Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Blue crystals of the title compound, [Cu(C8H3O7S)(C4H11N2)(H2O)]n, were obtained from the slow diffusion of a methanol solution of piperazine into an aqueous solution of sodium 5-sulfo­isophthalate and copper nitrate. The CuII ion coordination is composed of two O atoms from two trianionic 5-sulfoisophthalic acid ligands, one N atom from the piperazinium cation and one water O atom in a distorted square-planar geometry. The Cu2+ ions are bridged by the sulfonate–carboxyl­ate ligands to form a zigzag chain. Hydrogen bonds and π–π inter­actions among the chains produce a three-dimensional hydrogen-bonded architecture.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805028266/ng6189sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805028266/ng6189Isup2.hkl
Contains datablock I

CCDC reference: 287667

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.065
  • wR factor = 0.145
  • Data-to-parameter ratio = 14.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT199_ALERT_1_C Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_C Check the Reported _diffrn_ambient_temperature . 293 K PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.75 Ratio PLAT341_ALERT_3_C Low Bond Precision on C-C bonds (x 1000) Ang ... 7
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

In the past few years, efforts have focused on the study of carboxylate-based (such as malonate, oxalate and benzene-1,3,5-tricarboxylate) coordination polymers because of their interesting network topologies (Moulton & Zaworotko, 2001; Virovets et al., 1993; Yaghi et al., 1996). In extending our own studies on benzene-1,3,5-tricarboxylates, we have also investigated the 5-sulfoisophthalate, and recently reported a series of lanthanide complexes of 5-sulfoisophthalic acid that demonstrates a lanthanide contraction effect (Liu & Xu, 2005a,b,c). Several CdII and CuII complexes of 5-sulfoisophthalic acid have also been reported by others (Sun, Cao, Sun, Bi et al., 2003 or Sun, Cao, Sun, Li et al., 2003; Liu & Xu, 2005a,b,c?).

The self-assembly of the Cu2+ ion with the 5-sulfoisophthalate ion (sip) and piperazine (pip) yields the title complex, (I). The asymmetric unit of (I) consists of one copper(II) ion, one sip3− anion, one piperazinium cation (Hpip+) and one coordinated water molecule. As depicted in Fig. 1, the compound features a zigzag chain structure, which is similar to the structure of the Cd compound (Liu & Xu, 2005a,b,c?). The Cu atom is four-coordinated by two O atoms from two symmetry-related sip3− ligands, one N atom from Hpip+ and one water O atom. The bond dimensions involving Cu are normal (Table 1), and are comparable to the values in related copper complexes (Sun, Cao, Sun, Bi et al., 2003 or Sun, Cao, Sun, Li et al., 2003). The [CuNO3] group assumes a square planar configuration, with a mean deviation of 0.1922 Å; the maximum deviation of 0.2439 (s.u.?) Å is for atoms O5, which is involved in hydrogen bonding. Piperazine should be protonated to achieve charge balance, which is borne out by the existence of the two hydrogen bonds to atom N2. The Hpip+ ion coordinates to the metal center, and is different from the unit found in the copper complex [Cu(Hsip)(H2O)2]·2H2O.0.5pip, which has a free pip molecule (Sun, Cao, Sun, Bi et al., 2003 or Sun, Cao, Sun, Li et al., 2003).

Each sip3− anion bridges two neighboring Cu2+ ions through its two monodentate carboxylate groups (Fig. 1). The sulfonate group is uncoordinated and engages in hydrogen bonding to the coordinated water and Hpip+ ion. The three identical S—O bond distances imply extensive conjugation. The connection of the Cu2+ ions through the carboxylate groups of sip3− anions leads to the formation of a zigzag chain propagating along b. The phenyl rings in the chain are twisted with respect to each other with a dihedral angle of ca 11.6°.

The extensive hydrogen bonds and ππ stacking interactions among the chains are responsible for the three-dimensional supramolecular framework structure (Figs. 2 and 3.) Four types of hydrogen bonds are observed: hydrogen bonds between (i) the coordinated water molecules and carboxylate O atoms; (ii) the coordinated water molecules and sulfonate O atoms; (iii) the coordinated N atom of Hpip+ and carboxylate O atoms; (iv) the non-coordinated N atom of Hpip+ and sulfonate O atoms. The Hpip+ cations appear to fill up the void of the framework. Additionally, ππ stacking interactions between the parallel aromatic rings of the adjacent sip3− anions in an offset fashion with a face-to-face distance of ca 3.614 Å are observed. Similar hydrogen bonds and π-π interactions are also observed in the related CdII and CuII complexes (Liu & Xu, 2005a,b,c,; Sun, Cao, Sun, Bi et al., 2003 or Sun, Cao, Sun, Li et al., 2003).

Experimental top

An aqueous solution (15 ml) of 5-sulfoisophthalic acid sodium salt (0.134 g, 0.5 mmol) and copper(II) nitrate hemipentahydrate (0.116 g, 0.5 mmol) was layered on top of a methanol solution (10 ml) of piperazine (0.047 g, 0.5 mmol). Blue prism-like crystals were obtained after several days (yield 59%). Analysis calculated for C12H16N2O8SCu: C 34.96, H 3.88, N 6.80%; found: C 34.93, H 3.79, N 6.79%.

Refinement top

H atoms attached to C atoms were placed in calculated positions and treated using a riding-model approximation (C—H = 0.93 Å for aromatic H atoms and C—H = 0.97 Å for methylene H). The H atoms bonded to O atoms and N atoms were visible in the difference map and were included in the refinement with an O—H distance restraint of 0.90 (s.u.?) Å and an N—H distance restraint of 0.93 (s.u.?) Å.

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The title compound, with displacement ellipsoids drawn at the 35% probability level. H atoms have been omitted.
[Figure 2] Fig. 2. View of the hydrogen bonds (dashed lines) in the title compound. H atoms not involved in hydrogen bonding have been omitted. Symmetry codes are given in Table 2.
[Figure 3] Fig. 3. View of the three-dimensional hydrogen-bonded supramolecular architecture along a. H atoms have been omitted and hydrogen bonds are shown as dashed lines.
catena-Poly[[aqua(piperazin-1-ium-κN4)copper(II)]-µ-5- sulfonatoisophthalato-κO1:κO3] top
Crystal data top
[Cu(C8H3O7S)(C4H11N2)(H2O)]F(000) = 844
Mr = 411.87Dx = 1.859 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ybcCell parameters from 2385 reflections
a = 7.4257 (12) Åθ = 3.1–27.5°
b = 17.214 (2) ŵ = 1.67 mm1
c = 12.028 (2) ÅT = 293 K
β = 106.863 (7)°Prism, blue
V = 1471.4 (4) Å30.18 × 0.12 × 0.10 mm
Z = 4
Data collection top
Rigaku Mercury70 (2 × 2 bin mode)
diffractometer
3374 independent reflections
Radiation source: fine-focus sealed tube2493 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
h = 98
Tmin = 0.788, Tmax = 0.848k = 2214
11319 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0382P)2 + 8.9617P]
where P = (Fo2 + 2Fc2)/3
3374 reflections(Δ/σ)max < 0.001
237 parametersΔρmax = 0.51 e Å3
5 restraintsΔρmin = 0.67 e Å3
Crystal data top
[Cu(C8H3O7S)(C4H11N2)(H2O)]V = 1471.4 (4) Å3
Mr = 411.87Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.4257 (12) ŵ = 1.67 mm1
b = 17.214 (2) ÅT = 293 K
c = 12.028 (2) Å0.18 × 0.12 × 0.10 mm
β = 106.863 (7)°
Data collection top
Rigaku Mercury70 (2 × 2 bin mode)
diffractometer
3374 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
2493 reflections with I > 2σ(I)
Tmin = 0.788, Tmax = 0.848Rint = 0.069
11319 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0655 restraints
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.51 e Å3
3374 reflectionsΔρmin = 0.67 e Å3
237 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.59406 (10)0.22835 (4)0.29368 (5)0.0242 (2)
O10.6099 (6)0.3378 (2)0.3369 (3)0.0282 (9)
O20.7936 (6)0.2976 (2)0.5056 (3)0.0341 (10)
O30.4577 (5)0.6231 (2)0.2756 (3)0.0267 (9)
O40.6204 (6)0.7053 (2)0.4074 (3)0.0357 (10)
O50.8912 (6)0.5068 (3)0.8484 (3)0.0346 (10)
O61.1800 (5)0.5114 (3)0.7996 (3)0.0349 (10)
O70.9962 (6)0.6293 (2)0.7930 (3)0.0377 (10)
O80.7992 (6)0.2436 (2)0.2220 (4)0.0324 (9)
H8A0.850 (8)0.2908 (16)0.219 (6)0.042 (19)*
H8B0.785 (12)0.221 (4)0.153 (3)0.08 (3)*
N10.4458 (7)0.1999 (3)0.4032 (4)0.0249 (10)
H1A0.433 (8)0.240 (2)0.452 (4)0.032 (17)*
N20.2286 (7)0.0898 (3)0.4926 (4)0.0339 (12)
H2B0.157 (7)0.073 (4)0.540 (4)0.040 (18)*
H2C0.214 (12)0.050 (3)0.439 (6)0.09 (3)*
C10.7365 (7)0.4341 (3)0.4804 (4)0.0191 (10)
C20.6451 (7)0.4941 (3)0.4071 (4)0.0199 (10)
H2A0.56960.48330.33230.024*
C30.6691 (7)0.5702 (3)0.4482 (4)0.0195 (10)
C40.7807 (7)0.5862 (3)0.5598 (4)0.0207 (11)
H4A0.79680.63720.58620.025*
C50.8681 (7)0.5263 (3)0.6320 (4)0.0199 (11)
C60.8481 (7)0.4500 (3)0.5922 (4)0.0211 (11)
H6A0.90910.40990.64030.025*
C70.7155 (7)0.3504 (3)0.4397 (4)0.0206 (11)
C80.5771 (7)0.6383 (3)0.3733 (4)0.0203 (10)
C90.5327 (8)0.1304 (3)0.4724 (5)0.0304 (13)
H9A0.66190.14240.51530.036*
H9B0.53490.08790.41990.036*
C100.4278 (8)0.1049 (4)0.5568 (5)0.0322 (13)
H10A0.48470.05810.59680.039*
H10B0.43520.14510.61450.039*
C110.1353 (9)0.1612 (4)0.4294 (5)0.0347 (14)
H11A0.13730.20260.48440.042*
H11B0.00520.15000.38770.042*
C120.2413 (8)0.1859 (3)0.3449 (5)0.0302 (13)
H12A0.22850.14580.28640.036*
H12B0.18520.23310.30590.036*
S10.99452 (19)0.54539 (8)0.77891 (11)0.0235 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0316 (4)0.0180 (3)0.0204 (3)0.0030 (3)0.0032 (3)0.0032 (3)
O10.044 (2)0.0171 (19)0.0196 (17)0.0015 (17)0.0028 (17)0.0039 (15)
O20.048 (3)0.0156 (19)0.030 (2)0.0021 (18)0.0013 (19)0.0020 (17)
O30.037 (2)0.023 (2)0.0157 (17)0.0010 (17)0.0005 (16)0.0004 (15)
O40.051 (3)0.016 (2)0.033 (2)0.0036 (18)0.0009 (19)0.0007 (17)
O50.042 (2)0.038 (2)0.027 (2)0.003 (2)0.0139 (18)0.0062 (19)
O60.026 (2)0.052 (3)0.0220 (19)0.0034 (19)0.0002 (16)0.0034 (19)
O70.051 (3)0.022 (2)0.031 (2)0.0065 (19)0.0019 (19)0.0093 (18)
O80.037 (2)0.029 (2)0.031 (2)0.0095 (18)0.0100 (18)0.0088 (19)
N10.031 (3)0.016 (2)0.025 (2)0.0024 (19)0.0033 (19)0.0018 (19)
N20.042 (3)0.036 (3)0.023 (2)0.014 (2)0.008 (2)0.002 (2)
C10.023 (3)0.015 (2)0.019 (2)0.001 (2)0.006 (2)0.005 (2)
C20.028 (3)0.017 (2)0.017 (2)0.002 (2)0.009 (2)0.000 (2)
C30.023 (3)0.017 (3)0.018 (2)0.002 (2)0.007 (2)0.004 (2)
C40.027 (3)0.014 (2)0.021 (2)0.001 (2)0.007 (2)0.001 (2)
C50.024 (3)0.017 (3)0.018 (2)0.002 (2)0.006 (2)0.001 (2)
C60.027 (3)0.018 (3)0.016 (2)0.002 (2)0.004 (2)0.003 (2)
C70.030 (3)0.018 (3)0.016 (2)0.002 (2)0.009 (2)0.003 (2)
C80.023 (3)0.020 (3)0.020 (2)0.004 (2)0.009 (2)0.004 (2)
C90.032 (3)0.027 (3)0.028 (3)0.000 (2)0.002 (2)0.006 (2)
C100.043 (4)0.026 (3)0.022 (3)0.007 (3)0.001 (2)0.003 (2)
C110.035 (3)0.034 (3)0.034 (3)0.002 (3)0.009 (3)0.001 (3)
C120.030 (3)0.029 (3)0.028 (3)0.002 (2)0.002 (2)0.003 (3)
S10.0287 (7)0.0217 (7)0.0168 (6)0.0007 (5)0.0014 (5)0.0023 (5)
Geometric parameters (Å, º) top
Cu1—O11.949 (4)C1—C21.399 (7)
Cu1—O81.974 (4)C1—C71.515 (7)
Cu1—O3i1.986 (4)C2—C31.393 (7)
Cu1—N12.007 (5)C2—H2A0.9300
O1—C71.276 (6)C3—C41.386 (7)
O2—C71.234 (6)C3—C81.515 (7)
O3—C81.277 (6)C4—C51.382 (7)
O3—Cu1ii1.986 (4)C4—H4A0.9300
O4—C81.234 (6)C5—C61.391 (7)
O5—S11.449 (4)C5—S11.774 (5)
O6—S11.450 (4)C6—H6A0.9300
O7—S11.453 (4)C9—C101.513 (8)
O8—H8A0.90 (4)C9—H9A0.9700
O8—H8B0.90 (5)C9—H9B0.9700
N1—C91.493 (7)C10—H10A0.9700
N1—C121.496 (7)C10—H10B0.9700
N1—H1A0.93 (4)C11—C121.516 (8)
N2—C101.480 (8)C11—H11A0.9700
N2—C111.504 (8)C11—H11B0.9700
N2—H2B0.93 (5)C12—H12A0.9700
N2—H2C0.93 (6)C12—H12B0.9700
C1—C61.387 (7)
O1—Cu1—O889.63 (17)C1—C6—H6A120.2
O1—Cu1—O3i169.70 (15)C5—C6—H6A120.2
O8—Cu1—O3i91.04 (17)O2—C7—O1122.6 (5)
O1—Cu1—N193.61 (17)O2—C7—C1120.6 (4)
O8—Cu1—N1163.55 (18)O1—C7—C1116.8 (4)
O3i—Cu1—N188.65 (17)O4—C8—O3122.8 (5)
C7—O1—Cu1113.3 (3)O4—C8—C3119.8 (5)
C8—O3—Cu1ii101.3 (3)O3—C8—C3117.4 (5)
Cu1—O8—H8A122 (4)N1—C9—C10112.5 (5)
Cu1—O8—H8B117 (5)N1—C9—H9A109.1
H8A—O8—H8B107 (7)C10—C9—H9A109.1
C9—N1—C12110.4 (4)N1—C9—H9B109.1
C9—N1—Cu1109.3 (3)C10—C9—H9B109.1
C12—N1—Cu1114.0 (3)H9A—C9—H9B107.8
C9—N1—H1A111 (4)N2—C10—C9109.4 (4)
C12—N1—H1A98 (4)N2—C10—H10A109.8
Cu1—N1—H1A114 (4)C9—C10—H10A109.8
C10—N2—C11111.4 (5)N2—C10—H10B109.8
C10—N2—H2B113 (4)C9—C10—H10B109.8
C11—N2—H2B107 (4)H10A—C10—H10B108.2
C10—N2—H2C113 (6)N2—C11—C12108.4 (5)
C11—N2—H2C108 (6)N2—C11—H11A110.0
H2B—N2—H2C103 (7)C12—C11—H11A110.0
C6—C1—C2120.6 (5)N2—C11—H11B110.0
C6—C1—C7118.5 (4)C12—C11—H11B110.0
C2—C1—C7120.9 (4)H11A—C11—H11B108.4
C3—C2—C1118.8 (5)N1—C12—C11112.7 (5)
C3—C2—H2A120.6N1—C12—H12A109.1
C1—C2—H2A120.6C11—C12—H12A109.1
C4—C3—C2120.6 (5)N1—C12—H12B109.1
C4—C3—C8117.5 (5)C11—C12—H12B109.1
C2—C3—C8121.9 (4)H12A—C12—H12B107.8
C5—C4—C3120.0 (5)O5—S1—O6110.6 (3)
C5—C4—H4A120.0O5—S1—O7112.1 (3)
C3—C4—H4A120.0O6—S1—O7113.9 (3)
C4—C5—C6120.3 (5)O5—S1—C5105.9 (2)
C4—C5—S1120.3 (4)O6—S1—C5107.3 (2)
C6—C5—S1119.4 (4)O7—S1—C5106.5 (2)
C1—C6—C5119.6 (5)
O8—Cu1—O1—C794.2 (4)C2—C1—C7—O2178.6 (5)
O3i—Cu1—O1—C7172.0 (8)C6—C1—C7—O1179.1 (5)
N1—Cu1—O1—C769.6 (4)C2—C1—C7—O10.7 (7)
O1—Cu1—N1—C9131.3 (3)Cu1ii—O3—C8—O45.8 (6)
O8—Cu1—N1—C930.3 (8)Cu1ii—O3—C8—C3173.3 (4)
O3i—Cu1—N1—C958.7 (3)C4—C3—C8—O48.6 (7)
O1—Cu1—N1—C12104.6 (4)C2—C3—C8—O4170.9 (5)
O8—Cu1—N1—C12154.4 (6)C4—C3—C8—O3172.2 (5)
O3i—Cu1—N1—C1265.4 (4)C2—C3—C8—O38.3 (7)
C6—C1—C2—C30.5 (8)C12—N1—C9—C1053.4 (6)
C7—C1—C2—C3179.8 (5)Cu1—N1—C9—C10179.6 (4)
C1—C2—C3—C40.4 (8)C11—N2—C10—C959.5 (6)
C1—C2—C3—C8179.1 (5)N1—C9—C10—N256.3 (6)
C2—C3—C4—C50.6 (8)C10—N2—C11—C1259.4 (6)
C8—C3—C4—C5179.9 (5)C9—N1—C12—C1154.0 (6)
C3—C4—C5—C61.5 (8)Cu1—N1—C12—C11177.5 (4)
C3—C4—C5—S1174.6 (4)N2—C11—C12—N156.5 (6)
C2—C1—C6—C50.4 (8)C4—C5—S1—O5113.8 (4)
C7—C1—C6—C5179.3 (5)C6—C5—S1—O562.3 (5)
C4—C5—C6—C11.4 (8)C4—C5—S1—O6128.0 (4)
S1—C5—C6—C1174.7 (4)C6—C5—S1—O655.9 (5)
Cu1—O1—C7—O22.4 (7)C4—C5—S1—O75.7 (5)
Cu1—O1—C7—C1179.7 (3)C6—C5—S1—O7178.2 (4)
C6—C1—C7—O21.1 (8)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8A···O7iii0.90 (4)1.82 (5)2.700 (6)165 (6)
O8—H8B···O2iv0.90 (5)1.82 (3)2.687 (6)162 (8)
N1—H1A···O4v0.93 (4)2.07 (5)2.958 (6)159 (5)
N2—H2B···O5vi0.93 (5)1.88 (3)2.735 (6)153 (6)
N2—H2C···O6vii0.93 (6)1.94 (7)2.842 (7)165 (8)
Symmetry codes: (iii) x+2, y+1, z+1; (iv) x, y+1/2, z1/2; (v) x+1, y+1, z+1; (vi) x+1, y1/2, z+3/2; (vii) x1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu(C8H3O7S)(C4H11N2)(H2O)]
Mr411.87
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.4257 (12), 17.214 (2), 12.028 (2)
β (°) 106.863 (7)
V3)1471.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.67
Crystal size (mm)0.18 × 0.12 × 0.10
Data collection
DiffractometerRigaku Mercury70 (2 × 2 bin mode)
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2000)
Tmin, Tmax0.788, 0.848
No. of measured, independent and
observed [I > 2σ(I)] reflections
11319, 3374, 2493
Rint0.069
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.145, 1.00
No. of reflections3374
No. of parameters237
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.51, 0.67

Computer programs: CrystalClear (Rigaku, 2000), CrystalClear, SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXTL.

Selected geometric parameters (Å, º) top
Cu1—O11.949 (4)O5—S11.449 (4)
Cu1—O81.974 (4)O6—S11.450 (4)
Cu1—O3i1.986 (4)O7—S11.453 (4)
Cu1—N12.007 (5)
O1—Cu1—O889.63 (17)O8—Cu1—N1163.55 (18)
O8—Cu1—O3i91.04 (17)O3i—Cu1—N188.65 (17)
O1—Cu1—N193.61 (17)
Symmetry code: (i) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8A···O7ii0.90 (4)1.82 (5)2.700 (6)165 (6)
O8—H8B···O2iii0.90 (5)1.82 (3)2.687 (6)162 (8)
N1—H1A···O4iv0.93 (4)2.07 (5)2.958 (6)159 (5)
N2—H2B···O5v0.93 (5)1.88 (3)2.735 (6)153 (6)
N2—H2C···O6vi0.93 (6)1.94 (7)2.842 (7)165 (8)
Symmetry codes: (ii) x+2, y+1, z+1; (iii) x, y+1/2, z1/2; (iv) x+1, y+1, z+1; (v) x+1, y1/2, z+3/2; (vi) x1, y+1/2, z1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds