organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Di­methyl­amino-9,10-anthra­quinone

aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland
*Correspondence e-mail: trzybinski@chem.univ.gda.pl

(Received 14 February 2011; accepted 22 February 2011; online 26 February 2011)

In the crystal structure of the title compound, C16H13NO2, adjacent mol­ecules are linked through C—H⋯π and ππ [centroid–centroid distances = 3.844 (2) Å] contacts. The anthracene ring system and dimethyl­amino group are oriented at a dihedral angle of 38.4 (1)°. In the crystal, the mean planes of adjacent anthracene units are inclined at angles of 59.3 (1), 75.7 (1) and 76.0 (1)°.

Related literature

For general background to anthraquinones, see: Arai et al. (1985[Arai, S., Kato, S. & Hida, M. (1985). Bull. Chem. Soc. Jpn, 58, 1458-1463.]); Dalliya et al. (2007[Dalliya, P., Maity, D. K., Nayak, S. K., Mukherjee, T. & Pal, H. (2007). Photochem. Photobiol. A Chem. 186, 218-228.]); Gatto et al. (1996[Gatto, B., Zagotto, G., Sissi, C., Cera, C., Uriarte, E., Palu, G., Capranico, G. & Palumbo, M. (1996). J. Med. Chem. 39, 3114-3122.]); Kowalczyk et al. (2010[Kowalczyk, A., Nowicka, A. M., Jurczakowski, R., Niedziałkowski, P., Ossowski, T. & Stojek, Z. (2010). Electroanalysis, 22, 49-59.]); Mori et al. (1990[Mori, H., Yoshimi, N., Iwata, H., Mori, Y., Hara, A., Tanaka, T. & Kawai, K. (1990). Carcinogenesis, 11, 799-802.]); Ossowski et al. (2005[Ossowski, T., Zarzeczańska, D., Zalewski, L., Niedziałkowski, P., Majewski, R. & Szymańska, A. (2005). Tetrahedron Lett. 46, 1735-1738.]); Zoń et al. (2003[Zoń, A., Pałys, M., Stojek, Z., Sulowska, H. & Ossowski, T. (2003). Electroanalysis, 15, 579-585.]). For a related structure, see: Yatsenko et al. (2000[Yatsenko, A. V., Paseshnichenko, K. A. & Popov, S. I. (2000). Z. Kristallogr. 215, 542-546.]). For mol­ecular inter­actions, see: Hunter et al. (2001[Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651-669.]); Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); Takahashi et al. (2001[Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421-2430.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13NO2

  • Mr = 251.27

  • Orthorhombic, P 21 21 21

  • a = 7.2823 (3) Å

  • b = 11.1519 (7) Å

  • c = 14.9834 (7) Å

  • V = 1216.82 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.45 × 0.20 × 0.18 mm

Data collection
  • Oxford Diffraction Gemini R ULTRA Ruby CCD diffractometer

  • 4683 measured reflections

  • 1258 independent reflections

  • 918 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.079

  • S = 0.96

  • 1258 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C4/C11/C12 and C5–C8/C13/C14 rings respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cg1i 0.93 2.99 3.724 (3) 137
C4—H4⋯Cg2ii 0.93 2.81 3.678 (3) 156
Symmetry codes: (i) [-x, y+{\script{3\over 2}}, -z+{\script{3\over 2}}]; (ii) [x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction. (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction. (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Anthraquinones, the largest group of naturally occurring quinones, present in bacteria, fungi and many higher plant families contain π-electrons, reducible p-quinone system and are redoxactive (Zoń et al., 2003). That is the reason why those found many practical applications (Kowalczyk et al., 2010; Ossowski et al., 2005). Both natural and synthetic derivatives have been used as colourants in food, cosmetics, textiles and hair dyes (Mori et al., 1990). In medicine they are known as antitumor drugs and antibacterial or anti-inflammatory agents (Gatto et al., 1996). Among anthraquinones, the amino-derivatives, due to the possibility of their chemical modification, reveal greatest potential of application. Here, we present the crystal structure of the 1-(dimethylamino)-9,10-anthraquinone – compound with interesting photophysical properties (Arai et al., 1985; Dalliya et al., 2007).

In the molecule of the title compound (Fig. 1), likewise in the 1-(methyl(phenyl)amino)anthraquinone (Yatsenko et al., 2000), relatively strong deviation of planarity of the anthraquinone skeleton is observed. In case of the title compound, such distortion (0.1274 (3) Å) is directly caused by the steric effect of the bulky –N(CH3)2 group (Dalliya et al., 2007). The dimethylamino group is twisted at an angle of 38.4 (1)° relative to the anthracene fragment. The neighboring anthracene moieties are inclined at an angle of 59.3 (1)°, 75.7 (1)° and 76.0 (1)° in the crystal lattice.

In the crystal structure, the adjacent molecules are linked by C–H···π (Table 2, Fig. 2) and π-π [centroid-centroid distances = 3.844 (2) Å] (Table 3, Fig. 3) contacts. All interactions demonstrated were found by PLATON (Spek, 2009). The C–H···π interactions should be of an attractive nature (Takahashi et al., 2001), like the π-π (Hunter et al., 2001) interactions.

Related literature top

For general background to anthraquinones, see: Arai et al. (1985); Dalliya et al. (2007); Gatto et al. (1996); Kowalczyk et al. (2010); Mori et al. (1990); Ossowski et al. (2005); Zoń et al. (2003). For a related structure, see: Yatsenko et al. (2000). For molecular interactions, see: Hunter et al. (2001); Spek (2009); Takahashi et al. (2001).

Experimental top

1-(Dimethylamino)-9,10-anthraquinone was synthesized according to the procedure described below. The solution of 40% dimethylamine in water (2,21 ml, 12.36 mmol) was added to 1-chloro-9,10-anthraquinone (1 g, 4.12 mmol) in 15 ml toluene. The mixture was stirred at 130° for 4 h. The progress of the reaction was monitored by TLC (SiO2, dichloromethane) until the completion of reaction. The resulting mixture was concentrated to remove the solvent and dissolved in 100 ml of dichloromethane. The solution was washed with water (100 ml), the organic phase was dried over MgSO4 and concentrated. The resultant solid was purified by column chromatography using dichloromethane as a solvent obtaining the title compound as a red solid (921 mg, 89%). The product was recrystallized by slow evaporation from methanol to give red crystals suitable for X-ray diffraction (m.p. 137.5–137.9°C). Spectral data: IR (KBr): 3584, 2916, 2806, 1662, 1637, 1551, 1499, 1374, 1311,1270, 1180, 1024, 935, 793, 731,704 cm-1; 1H NMR (CDCl3, 400 MHz): 3.03 (6H, s, CH3), 7.34–7.36 (1H, d, J1 = 8.8 Hz, H-2-Ar), 7.54–7.58 (1H, t, J1 = J2 = 8.0 Hz, H-3-Ar), 7.69–7.72 (1H, t, J1 = 7.6 Hz, J1 = 6.8 Hz, J2 = 7.2 Hz, H-6-Ar), 7.74–7.76 (1H, d, J1 = 7.6 Hz, H-4-Ar), 7.78–7.82 (1H, t, J1 = 7.6 Hz, J1 = 8.4 Hz, J2 = 8.0 Hz, H-7-Ar), 8.22–8.24 (1H, t, J1 = 7.2 Hz, H-8-Ar). Elemental analysis: calculated for C16H13NO2: C 76.48, H 5.21, N 5.57; found: C 76.52, H 5.28, N 5.51.

Refinement top

1063 Friedel pairs were merged. H atoms were positioned geometrically, with C—H = 0.93 Å and 0.96 Å for the aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic and x = 1.5 for the methyl H atoms.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level, and H atoms are shown as small spheres of arbitrary radius. Cg1 and Cg2 are the centroids of the C1—C4/C11/C12 and C5—C8/C13/C14 rings respectively.
[Figure 2] Fig. 2. The arrangement of the molecules in the crystal structure viewed approximately along a direction. The C–H···π interactions are represented by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) –x, y + 3/2, –z + 3/2; (ii) x + 3/2, –y + 1/2, –z + 1.]
[Figure 3] Fig. 3. The arrangement of the molecules in the crystal structure viewed approximately along b direction. The π-π interactions are represented by dotted lines. H atoms have been omitted for clarity. [Symmetry codes: (iii) x + 1, y, z; (iv) x – 1, y + 1, z + 1.]
1-Dimethylamino-9,10-anthraquinone top
Crystal data top
C16H13NO2F(000) = 528
Mr = 251.27Dx = 1.372 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1944 reflections
a = 7.2823 (3) Åθ = 3.1–29.0°
b = 11.1519 (7) ŵ = 0.09 mm1
c = 14.9834 (7) ÅT = 295 K
V = 1216.82 (11) Å3Prism, red
Z = 40.45 × 0.20 × 0.18 mm
Data collection top
Oxford Diffraction Gemini R ULTRA Ruby CCD
diffractometer
918 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.033
Graphite monochromatorθmax = 25.1°, θmin = 3.1°
Detector resolution: 10.4002 pixels mm-1h = 86
ω scansk = 1213
4683 measured reflectionsl = 1713
1258 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0492P)2]
where P = (Fo2 + 2Fc2)/3
1258 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C16H13NO2V = 1216.82 (11) Å3
Mr = 251.27Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.2823 (3) ŵ = 0.09 mm1
b = 11.1519 (7) ÅT = 295 K
c = 14.9834 (7) Å0.45 × 0.20 × 0.18 mm
Data collection top
Oxford Diffraction Gemini R ULTRA Ruby CCD
diffractometer
918 reflections with I > 2σ(I)
4683 measured reflectionsRint = 0.033
1258 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 0.96Δρmax = 0.12 e Å3
1258 reflectionsΔρmin = 0.18 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7457 (3)0.5675 (2)0.53415 (14)0.0349 (6)
C20.8768 (3)0.6609 (3)0.53396 (17)0.0437 (7)
H20.97380.65780.49370.052*
C30.8647 (4)0.7554 (3)0.59116 (18)0.0486 (7)
H30.95300.81550.58920.058*
C40.7235 (3)0.7630 (2)0.65179 (17)0.0422 (6)
H40.72060.82550.69280.051*
C50.1522 (4)0.6067 (3)0.78267 (16)0.0459 (7)
H50.16080.66220.82880.055*
C60.0081 (4)0.5277 (3)0.78088 (18)0.0487 (7)
H60.07950.52900.82600.058*
C70.0067 (3)0.4466 (3)0.71212 (17)0.0465 (7)
H70.10650.39460.70990.056*
C80.1262 (3)0.4422 (2)0.64640 (17)0.0409 (6)
H80.11640.38630.60060.049*
C90.4157 (3)0.5148 (2)0.57716 (15)0.0334 (6)
C100.4341 (4)0.6937 (2)0.71603 (16)0.0394 (7)
C110.5878 (3)0.5814 (2)0.58994 (14)0.0325 (6)
C120.5869 (3)0.6781 (2)0.65160 (16)0.0335 (6)
C130.2744 (3)0.5206 (2)0.64829 (15)0.0335 (6)
C140.2856 (3)0.6048 (2)0.71661 (14)0.0354 (6)
N150.7757 (3)0.4671 (2)0.48311 (13)0.0421 (6)
C160.7173 (4)0.3491 (2)0.51109 (19)0.0528 (8)
H16A0.67450.35250.57160.079*
H16B0.81890.29450.50720.079*
H16C0.61980.32190.47300.079*
C170.9195 (3)0.4667 (3)0.41526 (17)0.0552 (8)
H17A0.90680.53620.37800.083*
H17B0.90860.39570.37940.083*
H17C1.03760.46790.44370.083*
O180.3823 (2)0.45881 (18)0.50827 (11)0.0484 (5)
O190.4317 (3)0.77920 (19)0.76763 (15)0.0644 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0328 (13)0.0405 (16)0.0315 (12)0.0014 (14)0.0002 (12)0.0029 (12)
C20.0356 (14)0.0555 (19)0.0400 (14)0.0071 (15)0.0045 (12)0.0082 (14)
C30.0453 (14)0.0471 (17)0.0532 (16)0.0149 (15)0.0037 (15)0.0040 (17)
C40.0427 (14)0.0392 (16)0.0448 (14)0.0052 (14)0.0053 (13)0.0071 (14)
C50.0478 (15)0.0464 (18)0.0435 (14)0.0079 (15)0.0064 (13)0.0049 (14)
C60.0377 (14)0.057 (2)0.0512 (15)0.0046 (16)0.0143 (12)0.0078 (17)
C70.0345 (14)0.0513 (19)0.0538 (16)0.0061 (14)0.0005 (13)0.0095 (17)
C80.0348 (13)0.0461 (16)0.0416 (13)0.0012 (13)0.0033 (12)0.0038 (14)
C90.0339 (12)0.0348 (15)0.0314 (12)0.0014 (12)0.0027 (11)0.0011 (12)
C100.0434 (15)0.0391 (16)0.0358 (14)0.0024 (13)0.0017 (13)0.0039 (13)
C110.0296 (12)0.0372 (15)0.0306 (12)0.0010 (12)0.0026 (11)0.0048 (12)
C120.0317 (12)0.0346 (14)0.0342 (12)0.0011 (13)0.0051 (12)0.0036 (12)
C130.0284 (12)0.0364 (15)0.0358 (12)0.0050 (12)0.0062 (11)0.0035 (12)
C140.0319 (13)0.0378 (15)0.0364 (12)0.0035 (12)0.0001 (12)0.0014 (13)
N150.0347 (11)0.0497 (14)0.0418 (11)0.0001 (12)0.0084 (10)0.0042 (12)
C160.0510 (16)0.0460 (18)0.0614 (17)0.0072 (16)0.0043 (15)0.0056 (16)
C170.0407 (14)0.076 (2)0.0489 (15)0.0057 (17)0.0081 (13)0.0116 (16)
O180.0404 (10)0.0629 (12)0.0418 (10)0.0084 (10)0.0001 (8)0.0145 (10)
O190.0661 (13)0.0604 (14)0.0665 (13)0.0108 (11)0.0160 (11)0.0280 (13)
Geometric parameters (Å, º) top
C1—N151.373 (3)C8—H80.9300
C1—C21.413 (4)C9—O181.230 (3)
C1—C111.430 (3)C9—C111.469 (3)
C2—C31.360 (4)C9—C131.483 (3)
C2—H20.9300C10—O191.227 (3)
C3—C41.374 (4)C10—C141.467 (4)
C3—H30.9300C10—C121.483 (3)
C4—C121.374 (3)C11—C121.420 (3)
C4—H40.9300C13—C141.392 (3)
C5—C61.370 (4)N15—C161.446 (3)
C5—C141.387 (3)N15—C171.459 (3)
C5—H50.9300C16—H16A0.9600
C6—C71.375 (4)C16—H16B0.9600
C6—H60.9300C16—H16C0.9600
C7—C81.382 (3)C17—H17A0.9600
C7—H70.9300C17—H17B0.9600
C8—C131.389 (3)C17—H17C0.9600
N15—C1—C2119.5 (2)C14—C10—C12118.5 (2)
N15—C1—C11122.8 (2)C12—C11—C1117.8 (2)
C2—C1—C11117.7 (2)C12—C11—C9117.7 (2)
C3—C2—C1121.7 (2)C1—C11—C9123.7 (2)
C3—C2—H2119.1C4—C12—C11121.4 (2)
C1—C2—H2119.1C4—C12—C10117.5 (2)
C2—C3—C4120.8 (3)C11—C12—C10121.1 (2)
C2—C3—H3119.6C8—C13—C14119.0 (2)
C4—C3—H3119.6C8—C13—C9119.8 (2)
C12—C4—C3119.9 (2)C14—C13—C9121.1 (2)
C12—C4—H4120.1C5—C14—C13119.6 (2)
C3—C4—H4120.1C5—C14—C10120.7 (2)
C6—C5—C14120.9 (2)C13—C14—C10119.7 (2)
C6—C5—H5119.6C1—N15—C16122.26 (19)
C14—C5—H5119.6C1—N15—C17120.3 (2)
C5—C6—C7119.8 (2)C16—N15—C17114.2 (2)
C5—C6—H6120.1N15—C16—H16A109.5
C7—C6—H6120.1N15—C16—H16B109.5
C6—C7—C8120.2 (2)H16A—C16—H16B109.5
C6—C7—H7119.9N15—C16—H16C109.5
C8—C7—H7119.9H16A—C16—H16C109.5
C7—C8—C13120.5 (2)H16B—C16—H16C109.5
C7—C8—H8119.8N15—C17—H17A109.5
C13—C8—H8119.8N15—C17—H17B109.5
O18—C9—C11122.3 (2)H17A—C17—H17B109.5
O18—C9—C13119.2 (2)N15—C17—H17C109.5
C11—C9—C13118.4 (2)H17A—C17—H17C109.5
O19—C10—C14120.7 (2)H17B—C17—H17C109.5
O19—C10—C12120.8 (2)
N15—C1—C2—C3172.0 (2)O19—C10—C12—C11178.1 (2)
C11—C1—C2—C36.6 (3)C14—C10—C12—C111.8 (3)
C1—C2—C3—C40.2 (4)C7—C8—C13—C140.9 (3)
C2—C3—C4—C123.7 (4)C7—C8—C13—C9179.9 (2)
C14—C5—C6—C71.0 (4)O18—C9—C13—C814.8 (3)
C5—C6—C7—C81.9 (4)C11—C9—C13—C8168.1 (2)
C6—C7—C8—C131.0 (4)O18—C9—C13—C14164.1 (2)
N15—C1—C11—C12168.8 (2)C11—C9—C13—C1412.9 (3)
C2—C1—C11—C129.8 (3)C6—C5—C14—C130.9 (4)
N15—C1—C11—C921.7 (3)C6—C5—C14—C10176.6 (2)
C2—C1—C11—C9159.7 (2)C8—C13—C14—C51.9 (3)
O18—C9—C11—C12155.6 (2)C9—C13—C14—C5179.2 (2)
C13—C9—C11—C1221.3 (3)C8—C13—C14—C10175.7 (2)
O18—C9—C11—C113.8 (4)C9—C13—C14—C103.3 (3)
C13—C9—C11—C1169.2 (2)O19—C10—C14—C58.3 (4)
C3—C4—C12—C110.2 (4)C12—C10—C14—C5171.8 (2)
C3—C4—C12—C10177.5 (2)O19—C10—C14—C13169.2 (2)
C1—C11—C12—C46.6 (3)C12—C10—C14—C1310.7 (3)
C9—C11—C12—C4163.5 (2)C2—C1—N15—C16145.7 (2)
C1—C11—C12—C10175.8 (2)C11—C1—N15—C1632.9 (3)
C9—C11—C12—C1014.1 (3)C2—C1—N15—C1712.9 (3)
O19—C10—C12—C40.4 (4)C11—C1—N15—C17168.5 (2)
C14—C10—C12—C4179.5 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C4/C11/C12 and C5–C8/C13/C14 rings respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg1i0.932.993.724 (3)137
C4—H4···Cg2ii0.932.813.678 (3)156
Symmetry codes: (i) x, y+3/2, z+3/2; (ii) x+3/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC16H13NO2
Mr251.27
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)7.2823 (3), 11.1519 (7), 14.9834 (7)
V3)1216.82 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.45 × 0.20 × 0.18
Data collection
DiffractometerOxford Diffraction Gemini R ULTRA Ruby CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4683, 1258, 918
Rint0.033
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.079, 0.96
No. of reflections1258
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.18

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008, SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C4/C11/C12 and C5–C8/C13/C14 rings respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg1i0.932.993.724 (3)137
C4—H4···Cg2ii0.932.813.678 (3)156
Symmetry codes: (i) x, y+3/2, z+3/2; (ii) x+3/2, y+1/2, z+1.
ππ interactions (Å,°). top
IJCgI···CgJDihedral angleCgI_PerpCgI_Offset
12iii3.844 (2)11.13 (12)3.606 (10)1.334 (10)
21iv3.844 (2)11.13 (12)3.606 (10)1.334 (10)
Symmetry codes: (iii) x + 1, y, z; (iv) x – 1, y + 1, z + 1.

Notes: Cg1 and Cg2 are the centroids of the C1-C4/C11/C12 and C5-C8/C13/C14 rings respectively. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgI_Offset is the distance between CgI and perpendicular projection of CgJ on ring I.
 

Acknowledgements

This study was financed by the State Funds for Scientific Research (grant DS/8210-4-0177-11).

References

First citationArai, S., Kato, S. & Hida, M. (1985). Bull. Chem. Soc. Jpn, 58, 1458–1463.  CrossRef CAS Web of Science Google Scholar
First citationDalliya, P., Maity, D. K., Nayak, S. K., Mukherjee, T. & Pal, H. (2007). Photochem. Photobiol. A Chem. 186, 218–228.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGatto, B., Zagotto, G., Sissi, C., Cera, C., Uriarte, E., Palu, G., Capranico, G. & Palumbo, M. (1996). J. Med. Chem. 39, 3114–3122.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651–669.  Web of Science CrossRef Google Scholar
First citationKowalczyk, A., Nowicka, A. M., Jurczakowski, R., Niedziałkowski, P., Ossowski, T. & Stojek, Z. (2010). Electroanalysis, 22, 49–59.  CrossRef CAS Google Scholar
First citationMori, H., Yoshimi, N., Iwata, H., Mori, Y., Hara, A., Tanaka, T. & Kawai, K. (1990). Carcinogenesis, 11, 799–802.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOssowski, T., Zarzeczańska, D., Zalewski, L., Niedziałkowski, P., Majewski, R. & Szymańska, A. (2005). Tetrahedron Lett. 46, 1735–1738.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction. (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430.  Web of Science CrossRef CAS Google Scholar
First citationYatsenko, A. V., Paseshnichenko, K. A. & Popov, S. I. (2000). Z. Kristallogr. 215, 542–546.  Web of Science CSD CrossRef CAS Google Scholar
First citationZoń, A., Pałys, M., Stojek, Z., Sulowska, H. & Ossowski, T. (2003). Electroanalysis, 15, 579–585.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds