organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl (Z)-2-chloro-2-(2-phenyl­hydrazin-1-yl­­idene)acetate

aChemistry Department, Faculty of Science, King Abdul Aziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 11 August 2010; accepted 13 August 2010; online 21 August 2010)

The title compound, C10H11ClN2O2, features an almost planar Car—N(H)—N=C(Cl) unit [torsion angle = 0.8 (1)° whose phenyl substituent is almost coplanar with it [dihedral angle = 2.8 (2)°]; this unit is slightly twisted with respect to the carboxyl –CO2 fragment [dihedral angle = 10.3 (2)°]. In the crystal, the amino group acts as a hydrogen-bond donor to the carbonyl O atom of an adjacent mol­ecule; the hydrogen bond generates a helical chain that runs along the b axis of the monoclinic unit cell.

Related literature

For a review of the reactions of hydrazonyl halides with heterocyclic thio­nes for heteroannulation, the synthesis of spiro­heterocycles and heterocyclic ring formation, see: Shawali & Farghaly (2008[Shawali, A. S. & Farghaly, T. A. (2008). ARKIVOC, i, 18-64.]). For related crystal structures, see: Xu (2006[Xu, J. (2006). Acta Cryst. E62, o5317-o5318.]); Yin et al. (2006[Yin, Z.-G., Du, Y.-J., Zhang, J.-S., Qian, H.-Y. & Wang, Q.-L. (2006). Acta Cryst. E62, o4807-o4808.]).

[Scheme 1]

Experimental

Crystal data
  • C10H11ClN2O2

  • Mr = 226.66

  • Monoclinic, P 21 /c

  • a = 10.5091 (7) Å

  • b = 11.1813 (8) Å

  • c = 10.1190 (7) Å

  • β = 118.148 (1)°

  • V = 1048.41 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 100 K

  • 0.30 × 0.30 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.904, Tmax = 0.966

  • 6532 measured reflections

  • 2399 independent reflections

  • 2191 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.076

  • S = 1.03

  • 2399 reflections

  • 140 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.85 (1) 2.18 (1) 2.969 (1) 153 (2)
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Ethyl 2-chloro(phenylhydrazono)acetate belongs to the class of of hydrazonyl halides that undergo heteroannulation, and are used for the synthesis of spiroheterocycles and other heterocyclic compounds. The utility in some aspects of heterocyclic chemistry has recently been reviewed (Shawali & Farghaly (2008). The central structural feature is an planar Caryl–NH–NC unit, as noted in the crystal structures of other substituted derivatives (Xu, 2006; Yin et al., 2006). The parent compound (Scheme I) shows this characteristic linkage, whose torsion angle is 0.8 (1) °. The carbon-nitrogen double bond is of a Z-configuration (Fig. 1). Such a configuration allows the amino site to form a hydrogen bond to the double-bond carbonyl oxygen atom of an adjacent molecule, this hydrogen bond giving rise to a helical chain that runs along the b-axis of the unit cell (Fig. 2).

Related literature top

For a review of the reactions of hydrazonyl halides with heterocyclic thiones for heteroannulation, the synthesis of spiroheterocycles and heterocyclic ring formation, see: Shawali & Farghaly (2008). For related crystal structures, see: Xu (2006); Yin et al. (2006).

Experimental top

The synthesis works with either 3-chloropentane-2,4-dione or ethyl 2-chloro-3-oxobutanoate. To a solution of either 3-chloropentane-2,4-dione (1.34 g, 10 mmol) or ethyl 2-chloro-3-oxobutanoate (1.64 g, 10 mmol) in ethanol (100 ml) was added sodium acetate trihydrate (1.3 g, 10 mmol). The mixture was chilled to 273 K. To the mixture was added a cold solution of benzenediazonium chloride, prepared by diazotizing aniline (0.93 g, 10 mmol) dissolved in 6M hydrochloricacid (6 ml) with a solution of sodium nitrite (0.7 g, 10 mmol) dissolved in water (10 ml). The diazonium salt was added over a period of 20 min. The reaction mixture was stirred for another 15 min. and then left for 3 h in a refrigerator. The resulting solid was collected and washed with water. The crude product was recrystallized from ethanol to give the hydrazone in 80% yield; m.p. 352–353 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C–H 0.95 to 0.99 Å, U(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The amino H-atom was located in a difference Fourier map, and was refined with a distance restraint [N–H 0.86±0.01 Å]; its temperature factor was freely refined.

Structure description top

Ethyl 2-chloro(phenylhydrazono)acetate belongs to the class of of hydrazonyl halides that undergo heteroannulation, and are used for the synthesis of spiroheterocycles and other heterocyclic compounds. The utility in some aspects of heterocyclic chemistry has recently been reviewed (Shawali & Farghaly (2008). The central structural feature is an planar Caryl–NH–NC unit, as noted in the crystal structures of other substituted derivatives (Xu, 2006; Yin et al., 2006). The parent compound (Scheme I) shows this characteristic linkage, whose torsion angle is 0.8 (1) °. The carbon-nitrogen double bond is of a Z-configuration (Fig. 1). Such a configuration allows the amino site to form a hydrogen bond to the double-bond carbonyl oxygen atom of an adjacent molecule, this hydrogen bond giving rise to a helical chain that runs along the b-axis of the unit cell (Fig. 2).

For a review of the reactions of hydrazonyl halides with heterocyclic thiones for heteroannulation, the synthesis of spiroheterocycles and heterocyclic ring formation, see: Shawali & Farghaly (2008). For related crystal structures, see: Xu (2006); Yin et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot of C10H11ClN2O2 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the hydrogen-bonded helical chain structure (red dashed lines) which runs along the b-axis.
Ethyl (Z)-2-chloro-2-(2-phenylhydrazin-1-ylidene)acetate top
Crystal data top
C10H11ClN2O2F(000) = 472
Mr = 226.66Dx = 1.436 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4259 reflections
a = 10.5091 (7) Åθ = 2.3–28.3°
b = 11.1813 (8) ŵ = 0.35 mm1
c = 10.1190 (7) ÅT = 100 K
β = 118.148 (1)°Irregular, yellow
V = 1048.41 (13) Å30.30 × 0.30 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
2399 independent reflections
Radiation source: fine-focus sealed tube2191 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1311
Tmin = 0.904, Tmax = 0.966k = 1412
6532 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0409P)2 + 0.389P]
where P = (Fo2 + 2Fc2)/3
2399 reflections(Δ/σ)max = 0.001
140 parametersΔρmax = 0.31 e Å3
1 restraintΔρmin = 0.21 e Å3
Crystal data top
C10H11ClN2O2V = 1048.41 (13) Å3
Mr = 226.66Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.5091 (7) ŵ = 0.35 mm1
b = 11.1813 (8) ÅT = 100 K
c = 10.1190 (7) Å0.30 × 0.30 × 0.10 mm
β = 118.148 (1)°
Data collection top
Bruker SMART APEX
diffractometer
2399 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2191 reflections with I > 2σ(I)
Tmin = 0.904, Tmax = 0.966Rint = 0.022
6532 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0261 restraint
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.31 e Å3
2399 reflectionsΔρmin = 0.21 e Å3
140 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.52913 (3)0.54445 (2)0.33899 (3)0.02076 (10)
O10.67383 (8)0.38123 (7)0.09626 (9)0.01737 (18)
O20.49929 (9)0.33068 (7)0.15554 (9)0.01943 (19)
N10.70432 (10)0.70808 (8)0.26261 (10)0.0153 (2)
H10.6608 (17)0.7284 (15)0.3121 (17)0.032 (4)*
N20.68722 (10)0.59913 (8)0.20434 (10)0.01443 (19)
C10.78999 (11)0.79127 (10)0.23651 (11)0.0143 (2)
C20.81229 (12)0.90363 (10)0.30391 (12)0.0171 (2)
H20.76910.92320.36510.020*
C30.89810 (12)0.98666 (11)0.28081 (13)0.0201 (2)
H30.91401.06290.32730.024*
C40.96101 (13)0.95973 (11)0.19073 (14)0.0208 (2)
H41.01941.01700.17530.025*
C50.93736 (12)0.84780 (11)0.12342 (13)0.0201 (2)
H50.97960.82890.06120.024*
C60.85275 (12)0.76310 (10)0.14599 (12)0.0167 (2)
H60.83780.68660.10010.020*
C70.61141 (12)0.52090 (10)0.22737 (12)0.0152 (2)
C80.58682 (11)0.40102 (10)0.15624 (12)0.0147 (2)
C90.66715 (12)0.26082 (10)0.03770 (13)0.0176 (2)
H9A0.56980.24460.04610.021*
H9B0.68870.20060.11720.021*
C100.77830 (12)0.25572 (12)0.01594 (13)0.0213 (3)
H10A0.77770.17600.05660.032*
H10B0.87400.27190.06810.032*
H10C0.75570.31590.09430.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02594 (16)0.01667 (16)0.02897 (16)0.00155 (10)0.02060 (13)0.00199 (10)
O10.0184 (4)0.0141 (4)0.0232 (4)0.0018 (3)0.0128 (3)0.0032 (3)
O20.0200 (4)0.0155 (4)0.0260 (4)0.0020 (3)0.0136 (3)0.0007 (3)
N10.0167 (4)0.0138 (5)0.0185 (4)0.0005 (4)0.0109 (4)0.0015 (3)
N20.0133 (4)0.0130 (5)0.0153 (4)0.0013 (3)0.0053 (3)0.0007 (3)
C10.0109 (5)0.0151 (5)0.0148 (5)0.0005 (4)0.0043 (4)0.0024 (4)
C20.0165 (5)0.0163 (6)0.0187 (5)0.0016 (4)0.0087 (4)0.0002 (4)
C30.0187 (5)0.0144 (5)0.0249 (6)0.0006 (4)0.0084 (5)0.0001 (4)
C40.0164 (5)0.0202 (6)0.0247 (6)0.0026 (4)0.0090 (5)0.0044 (4)
C50.0172 (5)0.0250 (6)0.0201 (5)0.0002 (5)0.0105 (4)0.0017 (4)
C60.0163 (5)0.0169 (5)0.0170 (5)0.0002 (4)0.0078 (4)0.0007 (4)
C70.0144 (5)0.0162 (5)0.0166 (5)0.0020 (4)0.0087 (4)0.0011 (4)
C80.0139 (5)0.0149 (5)0.0146 (5)0.0018 (4)0.0061 (4)0.0025 (4)
C90.0184 (5)0.0151 (5)0.0200 (5)0.0000 (4)0.0098 (4)0.0022 (4)
C100.0189 (6)0.0241 (6)0.0221 (6)0.0015 (5)0.0107 (5)0.0062 (5)
Geometric parameters (Å, º) top
Cl1—C71.7361 (11)C3—H30.9500
O1—C81.3331 (13)C4—C51.3900 (17)
O1—C91.4593 (13)C4—H40.9500
O2—C81.2076 (14)C5—C61.3897 (16)
N1—N21.3282 (13)C5—H50.9500
N1—C11.4035 (14)C6—H60.9500
N1—H10.853 (13)C7—C81.4853 (15)
N2—C71.2765 (14)C9—C101.5035 (15)
C1—C21.3957 (16)C9—H9A0.9900
C1—C61.3939 (15)C9—H9B0.9900
C2—C31.3888 (16)C10—H10A0.9800
C2—H20.9500C10—H10B0.9800
C3—C41.3883 (17)C10—H10C0.9800
C8—O1—C9115.22 (8)C5—C6—H6120.3
N2—N1—C1119.25 (9)C1—C6—H6120.3
N2—N1—H1120.4 (11)N2—C7—C8120.72 (10)
C1—N1—H1120.3 (11)N2—C7—Cl1124.07 (9)
C7—N2—N1120.85 (9)C8—C7—Cl1115.21 (8)
C2—C1—C6120.14 (10)O2—C8—O1124.99 (10)
C2—C1—N1118.64 (10)O2—C8—C7123.26 (10)
C6—C1—N1121.22 (10)O1—C8—C7111.74 (9)
C3—C2—C1119.48 (10)O1—C9—C10106.55 (9)
C3—C2—H2120.3O1—C9—H9A110.4
C1—C2—H2120.3C10—C9—H9A110.4
C4—C3—C2120.91 (11)O1—C9—H9B110.4
C4—C3—H3119.5C10—C9—H9B110.4
C2—C3—H3119.5H9A—C9—H9B108.6
C5—C4—C3119.11 (11)C9—C10—H10A109.5
C5—C4—H4120.4C9—C10—H10B109.5
C3—C4—H4120.4H10A—C10—H10B109.5
C4—C5—C6120.89 (11)C9—C10—H10C109.5
C4—C5—H5119.6H10A—C10—H10C109.5
C6—C5—H5119.6H10B—C10—H10C109.5
C5—C6—C1119.46 (11)
C1—N1—N2—C7179.17 (10)N1—C1—C6—C5179.74 (10)
N2—N1—C1—C2177.17 (9)N1—N2—C7—C8177.11 (9)
N2—N1—C1—C62.49 (15)N1—N2—C7—Cl12.23 (15)
C6—C1—C2—C30.40 (16)C9—O1—C8—O25.24 (15)
N1—C1—C2—C3179.26 (10)C9—O1—C8—C7173.93 (9)
C1—C2—C3—C40.50 (17)N2—C7—C8—O2168.44 (10)
C2—C3—C4—C50.11 (17)Cl1—C7—C8—O210.96 (14)
C3—C4—C5—C60.38 (17)N2—C7—C8—O112.38 (14)
C4—C5—C6—C10.47 (17)Cl1—C7—C8—O1168.22 (7)
C2—C1—C6—C50.08 (16)C8—O1—C9—C10176.85 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.85 (1)2.18 (1)2.969 (1)153 (2)
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H11ClN2O2
Mr226.66
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.5091 (7), 11.1813 (8), 10.1190 (7)
β (°) 118.148 (1)
V3)1048.41 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.30 × 0.30 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.904, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
6532, 2399, 2191
Rint0.022
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.076, 1.03
No. of reflections2399
No. of parameters140
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.21

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.85 (1)2.18 (1)2.969 (1)153 (2)
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors thank King Abdul Aziz University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationShawali, A. S. & Farghaly, T. A. (2008). ARKIVOC, i, 18–64.  CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, J. (2006). Acta Cryst. E62, o5317–o5318.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYin, Z.-G., Du, Y.-J., Zhang, J.-S., Qian, H.-Y. & Wang, Q.-L. (2006). Acta Cryst. E62, o4807–o4808.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds