organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2-Hy­dr­oxy-4,5-dimeth­­oxy­phen­yl)ethanone

aMolecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Wits 2050, Johannesburg, South Africa
*Correspondence e-mail: joseph.michael@wits.ac.za

(Received 26 November 2012; accepted 17 December 2012; online 22 December 2012)

The mol­ecular structure of the title compound, C10H12O4, contains an intra­molecular hydrogen bond between the phenol and acetyl substituents. In the crystal, C—H⋯π inter­actions act between the mol­ecules in a cyclic manner to stabilize stacks of mol­ecules along the b axis. Several C—H⋯O inter­actions are present between the stacks.

Related literature

For a review on lamellarin alkaloids, see: Fan et al. (2008[Fan, H., Peng, J., Hamann, M. T. & Hu, J.-F. (2008). Chem. Rev. 108, 264-287.]). The experimental procedure of Combes et al. (2002[Combes, S., Finet, J.-P. & Siri, D. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 38-44.]) for a related Fries rearrangement was adapted for the synthesis of the title compound. For alternative syntheses of the title compound by Fries rearrangement, see: Ploypradith et al. (2003[Ploypradith, P., Jinaglueng, W., Pavaro, C. & Ruchirawal, S. (2003). Tetrahedron Lett. 44, 1363-1366.]); Nolan et al. (2009[Nolan, K. A., Doncaster, J. R., Dunstan, M. S., Scott, K. A., Frenkel, A. D., Siegel, D., Ross, D., Barnes, J., Levy, C., Leys, D., Whitehead, R. C., Stratford, I. J. & Bryce, R. A. (2009). J. Med. Chem. 52, 7142-7156.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12O4

  • Mr = 196.20

  • Orthorhombic, P c a 21

  • a = 19.1740 (12) Å

  • b = 5.5026 (3) Å

  • c = 8.9956 (5) Å

  • V = 949.10 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 173 K

  • 0.41 × 0.32 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 4718 measured reflections

  • 1214 independent reflections

  • 1106 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.085

  • S = 1.06

  • 1214 reflections

  • 134 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4 0.93 (3) 1.71 (3) 2.549 (2) 150 (2)
C8—H8C⋯O3i 0.98 2.40 3.365 (2) 168
C9—H9B⋯O3ii 0.98 2.57 3.513 (3) 162
C10—H10C⋯O2i 0.98 2.53 3.334 (3) 139
C8—H8BCg1iii 0.98 2.80 3.738 (3) 160
C9—H9ACg1iv 0.98 2.90 3.828 (3) 158
Symmetry codes: (i) [-x+1, -y, z-{\script{1\over 2}}]; (ii) [-x+1, -y+1, z+{\script{1\over 2}}]; (iii) x, y-1, z; (iv) x, y+1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and SCHAKAL99 (Keller, 1999[Keller, E. (1999). SCHAKAL99. University of Freiberg, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title organic compound (Fig. 1), required as an intermediate in the synthesis of lamellarin alkaloids (Fan et al., 2008), was prepared by Fries rearrangement of 3,4-dimethoxyphenyl acetate with boron trifluoride etherate. Syntheses of the same compound by related Fries rearrangements have been reported by Ploypradith et al. (2003) and Nolan et al. (2009).

The compound crystallizes in the polar space group Pca21. An intramolecular hydrogen bond exists between the phenol and acetyl groups (Fig. 1). Molecules related by translation along the b axis interact through two C—H···π interactions which act between the molecules in a cyclic manner. These stabilize stacks of molecules along the b axis (Fig. 2). Several C—H···O interactions exist in the structure, the most significant being listed in Table 1. These act between the stacks to stabilize the structure (Fig. 3).

Related literature top

For a review on lamellarin alkaloids, see: Fan et al. (2008). The experimental procedure of Combes et al.. (2002) for a related Fries rearrangement was adapted for the synthesis of the title compound. For alternative syntheses of the title compound by Fries rearrangement, see: Ploypradith et al. (2003); Nolan et al. (2009).

Experimental top

The experimental procedure of Combes et al.. (2002) for a related Fries rearrangement was adapted for the synthesis of the title compound. Boron trifloride etherate (20 ml, 23.1 g, 163 mmol) was cautiously added to ice-cooled 3,4-dimethoxyphenyl acetate (7.99 g, 40.7 mmol). The mixture was warmed to room temperature, then heated to 383 K for 5 h before being cooled again to room temperature and stirred for an additional 18 h. Water (50 ml) was added, resulting in the precipitation of a brown solid. This was filtered off, washed with a copious amount of water, then recrystallized from methanol to afford 1-(2-hydroxy-4,5-dimethoxyphenyl)ethanone (4.90 g, 61%) as dark yellow blocks, m.p. 385–386 K.

Refinement top

All H atoms attached to carbon were positioned geometrically, and allowed to ride on their parent atoms, with C—H bond lengths of 0.95 Å (CH) or 0.98 Å (CH3), and isotropic displacement parameters set to 1.2 (CH) or 1.5 times (CH3) the Ueq of the parent atom. Friedel pairs were merged during final refinement.

Structure description top

The title organic compound (Fig. 1), required as an intermediate in the synthesis of lamellarin alkaloids (Fan et al., 2008), was prepared by Fries rearrangement of 3,4-dimethoxyphenyl acetate with boron trifluoride etherate. Syntheses of the same compound by related Fries rearrangements have been reported by Ploypradith et al. (2003) and Nolan et al. (2009).

The compound crystallizes in the polar space group Pca21. An intramolecular hydrogen bond exists between the phenol and acetyl groups (Fig. 1). Molecules related by translation along the b axis interact through two C—H···π interactions which act between the molecules in a cyclic manner. These stabilize stacks of molecules along the b axis (Fig. 2). Several C—H···O interactions exist in the structure, the most significant being listed in Table 1. These act between the stacks to stabilize the structure (Fig. 3).

For a review on lamellarin alkaloids, see: Fan et al. (2008). The experimental procedure of Combes et al.. (2002) for a related Fries rearrangement was adapted for the synthesis of the title compound. For alternative syntheses of the title compound by Fries rearrangement, see: Ploypradith et al. (2003); Nolan et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and SCHAKAL99 (Keller, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. C-H···π interactions in the structure of (I) stabilising stacks of molecules along the b axis. [Symmetry codes: (i) x, y, z; (ii) x, -1+y, z; (iii) x, 1+y, z.]
[Figure 3] Fig. 3. C-H···O interactions between the stacks of molecules in the structure of (I). [Symmetry codes: (i) x, y, z; (ii) 1/2-x, 1+y, 1/2+z; (iii) 1-x, 1-y, 1/2+z; (iv) 1/2+x, -y, z; (v) 1-x, -y, -1/2+z.]
1-(2-Hydroxy-4,5-dimethoxyphenyl)ethanone top
Crystal data top
C10H12O4F(000) = 416
Mr = 196.20Dx = 1.373 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 2177 reflections
a = 19.1740 (12) Åθ = 3.1–27.7°
b = 5.5026 (3) ŵ = 0.11 mm1
c = 8.9956 (5) ÅT = 173 K
V = 949.10 (9) Å3Block, colourless
Z = 40.41 × 0.32 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
1106 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 28.0°, θmin = 2.1°
φ and ω scansh = 2524
4718 measured reflectionsk = 77
1214 independent reflectionsl = 1110
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0504P)2 + 0.0546P]
where P = (Fo2 + 2Fc2)/3
1214 reflections(Δ/σ)max < 0.001
134 parametersΔρmax = 0.20 e Å3
1 restraintΔρmin = 0.18 e Å3
Crystal data top
C10H12O4V = 949.10 (9) Å3
Mr = 196.20Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 19.1740 (12) ŵ = 0.11 mm1
b = 5.5026 (3) ÅT = 173 K
c = 8.9956 (5) Å0.41 × 0.32 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
1106 reflections with I > 2σ(I)
4718 measured reflectionsRint = 0.032
1214 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0321 restraint
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.20 e Å3
1214 reflectionsΔρmin = 0.18 e Å3
134 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.34395 (9)0.0487 (3)0.3973 (2)0.0287 (4)
C20.30480 (9)0.1288 (3)0.4721 (2)0.0322 (4)
C30.33683 (9)0.2885 (3)0.5713 (2)0.0307 (4)
H30.31000.40930.62050.037*
C40.40755 (9)0.2705 (3)0.59765 (19)0.0262 (4)
C50.44769 (8)0.0884 (3)0.5258 (2)0.0248 (4)
C60.41609 (9)0.0644 (3)0.4263 (2)0.0271 (4)
H60.44320.18290.37580.033*
C70.30942 (10)0.2140 (4)0.2923 (2)0.0346 (4)
C80.35122 (11)0.4047 (4)0.2122 (3)0.0395 (5)
H8A0.32100.49210.14250.059*
H8B0.37060.51940.28450.059*
H8C0.38930.32690.15730.059*
C90.40535 (10)0.5915 (3)0.7748 (3)0.0357 (4)
H9A0.38380.70800.70640.053*
H9B0.43680.67780.84260.053*
H9C0.36900.50910.83230.053*
C100.55610 (10)0.1202 (3)0.5150 (3)0.0364 (5)
H10A0.53420.27120.54910.055*
H10B0.60360.10970.55480.055*
H10C0.55780.11880.40610.055*
O10.23555 (7)0.1547 (3)0.4504 (2)0.0469 (4)
O20.44429 (7)0.4153 (2)0.69134 (15)0.0308 (3)
O30.51633 (6)0.0824 (3)0.56605 (17)0.0321 (3)
O40.24611 (9)0.2002 (3)0.2697 (2)0.0501 (4)
H10.2231 (13)0.032 (5)0.385 (4)0.061 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0269 (9)0.0322 (9)0.0270 (9)0.0045 (7)0.0010 (7)0.0009 (8)
C20.0227 (8)0.0382 (10)0.0357 (10)0.0005 (8)0.0018 (8)0.0028 (9)
C30.0280 (8)0.0334 (9)0.0308 (10)0.0027 (7)0.0050 (8)0.0000 (8)
C40.0297 (9)0.0267 (8)0.0222 (8)0.0035 (7)0.0024 (7)0.0010 (7)
C50.0214 (8)0.0284 (8)0.0247 (8)0.0017 (7)0.0017 (7)0.0017 (7)
C60.0278 (8)0.0279 (8)0.0257 (9)0.0015 (7)0.0036 (7)0.0002 (7)
C70.0331 (10)0.0384 (10)0.0322 (10)0.0113 (8)0.0023 (8)0.0015 (9)
C80.0439 (12)0.0401 (11)0.0345 (10)0.0141 (9)0.0022 (9)0.0072 (9)
C90.0424 (11)0.0304 (9)0.0342 (9)0.0044 (7)0.0023 (9)0.0072 (8)
C100.0279 (8)0.0346 (9)0.0468 (12)0.0064 (8)0.0022 (9)0.0067 (9)
O10.0229 (7)0.0571 (9)0.0608 (11)0.0031 (7)0.0054 (7)0.0103 (9)
O20.0298 (7)0.0323 (6)0.0304 (7)0.0003 (5)0.0003 (5)0.0072 (6)
O30.0235 (6)0.0356 (6)0.0371 (7)0.0029 (5)0.0026 (5)0.0097 (6)
O40.0327 (7)0.0585 (9)0.0589 (10)0.0089 (7)0.0106 (8)0.0106 (9)
Geometric parameters (Å, º) top
C1—C21.403 (3)C7—C81.504 (3)
C1—C61.410 (2)C8—H8A0.9800
C1—C71.469 (3)C8—H8B0.9800
C2—O11.349 (2)C8—H8C0.9800
C2—C31.395 (3)C9—O21.436 (2)
C3—C41.380 (2)C9—H9A0.9800
C3—H30.9500C9—H9B0.9800
C4—O21.357 (2)C9—H9C0.9800
C4—C51.419 (2)C10—O31.426 (2)
C5—O31.365 (2)C10—H10A0.9800
C5—C61.370 (2)C10—H10B0.9800
C6—H60.9500C10—H10C0.9800
C7—O41.233 (2)O1—H10.93 (3)
C2—C1—C6118.60 (16)C7—C8—H8A109.5
C2—C1—C7119.87 (16)C7—C8—H8B109.5
C6—C1—C7121.53 (16)H8A—C8—H8B109.5
O1—C2—C3117.31 (18)C7—C8—H8C109.5
O1—C2—C1122.06 (18)H8A—C8—H8C109.5
C3—C2—C1120.63 (15)H8B—C8—H8C109.5
C4—C3—C2119.84 (16)O2—C9—H9A109.5
C4—C3—H3120.1O2—C9—H9B109.5
C2—C3—H3120.1H9A—C9—H9B109.5
O2—C4—C3125.10 (16)O2—C9—H9C109.5
O2—C4—C5114.56 (15)H9A—C9—H9C109.5
C3—C4—C5120.33 (16)H9B—C9—H9C109.5
O3—C5—C6125.79 (15)O3—C10—H10A109.5
O3—C5—C4114.79 (15)O3—C10—H10B109.5
C6—C5—C4119.42 (15)H10A—C10—H10B109.5
C5—C6—C1121.15 (15)O3—C10—H10C109.5
C5—C6—H6119.4H10A—C10—H10C109.5
C1—C6—H6119.4H10B—C10—H10C109.5
O4—C7—C1120.76 (19)C2—O1—H1105.6 (16)
O4—C7—C8119.24 (18)C4—O2—C9116.82 (14)
C1—C7—C8120.00 (17)C5—O3—C10116.68 (14)
C6—C1—C2—O1179.90 (19)O3—C5—C6—C1177.32 (16)
C7—C1—C2—O10.3 (3)C4—C5—C6—C12.0 (2)
C6—C1—C2—C30.9 (3)C2—C1—C6—C50.5 (2)
C7—C1—C2—C3179.47 (17)C7—C1—C6—C5179.13 (17)
O1—C2—C3—C4179.95 (18)C2—C1—C7—O40.6 (3)
C1—C2—C3—C40.7 (3)C6—C1—C7—O4178.99 (19)
C2—C3—C4—O2179.97 (17)C2—C1—C7—C8179.90 (17)
C2—C3—C4—C50.8 (3)C6—C1—C7—C80.3 (3)
O2—C4—C5—O32.1 (2)C3—C4—O2—C93.5 (3)
C3—C4—C5—O3177.21 (16)C5—C4—O2—C9175.75 (15)
O2—C4—C5—C6178.53 (15)C6—C5—O3—C108.9 (3)
C3—C4—C5—C62.2 (2)C4—C5—O3—C10170.47 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···O40.93 (3)1.71 (3)2.549 (2)150 (2)
C8—H8C···O3i0.982.403.365 (2)168
C9—H9B···O3ii0.982.573.513 (3)162
C10—H10C···O2i0.982.533.334 (3)139
C8—H8B···Cg1iii0.982.803.738 (3)160
C9—H9A···Cg1iv0.982.903.828 (3)158
Symmetry codes: (i) x+1, y, z1/2; (ii) x+1, y+1, z+1/2; (iii) x, y1, z; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H12O4
Mr196.20
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)173
a, b, c (Å)19.1740 (12), 5.5026 (3), 8.9956 (5)
V3)949.10 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.41 × 0.32 × 0.20
Data collection
DiffractometerBruker APEXII CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4718, 1214, 1106
Rint0.032
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.085, 1.06
No. of reflections1214
No. of parameters134
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.18

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and SCHAKAL99 (Keller, 1999), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···O40.93 (3)1.71 (3)2.549 (2)150 (2)
C8—H8C···O3i0.982.403.365 (2)168
C9—H9B···O3ii0.982.573.513 (3)162
C10—H10C···O2i0.982.533.334 (3)139
C8—H8B···Cg1iii0.982.803.738 (3)160
C9—H9A···Cg1iv0.982.903.828 (3)158
Symmetry codes: (i) x+1, y, z1/2; (ii) x+1, y+1, z+1/2; (iii) x, y1, z; (iv) x, y+1, z.
 

Acknowledgements

This work was supported by the University of the Witwatersrand and the National Research Foundation, Pretoria (grant No. 78837).

References

First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCombes, S., Finet, J.-P. & Siri, D. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 38–44.  Google Scholar
First citationFan, H., Peng, J., Hamann, M. T. & Hu, J.-F. (2008). Chem. Rev. 108, 264–287.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKeller, E. (1999). SCHAKAL99. University of Freiberg, Germany.  Google Scholar
First citationNolan, K. A., Doncaster, J. R., Dunstan, M. S., Scott, K. A., Frenkel, A. D., Siegel, D., Ross, D., Barnes, J., Levy, C., Leys, D., Whitehead, R. C., Stratford, I. J. & Bryce, R. A. (2009). J. Med. Chem. 52, 7142–7156.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPloypradith, P., Jinaglueng, W., Pavaro, C. & Ruchirawal, S. (2003). Tetrahedron Lett. 44, 1363–1366.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds