (12)0.0094 (11)
C140.0541 (16)0.0506 (15)0.0407 (14)0.0188 (13)0.0122 (12)0.0078 (12)
C150.0491 (15)0.0560 (16)0.0543 (17)0.0196 (13)0.0187 (13)0.0056 (13)
C160.0507 (15)0.0545 (16)0.0488 (16)0.0181 (13)0.0151 (13)0.0003 (12)
C170.0491 (15)0.0622 (18)0.0472 (16)0.0169 (14)0.0149 (13)0.0058 (13)
C180.0589 (19)0.078 (2)0.067 (2)0.0214 (17)0.0304 (17)0.0031 (17)
C190.072 (2)0.0609 (19)0.0560 (18)0.0254 (16)0.0231 (16)0.0027 (14)
C200.059 (2)0.083 (3)0.081 (3)0.0009 (18)0.0257 (19)0.008 (2)
Geometric parameters (Å, º) top
S1—O11.427 (2)C8—C131.402 (4)
S1—O21.437 (2)C9—C101.389 (4)
S1—N11.647 (2)C9—H90.9300
S1—C51.765 (3)C10—C111.383 (5)
S2—C131.783 (3)C10—H100.9300
S2—C141.790 (3)C11—C121.370 (4)
N1—C81.437 (3)C11—H110.9300
N1—H80.98C12—C131.392 (4)
C1—C21.507 (4)C12—H120.9300
C1—H1A0.9600C14—C191.372 (4)
C1—H1B0.9600C14—C151.383 (4)
C1—H1C0.9600C15—C161.390 (4)
C2—C71.384 (4)C15—H150.9300
C2—C31.396 (4)C16—C171.386 (4)
C3—C41.385 (4)C16—H160.9300
C3—H30.9300C17—C181.387 (4)
C4—C51.391 (4)C17—C201.505 (4)
C4—H40.9300C18—C191.388 (5)
C5—C61.383 (4)C18—H180.9300
C6—C71.385 (4)C19—H190.9300
C6—H60.9300C20—H20A0.9600
C7—H70.9300C20—H20B0.9600
C8—C91.386 (4)C20—H20C0.9600
O1—S1—O2119.09 (13)C8—C9—H9119.4
O1—S1—N1108.45 (13)C10—C9—H9119.4
O2—S1—N1104.96 (12)C11—C10—C9119.5 (3)
O1—S1—C5108.09 (13)C11—C10—H10120.2
O2—S1—C5108.79 (13)C9—C10—H10120.2
N1—S1—C5106.84 (12)C12—C11—C10119.6 (3)
C13—S2—C14101.85 (14)C12—C11—H11120.2
C8—N1—S1122.21 (18)C10—C11—H11120.2
C8—N1—H8116C11—C12—C13121.8 (3)
S1—N1—H8111C11—C12—H12119.1
C2—C1—H1A109.5C13—C12—H12119.1
C2—C1—H1B109.5C12—C13—C8118.7 (3)
H1A—C1—H1B109.5C12—C13—S2122.0 (2)
C2—C1—H1C109.5C8—C13—S2119.3 (2)
H1A—C1—H1C109.5C19—C14—C15119.2 (3)
H1B—C1—H1C109.5C19—C14—S2120.5 (2)
C7—C2—C3117.8 (3)C15—C14—S2120.2 (2)
C7—C2—C1121.3 (3)C14—C15—C16119.8 (3)
C3—C2—C1120.9 (3)C14—C15—H15120.1
C4—C3—C2121.4 (3)C16—C15—H15120.1
C4—C3—H3119.3C17—C16—C15121.7 (3)
C2—C3—H3119.3C17—C16—H16119.2
C3—C4—C5119.1 (3)C15—C16—H16119.2
C3—C4—H4120.4C16—C17—C18117.4 (3)
C5—C4—H4120.4C16—C17—C20121.0 (3)
C6—C5—C4120.7 (3)C18—C17—C20121.6 (3)
C6—C5—S1120.1 (2)C19—C18—C17121.1 (3)
C4—C5—S1119.2 (2)C19—C18—H18119.4
C5—C6—C7118.9 (3)C17—C18—H18119.4
C5—C6—H6120.5C14—C19—C18120.7 (3)
C7—C6—H6120.5C14—C19—H19119.7
C2—C7—C6122.1 (3)C18—C19—H19119.7
C2—C7—H7119.0C17—C20—H20A109.5
C6—C7—H7119.0C17—C20—H20B109.5
C9—C8—C13119.1 (3)H20A—C20—H20B109.5
C9—C8—N1120.1 (2)C17—C20—H20C109.5
C13—C8—N1120.7 (2)H20A—C20—H20C109.5
C8—C9—C10121.2 (3)H20B—C20—H20C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H8···S20.982.553.025 (3)109.9
N1—H8···O2i0.982.133.039 (4)154.2
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC20H19NO2S2
Mr369.48
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.530 (4), 11.873 (3), 8.798 (4)
α, β, γ (°)90.76 (4), 113.31 (4), 112.05 (2)
V3)919.2 (6)
Z2
Radiation typeCu Kα
µ (mm1)2.73
Crystal size (mm)0.35 × 0.25 × 0.20
Data collection
DiffractometerRigaku AFC5R
diffractometer
Absorption correctionψ scans
(North et al., 1968)
Tmin, Tmax0.449, 0.580
No. of measured, independent and
observed [I > 2σ(I)] reflections
3497, 3301, 2610
Rint0.039
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.147, 1.03
No. of reflections3301
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.28

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 1995), MULTAN88 (Debaerdemaeker et al., 1988), SHELXL97 (Sheldrick, 1997), ZORTEP (Zsolnai, 1995), SHELXL97 and PARST95 (Nardelli, 1995).

Selected geometric parameters (Å, º) top
S1—O11.427 (2)S2—C131.783 (3)
S1—O21.437 (2)S2—C141.790 (3)
S1—N11.647 (2)N1—C81.437 (3)
S1—C51.765 (3)
O1—S1—O2119.09 (13)O2—S1—C5108.79 (13)
O1—S1—N1108.45 (13)N1—S1—C5106.84 (12)
O2—S1—N1104.96 (12)C13—S2—C14101.85 (14)
O1—S1—C5108.09 (13)C8—N1—S1122.21 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H8···S20.982.553.025 (3)109.9
N1—H8···O2i0.982.133.039 (4)154.2
Symmetry code: (i) x, y+1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds