metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[di­aqua-μ2-oxalato-di-μ4-terephthalato-dilutetium(III)]

aSchool of Materials & Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
*Correspondence e-mail: jxlzfeng@yahoo.com.cn

(Received 22 August 2009; accepted 27 August 2009; online 5 September 2009)

In the title compound, [Lu2(C8H4O4)2(C2O4)(H2O)2]n, the Lu3+ cations are each coordinated by eight O atoms of four terephthalate anions, one oxalate anion and one aqua ligand to complete a distorted square-anti­prismatic geometry. They are bridged by the terephthalate ligands, generating a three-dimensional framework, which is further stabilized by the oxalate ligands. The terephthalate ions and oxalate ions are all located on centers of inversion.

Related literature

For bond lengths and angles in terephthalate anions, see: Daiguebonne et al. (2006[Daiguebonne, C., Kerbellec, N., Bernot, K., Gérault, Y., Deluzet, A. & Guillou, O. (2006). Inorg. Chem. 45, 5399-5406.]).

[Scheme 1]

Experimental

Crystal data
  • [Lu2(C8H4O4)2(C2O4)(H2O)2]

  • Mr = 802.22

  • Triclinic, [P \overline 1]

  • a = 7.0020 (4) Å

  • b = 7.5750 (4) Å

  • c = 10.2068 (6) Å

  • α = 75.472 (1)°

  • β = 70.843 (1)°

  • γ = 88.255 (1)°

  • V = 494.24 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 10.01 mm−1

  • T = 295 K

  • 0.12 × 0.09 × 0.06 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.348, Tmax = 0.542

  • 2812 measured reflections

  • 1962 independent reflections

  • 1850 reflections with I > 2σ(I)

  • Rint = 0.011

Refinement
  • R[F2 > 2σ(F2)] = 0.016

  • wR(F2) = 0.038

  • S = 1.09

  • 1962 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.93 e Å−3

  • Δρmin = −1.28 e Å−3

Table 1
Selected bond lengths (Å)

Lu—O1 2.825 (3)
Lu—O1i 2.304 (3)
Lu—O2 2.297 (2)
Lu—O3 2.259 (2)
Lu—O4ii 2.195 (2)
Lu—O5 2.303 (3)
Lu—O6iii 2.313 (3)
Lu—O7 2.272 (3)
Symmetry codes: (i) -x+1, -y, -z+2; (ii) -x+1, -y+1, -z+2; (iii) -x, -y+1, -z+2.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O3i 0.85 1.92 2.752 (5) 167
O7—H7B⋯O2iv 0.85 1.92 2.764 (6) 177
Symmetry codes: (i) -x+1, -y, -z+2; (iv) -x, -y, -z+2.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the title compound, the asymmetric unit consists of one Lu3+ cation, one half of oxalate anion, two half of terephthalate anions and one aqua ligand. The Lu atoms are each coordinated by eight O atoms of four terephthalate anions, one oxalate anion and one aqua ligand to complete a distorted square antiprismatic geometry (Fig.1). The Lu–O distances are in the range of 2.195 (2)–2.825 (3) Å. The two crystallography independent terephthalate (tp) anions are both located on the center of symmetry and exhibit different types of coordination mode to Lu atoms. The tp1 (O1 to O2, C1 to C4) anion functions as chelating-bridging tridentate ligand, two carboxylate oxygen atoms chelate one Lu atom in which one oxygen atom additionally bonded to another Lu atom with the Lu···Lu seperation of 4.245 (2) Å. Then two edge-shared [LuO8] polyhedra are bridged by the bidentate tp2 (O3 to O4, C5 to C8) ligands to generate one-dimensional chains along [010] direction. Thus the chains are linked by the tp1 and tp2 ligands into a three-dimensional framework. Bond lengths and angles within the terephthalate anions exhibit normal values (Daiguebonne et al., 2006). The oxalate ions are also located on centers of inversion and act as double bidentate (tetradentate) ligand in the linear chain which connect the edge-shared [LuO8] polyhedra along [100] direction to stabilize the three-dimensional framework. The aqua ligands donate hydrogen atoms to terephthalate oxygen atoms O2 and O3 to form hydrogen bonds.

Related literature top

For bond lengths and angles in terephthalate anions, see: Daiguebonne et al. (2006).

Experimental top

A mixture of LuCl3.6H2O (1.00 mmol, 0.39 g), oxalic acid (0.50 mmol, 0.05 g), terephthalic acid (0.50 mmol, 0.09 g), NaOH (2.00 mmol, 0.08 g) and H2O (10.0 ml) was heated in a 23 ml stainless steel reactor with a Teflon liner at 443 K for 48 h. A small amount of colorless column-like crystals were filtered and washed with water and acetone.

Refinement top

H atoms attached to C atoms were included at calculated positions and treated as riding atoms [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)]. The water H atoms were found in a difference map, relocated in idealized positions (O—H = 0.85 Å) and refined as riding atoms with Uiso(H) = 1.5Ueq(O). The highest density peak and deepest hole are located 0.88 Å and 0.90 Å from atom Lu.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compounds, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Symmetry code: (i) 1 - x, -y, 2 - z; (ii) 1 - x, 1 - y, 2 - z; (iii) -x, 1 - y, 2 - z; (iv) 1 - x, -y, 1 - z; (v) 2 - x, 1 - y, 1 - z.
Poly[diaqua-µ2-oxalato-di-µ4-terephthalato-dilutetium(III)] top
Crystal data top
[Lu2(C8H4O4)2(C2O4)(H2O)2]Z = 1
Mr = 802.22F(000) = 374
Triclinic, P1Dx = 2.695 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0020 (4) ÅCell parameters from 368 reflections
b = 7.5750 (4) Åθ = 1.7–26.8°
c = 10.2068 (6) ŵ = 10.01 mm1
α = 75.472 (1)°T = 295 K
β = 70.843 (1)°Rod, colourless
γ = 88.255 (1)°0.12 × 0.09 × 0.06 mm
V = 494.24 (5) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1962 independent reflections
Radiation source: fine-focus sealed tube1850 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.011
ϕ and ω scansθmax = 26.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.348, Tmax = 0.542k = 99
2812 measured reflectionsl = 812
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.016Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.038H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0189P)2 + 0.6568P]
where P = (Fo2 + 2Fc2)/3
1962 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.93 e Å3
0 restraintsΔρmin = 1.28 e Å3
Crystal data top
[Lu2(C8H4O4)2(C2O4)(H2O)2]γ = 88.255 (1)°
Mr = 802.22V = 494.24 (5) Å3
Triclinic, P1Z = 1
a = 7.0020 (4) ÅMo Kα radiation
b = 7.5750 (4) ŵ = 10.01 mm1
c = 10.2068 (6) ÅT = 295 K
α = 75.472 (1)°0.12 × 0.09 × 0.06 mm
β = 70.843 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1962 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1850 reflections with I > 2σ(I)
Tmin = 0.348, Tmax = 0.542Rint = 0.011
2812 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0160 restraints
wR(F2) = 0.038H-atom parameters constrained
S = 1.09Δρmax = 0.93 e Å3
1962 reflectionsΔρmin = 1.28 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Lu0.30978 (2)0.22275 (2)1.015515 (15)0.01188 (6)
C10.3866 (5)0.0271 (5)0.7936 (4)0.0153 (7)
C20.4422 (6)0.0079 (5)0.6429 (4)0.0152 (7)
C30.3265 (6)0.0825 (6)0.5581 (4)0.0291 (10)
H30.20920.13910.59670.035*
C40.6172 (6)0.0741 (6)0.5833 (4)0.0281 (9)
H40.69750.12390.63850.034*
C50.7147 (5)0.4796 (5)0.7823 (4)0.0158 (7)
C60.8631 (6)0.4908 (5)0.6353 (4)0.0173 (7)
C70.8285 (6)0.3850 (6)0.5519 (4)0.0254 (9)
H70.71230.30780.58710.030*
C81.0350 (6)0.6072 (6)0.5834 (4)0.0242 (9)
H81.05860.67930.63870.029*
C90.0823 (5)0.4315 (5)1.0581 (4)0.0169 (7)
O10.4816 (4)0.0502 (4)0.8752 (3)0.0195 (6)
O20.2488 (4)0.1349 (4)0.8326 (3)0.0194 (6)
O30.6143 (4)0.3288 (3)0.8501 (3)0.0178 (5)
O40.7003 (4)0.6170 (4)0.8308 (3)0.0217 (6)
O50.0308 (4)0.2714 (4)1.0930 (3)0.0219 (6)
O60.2519 (4)0.4916 (4)1.1081 (3)0.0219 (6)
O70.1348 (4)0.0421 (4)1.1585 (3)0.0217 (6)
H7B0.01660.07411.16440.032*
H7A0.19660.14071.16700.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Lu0.01296 (8)0.01284 (9)0.00985 (8)0.00229 (5)0.00408 (6)0.00270 (5)
C10.0173 (17)0.0136 (18)0.0151 (17)0.0027 (14)0.0047 (14)0.0044 (14)
C20.0226 (18)0.0141 (18)0.0098 (16)0.0007 (15)0.0071 (14)0.0021 (13)
C30.028 (2)0.045 (3)0.019 (2)0.019 (2)0.0110 (17)0.0139 (19)
C40.029 (2)0.044 (3)0.018 (2)0.019 (2)0.0156 (17)0.0114 (18)
C50.0167 (17)0.0183 (19)0.0120 (17)0.0024 (15)0.0052 (14)0.0030 (14)
C60.0208 (18)0.0151 (18)0.0139 (17)0.0003 (15)0.0035 (14)0.0031 (14)
C70.025 (2)0.026 (2)0.0193 (19)0.0135 (17)0.0027 (16)0.0073 (17)
C80.030 (2)0.026 (2)0.0144 (18)0.0078 (17)0.0006 (16)0.0094 (16)
C90.0171 (17)0.0183 (19)0.0174 (18)0.0041 (15)0.0090 (15)0.0044 (15)
O10.0204 (13)0.0277 (15)0.0116 (12)0.0002 (11)0.0095 (10)0.0013 (11)
O20.0206 (13)0.0245 (15)0.0173 (13)0.0044 (11)0.0081 (11)0.0104 (11)
O30.0177 (13)0.0170 (13)0.0136 (12)0.0010 (11)0.0007 (10)0.0007 (10)
O40.0283 (14)0.0213 (14)0.0175 (13)0.0011 (12)0.0058 (11)0.0106 (11)
O50.0182 (13)0.0148 (14)0.0283 (15)0.0031 (11)0.0061 (11)0.0001 (11)
O60.0191 (13)0.0207 (14)0.0191 (14)0.0063 (11)0.0027 (11)0.0018 (11)
O70.0155 (12)0.0155 (14)0.0297 (15)0.0023 (11)0.0059 (11)0.0004 (11)
Geometric parameters (Å, º) top
Lu—O12.825 (3)C4—H40.9300
Lu—O1i2.304 (3)C5—O41.249 (4)
Lu—O22.297 (2)C5—O31.269 (4)
Lu—O32.259 (2)C5—C61.501 (5)
Lu—O4ii2.195 (2)C6—C71.384 (5)
Lu—O52.303 (3)C6—C81.385 (5)
Lu—O6iii2.313 (3)C7—C8v1.386 (5)
Lu—O72.272 (3)C7—H70.9300
C1—O11.254 (5)C8—H80.9300
C1—O21.273 (4)C9—O61.250 (4)
C1—C21.501 (5)C9—O51.253 (5)
C2—C41.382 (5)C9—C9iii1.540 (7)
C2—C31.383 (5)O7—H7B0.8484
C3—C4iv1.383 (5)O7—H7A0.8520
C3—H30.9300
O4ii—Lu—O399.39 (10)C3—C2—C1120.6 (3)
O4ii—Lu—O7102.84 (10)C2—C3—C4iv120.9 (4)
O3—Lu—O7141.27 (9)C2—C3—H3119.5
O4ii—Lu—O2159.72 (10)C4iv—C3—H3119.5
O3—Lu—O284.59 (9)C2—C4—C3iv120.4 (4)
O7—Lu—O285.32 (10)C2—C4—H4119.8
O4ii—Lu—O579.68 (10)C3iv—C4—H4119.8
O3—Lu—O5145.37 (10)O4—C5—O3124.3 (3)
O7—Lu—O570.51 (9)O4—C5—C6118.3 (3)
O2—Lu—O585.80 (9)O3—C5—C6117.4 (3)
O4ii—Lu—O1i82.38 (10)C7—C6—C8120.0 (3)
O3—Lu—O1i80.24 (9)C7—C6—C5120.1 (3)
O7—Lu—O1i71.85 (9)C8—C6—C5119.9 (3)
O2—Lu—O1i117.89 (9)C6—C7—C8v120.8 (4)
O5—Lu—O1i133.05 (9)C6—C7—H7119.6
O4ii—Lu—O6iii79.30 (10)C8v—C7—H7119.6
O3—Lu—O6iii75.54 (9)C6—C8—C7v119.2 (4)
O7—Lu—O6iii139.58 (9)C6—C8—H8120.4
O2—Lu—O6iii82.52 (10)C7v—C8—H8120.4
O5—Lu—O6iii70.26 (9)O6—C9—O5127.0 (3)
O1i—Lu—O6iii146.60 (10)O6—C9—C9iii116.9 (4)
O4ii—Lu—O1150.40 (9)O5—C9—C9iii116.1 (4)
O3—Lu—O170.43 (8)C1—O1—Lui167.2 (2)
O7—Lu—O174.62 (8)C1—O1—Lu81.1 (2)
O2—Lu—O149.52 (8)Lui—O1—Lu111.31 (9)
O5—Lu—O1124.75 (8)C1—O2—Lu105.5 (2)
O1i—Lu—O168.69 (9)C5—O3—Lu139.5 (2)
O6iii—Lu—O1122.18 (8)C5—O4—Luii157.9 (3)
O1—C1—O2120.9 (3)C9—O5—Lu117.4 (2)
O1—C1—C2121.4 (3)C9—O6—Luiii116.6 (2)
O2—C1—C2117.6 (3)Lu—O7—H7B125.1
C4—C2—C3118.7 (3)Lu—O7—H7A119.5
C4—C2—C1120.6 (3)H7B—O7—H7A105.1
O1—C1—C2—C49.2 (6)O6iii—Lu—O1—Lui144.41 (10)
O2—C1—C2—C4166.0 (4)O1—C1—O2—Lu20.1 (4)
O1—C1—C2—C3175.1 (4)C2—C1—O2—Lu155.1 (2)
O2—C1—C2—C39.7 (5)O4ii—Lu—O2—C1161.4 (3)
C4—C2—C3—C4iv0.6 (7)O3—Lu—O2—C158.9 (2)
C1—C2—C3—C4iv176.5 (4)O7—Lu—O2—C183.7 (2)
C3—C2—C4—C3iv0.6 (7)O5—Lu—O2—C1154.4 (2)
C1—C2—C4—C3iv176.5 (4)O1i—Lu—O2—C117.1 (3)
O4—C5—C6—C7151.7 (4)O6iii—Lu—O2—C1135.0 (2)
O3—C5—C6—C729.5 (5)O1—Lu—O2—C19.9 (2)
O4—C5—C6—C828.4 (6)O4—C5—O3—Lu31.2 (6)
O3—C5—C6—C8150.4 (4)C6—C5—O3—Lu150.1 (3)
C8—C6—C7—C8v0.5 (7)O4ii—Lu—O3—C546.2 (4)
C5—C6—C7—C8v179.4 (4)O7—Lu—O3—C5170.7 (3)
C7—C6—C8—C7v0.5 (7)O2—Lu—O3—C5113.7 (4)
C5—C6—C8—C7v179.5 (4)O5—Lu—O3—C539.2 (4)
O2—C1—O1—Lui177.2 (9)O1i—Lu—O3—C5126.7 (4)
C2—C1—O1—Lui7.8 (13)O6iii—Lu—O3—C530.1 (4)
O2—C1—O1—Lu15.8 (3)O1—Lu—O3—C5162.6 (4)
C2—C1—O1—Lu159.2 (3)O3—C5—O4—Luii49.5 (9)
O4ii—Lu—O1—C1164.1 (2)C6—C5—O4—Luii129.2 (6)
O3—Lu—O1—C190.1 (2)O6—C9—O5—Lu167.0 (3)
O7—Lu—O1—C1106.9 (2)C9iii—C9—O5—Lu12.5 (5)
O2—Lu—O1—C19.8 (2)O4ii—Lu—O5—C968.3 (3)
O5—Lu—O1—C154.6 (2)O3—Lu—O5—C923.3 (3)
O1i—Lu—O1—C1176.9 (3)O7—Lu—O5—C9176.0 (3)
O6iii—Lu—O1—C132.5 (2)O2—Lu—O5—C997.5 (3)
O4ii—Lu—O1—Lui12.9 (2)O1i—Lu—O5—C9137.5 (2)
O3—Lu—O1—Lui86.88 (11)O6iii—Lu—O5—C913.9 (3)
O7—Lu—O1—Lui76.14 (11)O1—Lu—O5—C9130.0 (2)
O2—Lu—O1—Lui173.24 (16)O5—C9—O6—Luiii167.5 (3)
O5—Lu—O1—Lui128.40 (11)C9iii—C9—O6—Luiii13.0 (5)
O1i—Lu—O1—Lui0.0
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y+1, z+2; (iii) x, y+1, z+2; (iv) x+1, y, z+1; (v) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O3i0.851.922.752 (5)167
O7—H7B···O2vi0.851.922.764 (6)177
Symmetry codes: (i) x+1, y, z+2; (vi) x, y, z+2.

Experimental details

Crystal data
Chemical formula[Lu2(C8H4O4)2(C2O4)(H2O)2]
Mr802.22
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)7.0020 (4), 7.5750 (4), 10.2068 (6)
α, β, γ (°)75.472 (1), 70.843 (1), 88.255 (1)
V3)494.24 (5)
Z1
Radiation typeMo Kα
µ (mm1)10.01
Crystal size (mm)0.12 × 0.09 × 0.06
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.348, 0.542
No. of measured, independent and
observed [I > 2σ(I)] reflections
2812, 1962, 1850
Rint0.011
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.038, 1.09
No. of reflections1962
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.93, 1.28

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Lu—O12.825 (3)Lu—O4ii2.195 (2)
Lu—O1i2.304 (3)Lu—O52.303 (3)
Lu—O22.297 (2)Lu—O6iii2.313 (3)
Lu—O32.259 (2)Lu—O72.272 (3)
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y+1, z+2; (iii) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O3i0.851.922.752 (5)167
O7—H7B···O2iv0.851.922.764 (6)177
Symmetry codes: (i) x+1, y, z+2; (iv) x, y, z+2.
 

Acknowledgements

This work was supported by the Jiangxi Provincial Educational foundation (GJJ09227).

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDaiguebonne, C., Kerbellec, N., Bernot, K., Gérault, Y., Deluzet, A. & Guillou, O. (2006). Inorg. Chem. 45, 5399–5406.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds