metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[tris­­(1H-pyrazol-1-yl-κN2)methane]­nickel(II) bis­­{[tris­­(1H-pyrazol-1-yl-κN2)methane]­tris­­(thio­cyanato-κN)nickelate(II)} methanol disolvate

aDepartment of Chemistry and Physics, Southern Arkansas University, Magnolia, AR 71753, USA, and bDepartment of Chemistry, University of Kentucky, Lexington, KY 40506, USA
*Correspondence e-mail: gannalyubartseva@saumag.edu

(Received 20 October 2011; accepted 27 October 2011; online 5 November 2011)

Attempts to prepare the mononuclear [(tpm)NiIIL3]−1 [tpm = tris­(1H-pyrazol-1-yl)methane and L = thio­cyanate] anion yielded the methanol-solvated salt, [(tpm)2NiII][(tpm)NiII(NCS)3]2·2CH3OH or [Ni(C10H10N6)2][Ni(NCS)3(C10H10N6)]2·2CH3OH. The asymmetric unit consists of half a centrosymmetric bis­[tris­(1H-pyrazol-1-yl)methane]­nickel(II) cation and an octa­hedral nickelate(II) anion bound to one tpm and three L ligands, and a methanol solvent mol­ecule. One of the L ligands is disordered over two positions with occupancy factors of 0.650 (3) and 0.350 (3). There are O—H⋯S inter­actions between the methanol and the disordered thio­cyanate anion, and a weak C—H⋯O hydrogen bond between the cation and the methanol O atom.

Related literature

For the ligand synthesis, see: Reger et al. (2000[Reger, D. L., Grattan, T. C., Brown, K. J., Little, C. A., Lamba, J. J. S., Rheingold, A. L. & Sommer, R. D. (2000). J. Organomet. Chem. 607, 120-128.]). For structural, spectroscopic and angular overlap studies of tris­(1H-pyrazol-1-yl)methane complexes, see: Astley et al. (1993[Astley, T., Gulbis, J. M., Hitchman, M. A. & Tiekink, E. R. T. (1993). J. Chem. Soc. Dalton Trans. pp. 509-515.]). For background information on the modelling of metallo-enzyme sites by small mol­ecules, see: Kitajima et al. (1992[Kitajima, N., Fujisawa, K., Fujimoto, C., Morooka, Y., Hashimoto, S., Kitagawa, T., Toriumi, K., Tatsumi, K. & Nakamura, A. (1992). J. Am. Chem. Soc. 114, 1277—1291.]); Trofimenko et al. (1992[Trofimenko, S., Calabrese, J. C., Kochi, J. K., Wolowiec, S., Hulsbergen, F. B. & Reedijk, J. (1992). Inorg. Chem. 31, 3943-3950.]); Looney et al. (1992[Looney, A., Parkin, G., Alsfasser, R., Ruf, M. & Vahrenkamp, H. (1992). Angew. Chem. Int. Ed. 31, 92-93.]); Looney & Parkin (1994[Looney, A. & Parkin, G. (1994). Inorg. Chem. 33, 1234-1237.]). A previous attempt to make similar building blocks with nickel(II) and a cyanide ligand is given in Lyubartseva & Parkin (2009[Lyubartseva, G. & Parkin, S. (2009). Acta Cryst. E65, m1530.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C10H10N6)2][Ni(NCS)3(C10H10N6)]2·2CH4O

  • Mr = 1445.65

  • Monoclinic, C 2/c

  • a = 33.4463 (8) Å

  • b = 7.3287 (2) Å

  • c = 27.2689 (7) Å

  • β = 112.590 (1)°

  • V = 6171.3 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.52 mm−1

  • T = 90 K

  • 0.20 × 0.06 × 0.02 mm

Data collection
  • Bruker X8 Proteum diffractometer

  • Absorption correction: multi-scan (SADABS in APEX2; Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.740, Tmax = 0.933

  • 41685 measured reflections

  • 5605 independent reflections

  • 4932 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.128

  • S = 1.11

  • 5605 reflections

  • 418 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 1.34 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1S—H1S⋯S3i 0.84 2.43 3.267 (4) 175
O1S—H1S⋯S3′i 0.84 2.88 3.459 (6) 128
C23—H23⋯O1S 1.00 2.15 3.118 (4) 162
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and local procedures.

Supporting information


Comment top

Tripodal ligands with three pyrazolyl groups are increasingly being used in small-molecule modeling of the active sites of metallo-enzymes in which the metal is coordinated to two or three imidazole groups from histidine (Kitajima et al. 1992, Trofimenko et al. 1992, Looney et al. 1992, Looney & Parkin 1994). One of the goals of this research is to explore the chemistry of the neutral ligand tris(pyrazol-1-yl)methane compared to the more extensively studied isoelectronic but anionic ligand tris(pyrazol-1-yl)borate. In attempts to prepare mononuclear [(tpm)NiIIL3]-1 , where tpm is tris(pyrazol-1-yl)methane, a symmetrical tripodal neutral nitrogen donor ligand, and L is NCS-, a uninegative N-donor pseudohalide anion, we obtained [(tpm)2NiII][(tpm)NiII(NCS)3]2.2CH3OH as blue monoclinic crystals in 57% isolated yield. The structure consists of centrosymmetric [bis[tris(1-pyrazolyl)methane-κ3]-nickel(II) cations, with NiII—N distances ranging from 2.077 (2) to 2.082 (2) Å. The intraligand N—Ni—N angles in the cation range from 85.81 (10) to 95.27 (10)°, which introduces a slight trigonal distortion from perfect octahedral geometry. The anion consists of nickellate (II) atom surrounded octahedrally by one tripodal tris(pyrazol-1-yl)methane ligand and three isothiocyanate ligands. The tpm ligand N—Ni distances range from 2.080 (3) to 2.119 (3) Å, and the isothiocyanate N—Ni distances range from 2.046 (3) to 2.070 (3) Å.

Related literature top

For the ligand synthesis, see: Reger et al. (2000). For structural, spectroscopic and angular overlap studies of tris(pyrazol-1-yl)methane complexes, see: Astley et al. (1993). For background information on the modelling of metallo-enzyme sites by small molecules, see: Kitajima et al. (1992); Trofimenko et al. (1992); Looney et al. (1992); Looney & Parkin (1994). A previous attempt to make similar building blocks with nickel(II) and a cyanide ligand is given in Lyubartseva & Parkin (2009).

Experimental top

The tris(pyrazolyl)methane ligand was synthesized according to the previously published procedure by Reger et al. (2000). Tetrabutylammonium thiocyanate was purchased from Aldrich and used as received. NiCl2.6H20 (475 mg, 2 mmol) was dissolved in 15 ml methanol. Tris(pyrazolyl) methane (428 mg, 2 mmol) was dissolved in 15 ml methanol. The ligand solution was added dropwise to metal solution and with moderate stirring. Once the addition was complete, tetrabutylammonium thiocyanate (1.81 g, 6 mmol) was added. The solution was filtered and methanol was evaporated slowly. Blue crystals were obtained after 3 days (549 mg, 57% yield). Elemental analysis, calculated for Ni3C48H48N30S6O2 : C 39.88, H 3.35, N 29.07; found C 39.21, H 2.99, N 29.27%. IR (cm-1): 3361, 3133, 2977, 2071, 1516, 1440, 1400, 1284, 1247, 1220, 1088, 1050, 980, 905, 858, 788, 766, 660, 608, 475.

Refinement top

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained distances of 0.98 Å (RCH3), 1.00 Å (R3CH), 0.95 Å (Csp2H), 0.84 Å (O—H), and with Uiso(H) values set to either 1.2Ueq or 1.5Ueq (RCH3, OH) of the attached atom.

To ensure satisfactory refinement of disordered parts of the structure, a combination of constraints and restraints were used. The SHELXL97 constraints EXYZ and EADP were used to make the geometry and displacement parameters of closely proximate disordered atoms equal. The SHELXL97 restraint command DELU was also used to ensure similar displacement parameters for closely proximate, chemically similar groups.

The final weighting scheme (SHELXL-97 command "WGHT"), which is optimized to give a flat analysis of variance, had a somewhat larger than usual value for the second parameter. This is generally attributed to some form of bias, such as could be caused by unrecognized twinning or some other kind of incomplete model. We observed no obvious cause for the unusual weighting scheme, but the available sample was far from perfect. Indeed, the crystals were covered in a blue powder, which was likely caused by partial drying of the crystal. Some of this blue powder was easy to remove, but some was stuck to the crystal surface and could not be removed without damaging the crystals.

In the final difference map there are small residual peaks clustered around the disordered isothiocyanate sulphur. This could perhaps be due to partial occupancy/disordered solvent, but all attempts to model it as such did not improve the refinement enough to warrant retention of the extra details.

Structure description top

Tripodal ligands with three pyrazolyl groups are increasingly being used in small-molecule modeling of the active sites of metallo-enzymes in which the metal is coordinated to two or three imidazole groups from histidine (Kitajima et al. 1992, Trofimenko et al. 1992, Looney et al. 1992, Looney & Parkin 1994). One of the goals of this research is to explore the chemistry of the neutral ligand tris(pyrazol-1-yl)methane compared to the more extensively studied isoelectronic but anionic ligand tris(pyrazol-1-yl)borate. In attempts to prepare mononuclear [(tpm)NiIIL3]-1 , where tpm is tris(pyrazol-1-yl)methane, a symmetrical tripodal neutral nitrogen donor ligand, and L is NCS-, a uninegative N-donor pseudohalide anion, we obtained [(tpm)2NiII][(tpm)NiII(NCS)3]2.2CH3OH as blue monoclinic crystals in 57% isolated yield. The structure consists of centrosymmetric [bis[tris(1-pyrazolyl)methane-κ3]-nickel(II) cations, with NiII—N distances ranging from 2.077 (2) to 2.082 (2) Å. The intraligand N—Ni—N angles in the cation range from 85.81 (10) to 95.27 (10)°, which introduces a slight trigonal distortion from perfect octahedral geometry. The anion consists of nickellate (II) atom surrounded octahedrally by one tripodal tris(pyrazol-1-yl)methane ligand and three isothiocyanate ligands. The tpm ligand N—Ni distances range from 2.080 (3) to 2.119 (3) Å, and the isothiocyanate N—Ni distances range from 2.046 (3) to 2.070 (3) Å.

For the ligand synthesis, see: Reger et al. (2000). For structural, spectroscopic and angular overlap studies of tris(pyrazol-1-yl)methane complexes, see: Astley et al. (1993). For background information on the modelling of metallo-enzyme sites by small molecules, see: Kitajima et al. (1992); Trofimenko et al. (1992); Looney et al. (1992); Looney & Parkin (1994). A previous attempt to make similar building blocks with nickel(II) and a cyanide ligand is given in Lyubartseva & Parkin (2009).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELX97 (Sheldrick, 2008) and local procedures.

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level. The minor isothiocynate disorder component is shown with open bonds. Unlabelled atoms are related to their labelled counterparts by inversion (0.5 - x, 1.5 - y, 1 - z).
[Figure 2] Fig. 2. Packing diagram of the title compound as viewed down the b axis. The hydrogen atoms are omitted to enhance clarity.
Bis[tris(1H-pyrazol-1-yl-κN2)methane]nickel(II) bis{[tris(1H-pyrazol-1-yl-κN2)methane]tris(thiocyanato- κN)nickelate(II)} methanol disolvate top
Crystal data top
[Ni(C10H10N6)2][Ni(NCS)3(C10H10N6)]2·2CH4OF(000) = 2968
Mr = 1445.65Dx = 1.556 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -C 2ycCell parameters from 9957 reflections
a = 33.4463 (8) Åθ = 2.9–67.8°
b = 7.3287 (2) ŵ = 3.52 mm1
c = 27.2689 (7) ÅT = 90 K
β = 112.590 (1)°Rod, blue
V = 6171.3 (3) Å30.20 × 0.06 × 0.02 mm
Z = 4
Data collection top
Bruker X8 Proteum
diffractometer
5605 independent reflections
Radiation source: fine-focus rotating anode4932 reflections with I > 2σ(I)
Graded multilayer optics monochromatorRint = 0.061
Detector resolution: 5.6 pixels mm-1θmax = 68.0°, θmin = 2.9°
φ and ω scansh = 3939
Absorption correction: multi-scan
(SADABS in APEX2; Bruker, 2006)
k = 88
Tmin = 0.740, Tmax = 0.933l = 3232
41685 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0515P)2 + 28.6001P]
where P = (Fo2 + 2Fc2)/3
5605 reflections(Δ/σ)max = 0.001
418 parametersΔρmax = 1.34 e Å3
6 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Ni(C10H10N6)2][Ni(NCS)3(C10H10N6)]2·2CH4OV = 6171.3 (3) Å3
Mr = 1445.65Z = 4
Monoclinic, C2/cCu Kα radiation
a = 33.4463 (8) ŵ = 3.52 mm1
b = 7.3287 (2) ÅT = 90 K
c = 27.2689 (7) Å0.20 × 0.06 × 0.02 mm
β = 112.590 (1)°
Data collection top
Bruker X8 Proteum
diffractometer
5605 independent reflections
Absorption correction: multi-scan
(SADABS in APEX2; Bruker, 2006)
4932 reflections with I > 2σ(I)
Tmin = 0.740, Tmax = 0.933Rint = 0.061
41685 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0496 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0515P)2 + 28.6001P]
where P = (Fo2 + 2Fc2)/3
5605 reflectionsΔρmax = 1.34 e Å3
418 parametersΔρmin = 0.44 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. The crystals were covered in a blue powder, which was likely caused by partial drying of the crystal. Some of this blue stuff was easy to remove, but some was stuck to the crystal surface and could not be removed without damaging the crystal.

In the final difference map there are small residual peaks clustered around the disordered thiocyanate group. This could perhaps be due to partial occupancy/disordered solvent, but all attempts to model it as such did not improve the refinement enough to warrant retention of the extra details.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.388647 (18)0.19922 (7)0.82166 (2)0.02134 (16)
C10.38951 (11)0.2289 (4)0.82452 (14)0.0230 (7)
H10.38950.36530.82510.028*
N10.33737 (9)0.0180 (4)0.80613 (11)0.0212 (6)
N20.34542 (9)0.1642 (4)0.80957 (11)0.0196 (6)
C20.29596 (11)0.0339 (5)0.79732 (13)0.0221 (7)
H20.28100.14670.79330.027*
C30.27681 (11)0.1379 (5)0.79473 (13)0.0236 (7)
H30.24740.16300.78850.028*
C40.30942 (11)0.2617 (5)0.80312 (13)0.0214 (7)
H40.30720.39080.80420.026*
N30.41898 (9)0.0209 (4)0.88658 (12)0.0234 (6)
N40.41572 (9)0.1623 (4)0.87707 (11)0.0220 (6)
C50.44066 (11)0.0375 (5)0.93835 (14)0.0253 (7)
H50.44770.15060.95670.030*
C60.45189 (12)0.1344 (5)0.96261 (15)0.0322 (8)
H60.46770.15920.99920.039*
C70.43519 (11)0.2583 (5)0.92251 (15)0.0290 (8)
H70.43690.38740.92580.035*
N50.41142 (9)0.0136 (4)0.77985 (12)0.0241 (6)
N60.40755 (9)0.1675 (4)0.78705 (12)0.0226 (6)
C80.43166 (12)0.0246 (5)0.74650 (15)0.0286 (8)
H80.43890.13590.73400.034*
C90.44093 (12)0.1481 (5)0.73221 (15)0.0322 (8)
H90.45510.17620.70890.039*
C100.42528 (11)0.2688 (5)0.75883 (15)0.0286 (8)
H100.42660.39820.75780.034*
N70.36703 (10)0.3584 (4)0.86862 (12)0.0280 (7)
C110.36862 (11)0.3894 (4)0.91106 (15)0.0253 (8)
S10.37247 (3)0.43823 (13)0.97092 (4)0.0346 (2)
N80.35651 (10)0.3522 (4)0.75539 (12)0.0276 (6)
C120.33809 (11)0.4581 (5)0.72297 (13)0.0221 (7)
S20.31218 (3)0.61217 (12)0.67928 (3)0.0267 (2)
N90.44458 (11)0.3525 (4)0.84076 (15)0.0371 (8)0.650 (3)
C130.4780 (2)0.3745 (8)0.8323 (3)0.0346 (11)0.650 (3)
S30.52288 (6)0.4092 (2)0.82170 (10)0.0554 (6)0.650 (3)
N9'0.44458 (11)0.3525 (4)0.84076 (15)0.0371 (8)0.350 (3)
C13'0.4749 (4)0.3881 (14)0.8716 (5)0.0346 (11)0.350 (3)
S3'0.52609 (11)0.4382 (5)0.91591 (17)0.0639 (14)0.350 (3)
Ni20.25000.75000.50000.01688 (18)
N100.30477 (8)0.5976 (4)0.54331 (10)0.0187 (6)
N110.34180 (9)0.6897 (4)0.57058 (10)0.0190 (6)
C140.31541 (11)0.4229 (4)0.55193 (13)0.0219 (7)
H140.29590.32420.53790.026*
C150.35916 (11)0.4038 (5)0.58445 (14)0.0246 (7)
H150.37460.29310.59640.030*
C160.37506 (11)0.5770 (4)0.59556 (13)0.0220 (7)
H160.40400.61120.61680.026*
N120.26851 (9)0.9206 (4)0.56604 (11)0.0207 (6)
N130.31151 (9)0.9582 (3)0.59102 (11)0.0187 (6)
C170.31975 (12)1.0505 (5)0.63671 (14)0.0256 (7)
H170.34731.09000.66110.031*
C180.28065 (13)1.0760 (5)0.64097 (15)0.0331 (9)
H180.27551.13790.66860.040*
C190.24998 (12)0.9929 (5)0.59665 (14)0.0262 (7)
H190.21980.98850.58930.031*
N140.20875 (8)0.5902 (4)0.52268 (11)0.0195 (6)
N150.16941 (9)0.5474 (4)0.48424 (11)0.0188 (6)
C200.20858 (11)0.5150 (4)0.56683 (13)0.0220 (7)
H200.23190.52150.60040.026*
C210.16970 (12)0.4255 (5)0.55738 (14)0.0262 (7)
H210.16180.36110.58260.031*
C220.14512 (11)0.4486 (4)0.50472 (13)0.0217 (7)
H220.11660.40440.48600.026*
C230.15845 (11)0.6126 (4)0.43080 (13)0.0188 (6)
H230.12870.56810.40840.023*
O1S0.06346 (9)0.4684 (4)0.38493 (13)0.0447 (7)
H1S0.05330.36830.37050.067*
C1S0.03005 (16)0.5722 (8)0.3923 (2)0.0562 (13)
H1S10.04280.65010.42370.084*
H1S20.00900.48920.39740.084*
H1S30.01550.64840.36100.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0240 (3)0.0130 (3)0.0281 (3)0.0013 (2)0.0112 (2)0.0001 (2)
C10.0249 (17)0.0149 (16)0.0311 (18)0.0032 (13)0.0129 (14)0.0018 (13)
N10.0254 (15)0.0134 (13)0.0269 (14)0.0003 (11)0.0123 (12)0.0014 (11)
N20.0199 (14)0.0145 (13)0.0261 (14)0.0017 (10)0.0107 (11)0.0015 (11)
C20.0239 (17)0.0188 (16)0.0255 (17)0.0024 (13)0.0114 (14)0.0016 (13)
C30.0216 (17)0.0243 (17)0.0278 (17)0.0021 (14)0.0126 (14)0.0007 (14)
C40.0239 (17)0.0174 (16)0.0258 (16)0.0037 (13)0.0128 (14)0.0021 (13)
N30.0241 (15)0.0135 (13)0.0336 (16)0.0005 (11)0.0121 (12)0.0009 (11)
N40.0217 (14)0.0152 (13)0.0290 (15)0.0009 (11)0.0093 (12)0.0010 (11)
C50.0193 (17)0.0281 (18)0.0273 (18)0.0020 (14)0.0075 (14)0.0043 (14)
C60.0223 (18)0.037 (2)0.0326 (19)0.0025 (15)0.0053 (15)0.0040 (16)
C70.0219 (17)0.0202 (17)0.041 (2)0.0002 (14)0.0079 (15)0.0092 (15)
N50.0266 (15)0.0175 (14)0.0324 (16)0.0019 (11)0.0158 (13)0.0000 (12)
N60.0241 (15)0.0153 (13)0.0343 (16)0.0006 (11)0.0176 (12)0.0031 (11)
C80.0275 (19)0.0284 (19)0.0330 (19)0.0053 (15)0.0151 (15)0.0003 (15)
C90.0298 (19)0.036 (2)0.037 (2)0.0051 (16)0.0198 (16)0.0094 (17)
C100.0249 (18)0.0234 (18)0.040 (2)0.0006 (14)0.0153 (16)0.0080 (15)
N70.0352 (17)0.0172 (14)0.0327 (17)0.0006 (12)0.0141 (13)0.0011 (12)
C110.0242 (18)0.0132 (16)0.041 (2)0.0018 (13)0.0157 (15)0.0005 (14)
S10.0471 (6)0.0277 (5)0.0401 (5)0.0074 (4)0.0290 (5)0.0065 (4)
N80.0303 (16)0.0204 (15)0.0350 (17)0.0018 (12)0.0157 (13)0.0014 (13)
C120.0238 (17)0.0198 (17)0.0264 (17)0.0048 (14)0.0138 (14)0.0030 (14)
S20.0291 (5)0.0257 (4)0.0254 (4)0.0008 (3)0.0104 (3)0.0054 (3)
N90.0317 (18)0.0188 (16)0.057 (2)0.0024 (13)0.0135 (16)0.0059 (14)
C130.040 (3)0.019 (2)0.042 (3)0.003 (2)0.013 (2)0.002 (2)
S30.0371 (10)0.0350 (10)0.0990 (16)0.0052 (7)0.0315 (10)0.0063 (9)
N9'0.0317 (18)0.0188 (16)0.057 (2)0.0024 (13)0.0135 (16)0.0059 (14)
C13'0.040 (3)0.019 (2)0.042 (3)0.003 (2)0.013 (2)0.002 (2)
S3'0.0323 (18)0.056 (2)0.077 (3)0.0159 (15)0.0082 (16)0.0269 (19)
Ni20.0191 (4)0.0123 (4)0.0213 (4)0.0001 (3)0.0100 (3)0.0002 (3)
N100.0208 (14)0.0133 (13)0.0237 (14)0.0007 (10)0.0105 (11)0.0002 (10)
N110.0226 (14)0.0145 (13)0.0213 (13)0.0015 (11)0.0099 (11)0.0003 (10)
C140.0272 (18)0.0106 (15)0.0311 (18)0.0003 (13)0.0147 (14)0.0007 (13)
C150.0263 (18)0.0159 (16)0.0324 (18)0.0057 (13)0.0121 (15)0.0019 (13)
C160.0200 (17)0.0206 (17)0.0256 (17)0.0019 (13)0.0089 (13)0.0049 (13)
N120.0208 (14)0.0164 (13)0.0268 (15)0.0007 (11)0.0112 (12)0.0019 (11)
N130.0212 (14)0.0128 (13)0.0237 (14)0.0002 (10)0.0105 (11)0.0009 (10)
C170.0332 (19)0.0195 (17)0.0246 (17)0.0043 (14)0.0117 (15)0.0058 (13)
C180.044 (2)0.0280 (19)0.035 (2)0.0018 (16)0.0233 (18)0.0105 (16)
C190.0296 (19)0.0216 (17)0.0336 (19)0.0016 (14)0.0190 (15)0.0036 (14)
N140.0184 (14)0.0172 (13)0.0223 (14)0.0001 (11)0.0071 (11)0.0009 (11)
N150.0202 (14)0.0151 (13)0.0227 (14)0.0019 (10)0.0101 (11)0.0007 (10)
C200.0254 (18)0.0208 (17)0.0228 (16)0.0017 (13)0.0125 (14)0.0017 (13)
C210.0312 (19)0.0238 (18)0.0287 (18)0.0015 (14)0.0171 (15)0.0044 (14)
C220.0242 (17)0.0164 (16)0.0278 (17)0.0034 (13)0.0134 (14)0.0024 (13)
C230.0230 (16)0.0135 (15)0.0219 (16)0.0000 (12)0.0109 (13)0.0009 (12)
O1S0.0299 (15)0.0500 (19)0.0543 (19)0.0059 (13)0.0164 (13)0.0060 (15)
C1S0.049 (3)0.067 (3)0.061 (3)0.001 (2)0.031 (2)0.005 (3)
Geometric parameters (Å, º) top
Ni1—N82.046 (3)Ni2—N14i2.077 (3)
Ni1—N72.058 (3)Ni2—N142.077 (3)
Ni1—N92.070 (3)Ni2—N12i2.081 (3)
Ni1—N12.080 (3)Ni2—N122.081 (3)
Ni1—N52.097 (3)Ni2—N10i2.082 (3)
Ni1—N32.119 (3)Ni2—N102.082 (3)
C1—N61.444 (4)N10—C141.325 (4)
C1—N41.447 (4)N10—N111.355 (4)
C1—N21.450 (4)N11—C161.342 (4)
C1—H11.0000N11—C23i1.449 (4)
N1—C21.317 (4)C14—C151.396 (5)
N1—N21.358 (4)C14—H140.9500
N2—C41.352 (4)C15—C161.365 (5)
C2—C31.402 (5)C15—H150.9500
C2—H20.9500C16—H160.9500
C3—C41.369 (5)N12—C191.327 (4)
C3—H30.9500N12—N131.362 (4)
C4—H40.9500N13—C171.349 (4)
N3—C51.322 (5)N13—C23i1.447 (4)
N3—N41.364 (4)C17—C181.369 (5)
N4—C71.355 (5)C17—H170.9500
C5—C61.405 (5)C18—C191.390 (5)
C5—H50.9500C18—H180.9500
C6—C71.365 (6)C19—H190.9500
C6—H60.9500N14—C201.326 (4)
C7—H70.9500N14—N151.367 (4)
N5—C81.328 (5)N15—C221.358 (4)
N5—N61.355 (4)N15—C231.441 (4)
N6—C101.359 (4)C20—C211.389 (5)
C8—C91.394 (5)C20—H200.9500
C8—H80.9500C21—C221.364 (5)
C9—C101.369 (5)C21—H210.9500
C9—H90.9500C22—H220.9500
C10—H100.9500C23—N13i1.447 (4)
N7—C111.160 (5)C23—N11i1.449 (4)
C11—S11.627 (4)C23—H231.0000
N8—C121.160 (5)O1S—C1S1.429 (6)
C12—S21.629 (4)O1S—H1S0.8400
N9—C131.237 (7)C1S—H1S10.9800
C13—S31.652 (7)C1S—H1S20.9800
C13'—S3'1.713 (12)C1S—H1S30.9800
N8—Ni1—N792.74 (12)N14i—Ni2—N12i95.27 (10)
N8—Ni1—N992.42 (13)N14—Ni2—N12i84.73 (10)
N7—Ni1—N992.02 (14)N14i—Ni2—N1284.73 (10)
N8—Ni1—N193.31 (12)N14—Ni2—N1295.27 (10)
N7—Ni1—N191.68 (12)N12i—Ni2—N12179.996 (1)
N9—Ni1—N1173.02 (12)N14i—Ni2—N10i93.96 (10)
N8—Ni1—N593.02 (12)N14—Ni2—N10i86.04 (10)
N7—Ni1—N5173.64 (12)N12i—Ni2—N10i85.81 (10)
N9—Ni1—N590.41 (13)N12—Ni2—N10i94.19 (10)
N1—Ni1—N585.31 (11)N14i—Ni2—N1086.04 (10)
N8—Ni1—N3175.06 (12)N14—Ni2—N1093.96 (10)
N7—Ni1—N389.98 (12)N12i—Ni2—N1094.19 (10)
N9—Ni1—N391.61 (12)N12—Ni2—N1085.81 (10)
N1—Ni1—N382.48 (11)N10i—Ni2—N10180.00 (15)
N5—Ni1—N384.08 (11)C14—N10—N11104.9 (3)
N6—C1—N4109.7 (3)C14—N10—Ni2137.4 (2)
N6—C1—N2110.8 (3)N11—N10—Ni2117.63 (19)
N4—C1—N2109.4 (3)C16—N11—N10112.2 (3)
N6—C1—H1109.0C16—N11—C23i128.6 (3)
N4—C1—H1109.0N10—N11—C23i119.3 (3)
N2—C1—H1109.0N10—C14—C15110.7 (3)
C2—N1—N2105.4 (3)N10—C14—H14124.6
C2—N1—Ni1135.1 (2)C15—C14—H14124.6
N2—N1—Ni1119.2 (2)C16—C15—C14105.8 (3)
C4—N2—N1111.6 (3)C16—C15—H15127.1
C4—N2—C1128.5 (3)C14—C15—H15127.1
N1—N2—C1119.6 (3)N11—C16—C15106.4 (3)
N1—C2—C3111.0 (3)N11—C16—H16126.8
N1—C2—H2124.5C15—C16—H16126.8
C3—C2—H2124.5C19—N12—N13105.2 (3)
C4—C3—C2105.5 (3)C19—N12—Ni2136.8 (2)
C4—C3—H3127.2N13—N12—Ni2117.43 (19)
C2—C3—H3127.2C17—N13—N12111.4 (3)
N2—C4—C3106.5 (3)C17—N13—C23i129.2 (3)
N2—C4—H4126.8N12—N13—C23i119.2 (3)
C3—C4—H4126.8N13—C17—C18106.5 (3)
C5—N3—N4105.3 (3)N13—C17—H17126.8
C5—N3—Ni1136.5 (2)C18—C17—H17126.8
N4—N3—Ni1118.1 (2)C17—C18—C19106.0 (3)
C7—N4—N3111.3 (3)C17—C18—H18127.0
C7—N4—C1128.7 (3)C19—C18—H18127.0
N3—N4—C1119.6 (3)N12—C19—C18110.8 (3)
N3—C5—C6111.0 (3)N12—C19—H19124.6
N3—C5—H5124.5C18—C19—H19124.6
C6—C5—H5124.5C20—N14—N15105.2 (3)
C7—C6—C5105.4 (3)C20—N14—Ni2137.7 (2)
C7—C6—H6127.3N15—N14—Ni2117.06 (19)
C5—C6—H6127.3C22—N15—N14111.0 (3)
N4—C7—C6107.0 (3)C22—N15—C23129.3 (3)
N4—C7—H7126.5N14—N15—C23119.7 (3)
C6—C7—H7126.5N14—C20—C21111.0 (3)
C8—N5—N6105.1 (3)N14—C20—H20124.5
C8—N5—Ni1136.0 (2)C21—C20—H20124.5
N6—N5—Ni1118.8 (2)C22—C21—C20106.2 (3)
N5—N6—C10111.5 (3)C22—C21—H21126.9
N5—N6—C1119.8 (3)C20—C21—H21126.9
C10—N6—C1128.5 (3)N15—C22—C21106.6 (3)
N5—C8—C9111.2 (3)N15—C22—H22126.7
N5—C8—H8124.4C21—C22—H22126.7
C9—C8—H8124.4N15—C23—N13i110.5 (3)
C10—C9—C8105.5 (3)N15—C23—N11i110.8 (3)
C10—C9—H9127.2N13i—C23—N11i110.3 (3)
C8—C9—H9127.2N15—C23—H23108.4
N6—C10—C9106.6 (3)N13i—C23—H23108.4
N6—C10—H10126.7N11i—C23—H23108.4
C9—C10—H10126.7C1S—O1S—H1S109.5
C11—N7—Ni1147.0 (3)O1S—C1S—H1S1109.5
N7—C11—S1177.7 (3)O1S—C1S—H1S2109.5
C12—N8—Ni1170.1 (3)H1S1—C1S—H1S2109.5
N8—C12—S2177.7 (3)O1S—C1S—H1S3109.5
C13—N9—Ni1144.9 (4)H1S1—C1S—H1S3109.5
N9—C13—S3178.5 (5)H1S2—C1S—H1S3109.5
N14i—Ni2—N14180.00 (10)
N8—Ni1—N1—C254.5 (3)N8—Ni1—N7—C11174.3 (5)
N7—Ni1—N1—C238.3 (3)N9—Ni1—N7—C1181.8 (5)
N5—Ni1—N1—C2147.3 (3)N1—Ni1—N7—C1192.3 (5)
N3—Ni1—N1—C2128.1 (3)N3—Ni1—N7—C119.8 (5)
N8—Ni1—N1—N2133.0 (2)N8—Ni1—N9—C1383.5 (6)
N7—Ni1—N1—N2134.1 (2)N7—Ni1—N9—C13176.4 (6)
N5—Ni1—N1—N240.2 (2)N5—Ni1—N9—C139.5 (6)
N3—Ni1—N1—N244.4 (2)N3—Ni1—N9—C1393.6 (6)
C2—N1—N2—C40.2 (4)N14i—Ni2—N10—C14135.9 (3)
Ni1—N1—N2—C4174.3 (2)N14—Ni2—N10—C1444.1 (3)
C2—N1—N2—C1173.8 (3)N12i—Ni2—N10—C1440.9 (3)
Ni1—N1—N2—C10.7 (4)N12—Ni2—N10—C14139.1 (3)
N6—C1—N2—C4127.4 (3)N14i—Ni2—N10—N1141.9 (2)
N4—C1—N2—C4111.5 (4)N14—Ni2—N10—N11138.1 (2)
N6—C1—N2—N160.1 (4)N12i—Ni2—N10—N11136.9 (2)
N4—C1—N2—N161.0 (4)N12—Ni2—N10—N1143.1 (2)
N2—N1—C2—C30.3 (4)C14—N10—N11—C160.3 (3)
Ni1—N1—C2—C3173.5 (2)Ni2—N10—N11—C16178.1 (2)
N1—C2—C3—C40.6 (4)C14—N10—N11—C23i179.5 (3)
N1—N2—C4—C30.5 (4)Ni2—N10—N11—C23i1.0 (3)
C1—N2—C4—C3173.5 (3)N11—N10—C14—C150.2 (4)
C2—C3—C4—N20.7 (4)Ni2—N10—C14—C15177.8 (2)
N7—Ni1—N3—C538.7 (3)N10—C14—C15—C160.0 (4)
N9—Ni1—N3—C553.3 (4)N10—N11—C16—C150.3 (4)
N1—Ni1—N3—C5130.4 (3)C23i—N11—C16—C15179.4 (3)
N5—Ni1—N3—C5143.5 (3)C14—C15—C16—N110.1 (4)
N7—Ni1—N3—N4137.9 (2)N14i—Ni2—N12—C19144.3 (4)
N9—Ni1—N3—N4130.0 (2)N14—Ni2—N12—C1935.7 (4)
N1—Ni1—N3—N446.2 (2)N10i—Ni2—N12—C1950.7 (4)
N5—Ni1—N3—N439.8 (2)N10—Ni2—N12—C19129.3 (4)
C5—N3—N4—C70.0 (4)N14i—Ni2—N12—N1345.7 (2)
Ni1—N3—N4—C7177.6 (2)N14—Ni2—N12—N13134.3 (2)
C5—N3—N4—C1173.4 (3)N10i—Ni2—N12—N13139.3 (2)
Ni1—N3—N4—C14.3 (4)N10—Ni2—N12—N1340.7 (2)
N6—C1—N4—C7124.3 (4)C19—N12—N13—C170.7 (4)
N2—C1—N4—C7114.0 (4)Ni2—N12—N13—C17172.2 (2)
N6—C1—N4—N363.7 (4)C19—N12—N13—C23i176.2 (3)
N2—C1—N4—N358.1 (4)Ni2—N12—N13—C23i3.3 (3)
N4—N3—C5—C60.5 (4)N12—N13—C17—C181.0 (4)
Ni1—N3—C5—C6177.4 (3)C23i—N13—C17—C18176.0 (3)
N3—C5—C6—C70.8 (4)N13—C17—C18—C190.9 (4)
N3—N4—C7—C60.5 (4)N13—N12—C19—C180.1 (4)
C1—N4—C7—C6173.1 (3)Ni2—N12—C19—C18170.7 (3)
C5—C6—C7—N40.8 (4)C17—C18—C19—N120.5 (4)
N8—Ni1—N5—C850.3 (4)N12i—Ni2—N14—C20138.3 (3)
N9—Ni1—N5—C842.1 (4)N12—Ni2—N14—C2041.7 (3)
N1—Ni1—N5—C8143.4 (4)N10i—Ni2—N14—C20135.6 (3)
N3—Ni1—N5—C8133.7 (4)N10—Ni2—N14—C2044.4 (3)
N8—Ni1—N5—N6132.6 (3)N12i—Ni2—N14—N1543.9 (2)
N9—Ni1—N5—N6135.0 (3)N12—Ni2—N14—N15136.1 (2)
N1—Ni1—N5—N639.5 (2)N10i—Ni2—N14—N1542.2 (2)
N3—Ni1—N5—N643.4 (2)N10—Ni2—N14—N15137.8 (2)
C8—N5—N6—C100.3 (4)C20—N14—N15—C220.7 (3)
Ni1—N5—N6—C10177.6 (2)Ni2—N14—N15—C22177.7 (2)
C8—N5—N6—C1175.6 (3)C20—N14—N15—C23178.6 (3)
Ni1—N5—N6—C12.3 (4)Ni2—N14—N15—C230.2 (3)
N4—C1—N6—N559.9 (4)N15—N14—C20—C210.3 (4)
N2—C1—N6—N560.9 (4)Ni2—N14—C20—C21177.6 (3)
N4—C1—N6—C10114.5 (4)N14—C20—C21—C220.2 (4)
N2—C1—N6—C10124.6 (4)N14—N15—C22—C210.8 (4)
N6—N5—C8—C90.1 (4)C23—N15—C22—C21178.5 (3)
Ni1—N5—C8—C9177.3 (3)C20—C21—C22—N150.6 (4)
N5—C8—C9—C100.1 (4)C22—N15—C23—N13i121.3 (3)
N5—N6—C10—C90.4 (4)N14—N15—C23—N13i61.3 (4)
C1—N6—C10—C9175.1 (3)C22—N15—C23—N11i116.3 (4)
C8—C9—C10—N60.3 (4)N14—N15—C23—N11i61.2 (4)
Symmetry code: (i) x+1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1S—H1S···S3ii0.842.433.267 (4)175
O1S—H1S···S3ii0.842.883.459 (6)128
C23—H23···O1S1.002.153.118 (4)162
Symmetry code: (ii) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Ni(C10H10N6)2][Ni(NCS)3(C10H10N6)]2·2CH4O
Mr1445.65
Crystal system, space groupMonoclinic, C2/c
Temperature (K)90
a, b, c (Å)33.4463 (8), 7.3287 (2), 27.2689 (7)
β (°) 112.590 (1)
V3)6171.3 (3)
Z4
Radiation typeCu Kα
µ (mm1)3.52
Crystal size (mm)0.20 × 0.06 × 0.02
Data collection
DiffractometerBruker X8 Proteum
Absorption correctionMulti-scan
(SADABS in APEX2; Bruker, 2006)
Tmin, Tmax0.740, 0.933
No. of measured, independent and
observed [I > 2σ(I)] reflections
41685, 5605, 4932
Rint0.061
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.128, 1.11
No. of reflections5605
No. of parameters418
No. of restraints6
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0515P)2 + 28.6001P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.34, 0.44

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELX97 (Sheldrick, 2008) and local procedures.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1S—H1S···S3i0.842.433.267 (4)175.2
O1S—H1S···S3'i0.842.883.459 (6)128.2
C23—H23···O1S1.002.153.118 (4)161.5
Symmetry code: (i) x1/2, y+1/2, z1/2.
 

Acknowledgements

GL gratefully acknowledges Southern Arkansas University for the financial support.

References

First citationAstley, T., Gulbis, J. M., Hitchman, M. A. & Tiekink, E. R. T. (1993). J. Chem. Soc. Dalton Trans. pp. 509–515.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKitajima, N., Fujisawa, K., Fujimoto, C., Morooka, Y., Hashimoto, S., Kitagawa, T., Toriumi, K., Tatsumi, K. & Nakamura, A. (1992). J. Am. Chem. Soc. 114, 1277—1291.  Google Scholar
First citationLooney, A. & Parkin, G. (1994). Inorg. Chem. 33, 1234–1237.  CSD CrossRef CAS Web of Science Google Scholar
First citationLooney, A., Parkin, G., Alsfasser, R., Ruf, M. & Vahrenkamp, H. (1992). Angew. Chem. Int. Ed. 31, 92–93.  CrossRef Google Scholar
First citationLyubartseva, G. & Parkin, S. (2009). Acta Cryst. E65, m1530.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationReger, D. L., Grattan, T. C., Brown, K. J., Little, C. A., Lamba, J. J. S., Rheingold, A. L. & Sommer, R. D. (2000). J. Organomet. Chem. 607, 120–128.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrofimenko, S., Calabrese, J. C., Kochi, J. K., Wolowiec, S., Hulsbergen, F. B. & Reedijk, J. (1992). Inorg. Chem. 31, 3943–3950.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds