organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Phenyl-1,3-selenazole-4-carb­­oxy­lic acid

aCollege of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China, and bZhejiang Normal University Xingzhi College, Jinhua, Zhejiang 321004, People's Republic of China
*Correspondence e-mail: sky53@zjnu.cn

(Received 23 February 2011; accepted 25 February 2011; online 5 March 2011)

In the title compound, C10H7NO2Se, the two rings are twisted, making a dihedral angle of 12.42 (9)°. In the crystal, pairs of mol­ecules are disposed about an inversion center, generating O—H⋯O hydrogen-bonded dimers.

Related literature

For the synthesis, see: Zhao et al. (2010[Zhao, G.-L., Shi, X., Zhang, J. P., Liu, J.-F., Xian, H.-D. & Shao, L. X. (2010). Chem. Sci. China, 40 1525-1535.]). For related structures, see: Srivastava & Robins (1983[Srivastava, P. C. & Robins, R. K. (1983). J. Med. Chem. 26, 445-448.]); Boritzki et al. (1985[Boritzki, T. J., Berry, D. A., Besserer, J. A., Cook, P. D., Fry, D. W., Leopold, W. R. & Jackson, R. C. (1985). Biochem. Pharmacol. 34, 1109-1114.]); Shen et al. (2011[Shen, J.-B., Lv, X., Chen, J.-F., Zhou, Y.-F. & Zhao, G.-L. (2011). Acta Cryst. E67, m186-m187.]).

[Scheme 1]

Experimental

Crystal data
  • C10H7NO2Se

  • Mr = 252.13

  • Monoclinic, P 21 /c

  • a = 8.0817 (3) Å

  • b = 11.5661 (4) Å

  • c = 11.6295 (4) Å

  • β = 117.168 (2)°

  • V = 967.12 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.85 mm−1

  • T = 296 K

  • 0.23 × 0.22 × 0.19 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.437, Tmax = 0.479

  • 7502 measured reflections

  • 1705 independent reflections

  • 1487 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.063

  • S = 1.05

  • 1705 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H7⋯O2i 0.82 1.81 2.623 (2) 171
Symmetry code: (i) -x+1, -y-1, -z+1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

It has well been confirmed that the derivatives of selenazole are important in multiple fields such as chemistry and biochemistry owing to their biological activities (Srivastava et al., 1983;Boritzki et al.,1985). Interested in this field, we have been engaged in a major effort directed toward the development of syntheses of new selenazole carboxylic acid and their transition metal complexes. In a few of articles we have reported our partial research results (Zhao et al., 2010;Shen et al., 2011). Herein,we crystallize the organic ligand 2-phenyl-4-selenazole carboxylic acid.

The structure of the title, (C10H7NO2Se),suitable for X-ray, was obtained by chance. The structure of the complex is shown in Fig.1, which reveals that all atoms in each molecule are nearly coplanar in the centrosymmetric unit. The molecule is essentially planar with the dihedral angle between two neighboring rings are 12.415 (89)°. In the molecule of 2-phenyl-4-selenazole carboxylic acid,the Se—C bond length range from 1.832 (2) Å-1.891 (2)Å and the angle C—Se—C is 84.78 (10)°.

The molecules arranged in the crystal at regular intervals with O—H···O hydrogen bonds. The end to end hydrogen-bonding interactions lead to the formation a one-dimensional structure framework along the b axis, Fig 2. Between adjacent triple-helix chains there exist weak π···π interactions.

Related literature top

For the synthesis, see: Zhao et al. (2010). For related structures, see: Srivastava & Robins (1983); Boritzki et al. (1985); Shen et al. (2011).

Experimental top

Reagents and solvents used were of commercially available quality and without purified before using. K2Cr2O7 (0.588 g, 2 mmol) was added to a mixed solution of acetic acid (50 ml) with 2-phenyl-4-selenazole carbinol (0.248 g, 1 mmol) under stirred conditions at room temperature. Few minutes later lots of red deposit appeared. After the deposit was filtered out, a light red solution was kept for evaporating. Some red single crystals were obtained about 19 days later.

Refinement top

The structure was solved by direct methods and successive Fourier difference synthesis. The H atoms bonded to C atoms were positioned geometrically and refined using a riding model [aromatic C—H = 0.93 Å (Uiso(H) = 1.2Ueq(C))]. The H atoms bonded to O atoms were located in difference Fourier maps and refined with O—H distance restraints of 0.85 (2) and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing the atom- labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The stacking plot of the title compound, showing H-bond interactions (dashed lines) and π···π stacking interactions.
2-Phenyl-1,3-selenazole-4-carboxylic acid top
Crystal data top
C10H7NO2SeF(000) = 496
Mr = 252.13Dx = 1.732 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4000 reflections
a = 8.0817 (3) Åθ = 2.6–25.0°
b = 11.5661 (4) ŵ = 3.85 mm1
c = 11.6295 (4) ÅT = 296 K
β = 117.168 (2)°Block, red
V = 967.12 (6) Å30.23 × 0.22 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
1705 independent reflections
Radiation source: fine-focus sealed tube1487 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: none pixels mm-1θmax = 25.0°, θmin = 2.6°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1313
Tmin = 0.437, Tmax = 0.479l = 1313
7502 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0341P)2 + 0.3951P]
where P = (Fo2 + 2Fc2)/3
1705 reflections(Δ/σ)max = 0.001
127 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C10H7NO2SeV = 967.12 (6) Å3
Mr = 252.13Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.0817 (3) ŵ = 3.85 mm1
b = 11.5661 (4) ÅT = 296 K
c = 11.6295 (4) Å0.23 × 0.22 × 0.19 mm
β = 117.168 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
1705 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1487 reflections with I > 2σ(I)
Tmin = 0.437, Tmax = 0.479Rint = 0.022
7502 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 1.05Δρmax = 0.43 e Å3
1705 reflectionsΔρmin = 0.19 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.26583 (4)0.04306 (2)0.60598 (2)0.04992 (12)
O10.4357 (3)0.41679 (16)0.5986 (2)0.0685 (6)
H70.47140.47990.58650.103*
O20.4478 (3)0.37486 (15)0.41673 (18)0.0661 (6)
N10.3215 (3)0.15135 (15)0.42195 (18)0.0382 (4)
C10.1846 (4)0.0295 (2)0.2299 (3)0.0543 (7)
H10.20100.04360.20330.065*
C20.1285 (4)0.1208 (2)0.1426 (3)0.0655 (8)
H20.10850.10880.05810.079*
C30.1028 (4)0.2287 (2)0.1809 (3)0.0595 (7)
H30.06300.28940.12200.071*
C40.1357 (4)0.2467 (2)0.3054 (3)0.0635 (8)
H40.12010.32010.33150.076*
C50.1921 (4)0.1566 (2)0.3930 (3)0.0538 (6)
H50.21410.16960.47780.065*
C60.2159 (3)0.04648 (18)0.3548 (2)0.0388 (5)
C70.2713 (3)0.05191 (17)0.4454 (2)0.0364 (5)
C80.3408 (3)0.1944 (2)0.6245 (2)0.0438 (5)
H80.36320.24040.69570.053*
C90.3587 (3)0.22941 (18)0.5206 (2)0.0386 (5)
C100.4173 (4)0.3472 (2)0.5075 (2)0.0455 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.0692 (2)0.04354 (17)0.04006 (17)0.01159 (11)0.02764 (14)0.00007 (10)
O10.1212 (18)0.0434 (9)0.0619 (13)0.0252 (11)0.0600 (13)0.0203 (9)
O20.1187 (17)0.0448 (10)0.0514 (12)0.0251 (10)0.0533 (12)0.0128 (8)
N10.0453 (11)0.0337 (10)0.0362 (10)0.0043 (8)0.0191 (8)0.0046 (8)
C10.0716 (18)0.0431 (14)0.0488 (16)0.0075 (12)0.0281 (14)0.0073 (11)
C20.084 (2)0.0629 (18)0.0483 (17)0.0095 (15)0.0292 (15)0.0149 (14)
C30.0576 (16)0.0517 (15)0.068 (2)0.0135 (12)0.0281 (14)0.0258 (14)
C40.0721 (19)0.0394 (14)0.084 (2)0.0153 (13)0.0404 (17)0.0128 (13)
C50.0674 (17)0.0421 (14)0.0571 (17)0.0113 (12)0.0331 (14)0.0054 (11)
C60.0363 (12)0.0367 (12)0.0440 (13)0.0025 (9)0.0187 (10)0.0044 (9)
C70.0371 (11)0.0357 (11)0.0354 (12)0.0012 (9)0.0157 (9)0.0013 (9)
C80.0543 (14)0.0412 (12)0.0357 (13)0.0048 (11)0.0204 (11)0.0041 (10)
C90.0438 (13)0.0357 (11)0.0360 (12)0.0027 (9)0.0179 (10)0.0031 (9)
C100.0620 (15)0.0376 (12)0.0404 (13)0.0061 (11)0.0264 (12)0.0063 (10)
Geometric parameters (Å, º) top
Se1—C81.832 (2)C2—H20.9300
Se1—C71.891 (2)C3—C41.363 (4)
O1—C101.284 (3)C3—H30.9300
O1—H70.8201C4—C51.382 (4)
O2—C101.230 (3)C4—H40.9300
N1—C71.289 (3)C5—C61.391 (3)
N1—C91.381 (3)C5—H50.9300
C1—C61.370 (4)C6—C71.474 (3)
C1—C21.390 (4)C8—C91.344 (3)
C1—H10.9300C8—H80.9300
C2—C31.372 (4)C9—C101.473 (3)
C8—Se1—C784.79 (10)C6—C5—H5119.9
C10—O1—H7109.5C1—C6—C5119.0 (2)
C7—N1—C9112.19 (19)C1—C6—C7119.7 (2)
C6—C1—C2120.4 (2)C5—C6—C7121.3 (2)
C6—C1—H1119.8N1—C7—C6124.0 (2)
C2—C1—H1119.8N1—C7—Se1114.10 (16)
C3—C2—C1120.1 (3)C6—C7—Se1121.82 (15)
C3—C2—H2120.0C9—C8—Se1110.35 (17)
C1—C2—H2120.0C9—C8—H8124.8
C4—C3—C2119.9 (2)Se1—C8—H8124.8
C4—C3—H3120.0C8—C9—N1118.6 (2)
C2—C3—H3120.0C8—C9—C10123.0 (2)
C3—C4—C5120.5 (3)N1—C9—C10118.48 (19)
C3—C4—H4119.8O2—C10—O1123.5 (2)
C5—C4—H4119.8O2—C10—C9121.9 (2)
C4—C5—C6120.1 (3)O1—C10—C9114.6 (2)
C4—C5—H5119.9
C6—C1—C2—C30.5 (5)C5—C6—C7—Se112.7 (3)
C1—C2—C3—C41.3 (5)C8—Se1—C7—N10.22 (18)
C2—C3—C4—C51.0 (4)C8—Se1—C7—C6177.7 (2)
C3—C4—C5—C60.1 (4)C7—Se1—C8—C90.05 (18)
C2—C1—C6—C50.5 (4)Se1—C8—C9—N10.3 (3)
C2—C1—C6—C7178.7 (3)Se1—C8—C9—C10179.96 (19)
C4—C5—C6—C10.7 (4)C7—N1—C9—C80.5 (3)
C4—C5—C6—C7178.4 (2)C7—N1—C9—C10179.8 (2)
C9—N1—C7—C6177.5 (2)C8—C9—C10—O2173.9 (3)
C9—N1—C7—Se10.4 (2)N1—C9—C10—O25.8 (4)
C1—C6—C7—N111.4 (3)C8—C9—C10—O15.3 (4)
C5—C6—C7—N1169.5 (2)N1—C9—C10—O1175.1 (2)
C1—C6—C7—Se1166.39 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H7···O2i0.821.812.623 (2)171
Symmetry code: (i) x+1, y1, z+1.

Experimental details

Crystal data
Chemical formulaC10H7NO2Se
Mr252.13
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.0817 (3), 11.5661 (4), 11.6295 (4)
β (°) 117.168 (2)
V3)967.12 (6)
Z4
Radiation typeMo Kα
µ (mm1)3.85
Crystal size (mm)0.23 × 0.22 × 0.19
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.437, 0.479
No. of measured, independent and
observed [I > 2σ(I)] reflections
7502, 1705, 1487
Rint0.022
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.063, 1.05
No. of reflections1705
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.19

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H7···O2i0.821.812.623 (2)171
Symmetry code: (i) x+1, y1, z+1.
 

Acknowledgements

This project was supprted by the Natural Science of Fundation of Zhejiang (Y4080256) and the Zhejiang Students' Science and Technology Innovation Plan (Young Talent Plan) Aid.

References

First citationBoritzki, T. J., Berry, D. A., Besserer, J. A., Cook, P. D., Fry, D. W., Leopold, W. R. & Jackson, R. C. (1985). Biochem. Pharmacol. 34, 1109–1114.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, J.-B., Lv, X., Chen, J.-F., Zhou, Y.-F. & Zhao, G.-L. (2011). Acta Cryst. E67, m186–m187.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSrivastava, P. C. & Robins, R. K. (1983). J. Med. Chem. 26, 445–448.  CrossRef CAS PubMed Web of Science Google Scholar
First citationZhao, G.-L., Shi, X., Zhang, J. P., Liu, J.-F., Xian, H.-D. & Shao, L. X. (2010). Chem. Sci. China, 40 1525–1535.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds