metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chlorido(η4-cyclo­octa-1,5-diene)(N,N′-di­ethyl­thio­urea-κS)rhodium(I)

aDip. di Chimica Inorganica Chimica Analitica e Chimica Fisica, Universitá degli Studi di Messina, Via Salita Sperone 31, I-98166 Vill. S. Agata - Messina, Italy
*Correspondence e-mail: gbrancatelli@unime.it

(Received 15 September 2010; accepted 4 October 2010; online 9 October 2010)

In the title rhodium(I) complex, [RhCl(C8H12)(C5H12N2S)], N,N′-diethyl­thio­urea acts as a monodenate S-donor ligand. The rhodium(I) coordination sphere is completed by the Cl atom and the COD [= 1,5-cyclo­octa­diene] ligand inter­acting through the π-electrons of the double bonds. If the midpoints of these two bonds are taken into account, the Rh atom exhibits a distorted square-planar coordination. The syn conformation of the N,N′-diethyl­thio­urea ligand with respect to the Cl atom is stabilized by an intra­molecular N—H⋯Cl hydrogen bond. A weak inter­molecular N—H⋯Cl inter­action links mol­ecules along the a axis.

Related literature

For coordination modes of thio­urea and thio­urea-based ligands, see: Wilkinson (1987[Wilkinson, G. (1987). Comprehensive Coordination Chemistry, ch. 16.6, pp. 639-640. Oxford: Pergamon Press.]); Gibson et al. (1994[Gibson, V. C., Redshaw, C., Clegg, W. & Elsegood, M. R. J. (1994). J. Chem. Soc. Chem. Commun. pp. 2635-2636.]); Robinson et al. (2000[Robinson, S. D., Sahajpal, A. & Steed, J. W. (2000). Inorg. Chim. Acta, 306, 205-210.]). For the application of thio­ureas as ligands for metal precursors in asymmetric catalysis, see: Breuzard et al. (2000[Breuzard, J. A. J., Tommasino, M. L., Touchard, F., Lemaire, M. & Bonnet, M. C. (2000). J. Mol. Catal. A, 156, 223-232.]). For related Rh(I) complexes containing thio­urea ligands, see: Cauzzi et al. (1995[Cauzzi, D., Lanfranchi, M., Marzolini, G., Predieri, G., Tiripicchio, A., Costa, M. & Zanoni, R. (1995). J. Organomet. Chem. 488, 115-125.], 1997[Cauzzi, D., Costa, M., Gonsalvi, L., Pellinghelli, M. A., Predieri, G., Tiripicchio, A. & Zanoni, R. (1997). J. Organomet. Chem. 541, 377-389.]). For structural data of the N,N′-diethyl­thio­urea ligand, see: Ramnathan et al. (1995[Ramnathan, A., Sivakumar, K., Subramanian, K., Janarthanan, N., Ramadas, K. & Fun, H.-K. (1995). Acta Cryst. C51, 2446-2450.]).

[Scheme 1]

Experimental

Crystal data
  • [RhCl(C8H12)(C5H12N2S)]

  • Mr = 378.76

  • Triclinic, [P \overline 1]

  • a = 7.295 (5) Å

  • b = 8.705 (5) Å

  • c = 12.602 (5) Å

  • α = 101.727 (5)°

  • β = 102.058 (5)°

  • γ = 94.765 (5)°

  • V = 759.7 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.42 mm−1

  • T = 293 K

  • 0.60 × 0.24 × 0.16 mm

Data collection
  • Bruker–Nonius Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.540, Tmax = 0.710

  • 12830 measured reflections

  • 2656 independent reflections

  • 2585 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.016

  • wR(F2) = 0.042

  • S = 0.97

  • 2656 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1 0.86 2.39 3.152 (3) 148
N2—H2⋯Cl1i 0.86 2.89 3.356 (3) 116
Symmetry code: (i) x+1, y, z.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DIRAX/LSQ (Duisenberg, 1992[Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.]); data reduction: EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Thiourea and thiourea-based ligands form complexes with a number of transition metals (Wilkinson, 1987; Gibson et al., 1994; Robinson et al., 2000) and their application as ligands for metal catalyst in styrene hydroformylation has been recently shown (Breuzard et al., 2000).

In order to investigate the coordination chemistry of symmetrically substituted thiourea derivatives as ligands for metal complexes applicable in asymmetric catalysis, the reaction between chloro(η4-1,5-cyclooctadiene)rhodium(I) dimer and N,N'-diethylthiourea has been performed in dichloromethane. The obtained crystals were identified as the title compound by single-crystal X-ray diffraction. Figure 1 shows that in the compound (I) structure the N,N'-diethylthiourea acts as a monodenate S-donor ligand. Therefore the rhodium(I) coordination sphere is completed by a chlorine atom and COD [= 1,5-cyclooctadiene] ligand interacting with the metal center through the π-electrons of the double bonds. If the midpoints of these two bonds are taken into account the rhodium atom displays a distorted square planar coordination, as evidenced by the angles at Rh(1) [M(2)—Rh(1)—S(1) 86.4 (8)°, M(1)—Rh(1)—Cl(1) 88.9 (8)°, M(2)—Rh(1)—M(1) 87.8 (1)°, S(1)—Rh(1)—Cl(1) 96.97 (3)°]. In the thiourea moiety the distance S(1)—C(1) [1.732 (2) Å] is slightly longer than that found in the crystallographic structure of the N,N'-diethythiourea [1.707 (3) Å] (Ramnathan et al., 1995). This lengthening of the S—C bond is consistent with the decreasing double bond character due to the coordination at the metal center. Further the C(1)—S(1)—Rh(1) bond angle value [115.00 (8)°] indicates that the thiourea sulfur is bound to rhodium(I) primarily via a lone pair in a non-bonding sp2 sulfur orbital. C(1)—N(1) and C(1)—N(2) bond lengths [1.331 (3)Å and 1.343 (3) Å] are almost equivalent as expected for symmetrically substituted thiourea molecules. The value of Rh—S bond [2.403 (1) Å] is comparable with those found in similar complexes (Cauzzi et al., 1995, 1997). The syn conformation of the substituent on the sulfur with respect to the chlorine atom is stabilized by the intramolecular N(1)—H(1)···Cl(1) hydrogen bonding interaction.

The crystal packing arrangement is stabilized by van der Walls forces and the very weak intermolecular N(2)—H(2)···Cl(1) A hydrogen interaction along the a axis (Fig. 2) between the thioamide N(2) and the Cl(1) A of the neighbor complex molecule generated by applying the crystallographic (x + 1, y, z) symmetry operation.

Related literature top

For coordination modes of thiourea and thiourea-based ligands, see: Wilkinson (1987); Gibson et al. (1994); Robinson et al. (2000). For the application of thioureas as ligands for metal precursors in asymmetric catalysis, see: Breuzard et al. (2000). For related Rh(I) complexes containing thiourea ligands, see: Cauzzi et al. (1995, 1997). For structural data of the N,N'-diethylthiourea ligand, see: Ramnathan et al. (1995).

Experimental top

The compound was prepared by reacting [Rh(COD)(µ-Cl)]2 (0.050 g, 0.10 mmol) with the N,N'-diethylthiourea ligand (0.0264 g, 0.2 mmol) in CH2Cl2 solution at room temperature for 30 min. After evaporation of the solvent in vacuo, the residue was dissolved in dichloromethane. Recrystallization from CH2Cl2/hexane gave orange crystals of the complex.

Refinement top

Several H atoms were located in a difference Fourier map and placed in idealized positions using the riding-model technique with C—H = 0.93Å and N—H = 0.86Å for aliphatic and thioamide H atoms, respectively.

Structure description top

Thiourea and thiourea-based ligands form complexes with a number of transition metals (Wilkinson, 1987; Gibson et al., 1994; Robinson et al., 2000) and their application as ligands for metal catalyst in styrene hydroformylation has been recently shown (Breuzard et al., 2000).

In order to investigate the coordination chemistry of symmetrically substituted thiourea derivatives as ligands for metal complexes applicable in asymmetric catalysis, the reaction between chloro(η4-1,5-cyclooctadiene)rhodium(I) dimer and N,N'-diethylthiourea has been performed in dichloromethane. The obtained crystals were identified as the title compound by single-crystal X-ray diffraction. Figure 1 shows that in the compound (I) structure the N,N'-diethylthiourea acts as a monodenate S-donor ligand. Therefore the rhodium(I) coordination sphere is completed by a chlorine atom and COD [= 1,5-cyclooctadiene] ligand interacting with the metal center through the π-electrons of the double bonds. If the midpoints of these two bonds are taken into account the rhodium atom displays a distorted square planar coordination, as evidenced by the angles at Rh(1) [M(2)—Rh(1)—S(1) 86.4 (8)°, M(1)—Rh(1)—Cl(1) 88.9 (8)°, M(2)—Rh(1)—M(1) 87.8 (1)°, S(1)—Rh(1)—Cl(1) 96.97 (3)°]. In the thiourea moiety the distance S(1)—C(1) [1.732 (2) Å] is slightly longer than that found in the crystallographic structure of the N,N'-diethythiourea [1.707 (3) Å] (Ramnathan et al., 1995). This lengthening of the S—C bond is consistent with the decreasing double bond character due to the coordination at the metal center. Further the C(1)—S(1)—Rh(1) bond angle value [115.00 (8)°] indicates that the thiourea sulfur is bound to rhodium(I) primarily via a lone pair in a non-bonding sp2 sulfur orbital. C(1)—N(1) and C(1)—N(2) bond lengths [1.331 (3)Å and 1.343 (3) Å] are almost equivalent as expected for symmetrically substituted thiourea molecules. The value of Rh—S bond [2.403 (1) Å] is comparable with those found in similar complexes (Cauzzi et al., 1995, 1997). The syn conformation of the substituent on the sulfur with respect to the chlorine atom is stabilized by the intramolecular N(1)—H(1)···Cl(1) hydrogen bonding interaction.

The crystal packing arrangement is stabilized by van der Walls forces and the very weak intermolecular N(2)—H(2)···Cl(1) A hydrogen interaction along the a axis (Fig. 2) between the thioamide N(2) and the Cl(1) A of the neighbor complex molecule generated by applying the crystallographic (x + 1, y, z) symmetry operation.

For coordination modes of thiourea and thiourea-based ligands, see: Wilkinson (1987); Gibson et al. (1994); Robinson et al. (2000). For the application of thioureas as ligands for metal precursors in asymmetric catalysis, see: Breuzard et al. (2000). For related Rh(I) complexes containing thiourea ligands, see: Cauzzi et al. (1995, 1997). For structural data of the N,N'-diethylthiourea ligand, see: Ramnathan et al. (1995).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DIRAX/LSQ (Duisenberg, 1992); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP view of compound (I) showing atomic labeling scheme and displacement ellipsoids at 50% probability for non-H atoms.
[Figure 2] Fig. 2. View of the molecular rows along the a axis generated by N(2)—H(2)···Cl(1) intermolecular interaction.
Chlorido(η4-cycloocta-1,5-diene)(N,N'- diethylthiourea-κS)rhodium(I) top
Crystal data top
[RhCl(C8H12)(C5H12N2S)]Z = 2
Mr = 378.76F(000) = 388
Triclinic, P1Dx = 1.656 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 7.295 (5) ÅCell parameters from 93 reflections
b = 8.705 (5) Åθ = 5.3–22.3°
c = 12.602 (5) ŵ = 1.42 mm1
α = 101.727 (5)°T = 293 K
β = 102.058 (5)°Plate, orange
γ = 94.765 (5)°0.60 × 0.24 × 0.16 mm
V = 759.7 (7) Å3
Data collection top
Bruker–Nonius Kappa APEXII CCD
diffractometer
2585 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ω scansθmax = 25°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 88
Tmin = 0.540, Tmax = 0.710k = 1010
12830 measured reflectionsl = 1414
2656 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.016 w = 1/[σ2(Fo2) + (0.0121P)2 + 1.6925P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.042(Δ/σ)max = 0.01
S = 0.97Δρmax = 0.41 e Å3
2656 reflectionsΔρmin = 0.35 e Å3
165 parameters
Crystal data top
[RhCl(C8H12)(C5H12N2S)]γ = 94.765 (5)°
Mr = 378.76V = 759.7 (7) Å3
Triclinic, P1Z = 2
a = 7.295 (5) ÅMo Kα radiation
b = 8.705 (5) ŵ = 1.42 mm1
c = 12.602 (5) ÅT = 293 K
α = 101.727 (5)°0.60 × 0.24 × 0.16 mm
β = 102.058 (5)°
Data collection top
Bruker–Nonius Kappa APEXII CCD
diffractometer
2656 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2585 reflections with I > 2σ(I)
Tmin = 0.540, Tmax = 0.710Rint = 0.015
12830 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0160 restraints
wR(F2) = 0.042H-atom parameters constrained
S = 0.97Δρmax = 0.41 e Å3
2656 reflectionsΔρmin = 0.35 e Å3
165 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6141 (3)0.3714 (2)0.14001 (16)0.0101 (4)
C20.6911 (3)0.6516 (2)0.13529 (18)0.0130 (4)
H2A0.6780.62720.05520.016*
H2B0.82450.66310.17080.016*
C30.6120 (3)0.8048 (2)0.17068 (19)0.0156 (4)
H3A0.67010.88670.1430.023*
H3B0.63810.83480.25050.023*
H3C0.47780.78990.14090.023*
C40.8012 (3)0.1765 (2)0.05213 (18)0.0137 (4)
H4A0.68780.10210.01720.016*
H4B0.86730.14290.11690.016*
C50.9280 (3)0.1800 (3)0.02977 (18)0.0170 (5)
H5A0.86970.22830.0880.026*
H5B0.94580.07380.06140.026*
H5C1.04840.240.00860.026*
C60.1778 (3)0.4127 (3)0.43845 (18)0.0150 (4)
H60.15430.52270.44210.018*
C70.0334 (3)0.3011 (3)0.36521 (18)0.0143 (4)
H70.07250.34690.32720.017*
C80.0210 (3)0.1390 (3)0.38650 (19)0.0172 (5)
H8A0.15590.1080.35760.021*
H8B0.00660.14610.46620.021*
C90.0857 (3)0.0111 (3)0.33158 (18)0.0165 (4)
H9A0.10040.06890.37520.02*
H9B0.01040.03980.25780.02*
C100.2795 (3)0.0767 (2)0.32166 (18)0.0133 (4)
H100.33370.00550.26930.016*
C110.4153 (3)0.1802 (3)0.40867 (18)0.0146 (4)
H110.54630.16790.40520.018*
C120.3872 (3)0.2309 (3)0.52713 (18)0.0189 (5)
H12A0.50850.24480.57970.023*
H12B0.30580.14790.5420.023*
C130.2989 (3)0.3865 (3)0.54479 (18)0.0193 (5)
H13A0.2220.38490.59880.023*
H13B0.39930.47450.57530.023*
N10.5883 (2)0.52268 (19)0.16738 (14)0.0110 (3)
H10.50650.54630.20620.013*
N20.7506 (2)0.3357 (2)0.08595 (14)0.0121 (4)
H20.81340.41230.06990.014*
S10.47935 (7)0.22159 (6)0.17216 (4)0.01184 (11)
Cl10.18218 (7)0.52815 (6)0.21639 (4)0.01583 (11)
Rh10.27945 (2)0.309577 (18)0.295374 (13)0.00866 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0092 (10)0.0124 (10)0.0074 (9)0.0004 (8)0.0005 (8)0.0020 (8)
C20.0123 (10)0.0113 (10)0.0160 (11)0.0002 (8)0.0036 (8)0.0049 (8)
C30.0151 (11)0.0120 (10)0.0190 (11)0.0001 (8)0.0026 (9)0.0041 (9)
C40.0173 (11)0.0115 (10)0.0147 (11)0.0053 (8)0.0064 (9)0.0040 (8)
C50.0199 (11)0.0212 (11)0.0150 (11)0.0092 (9)0.0090 (9)0.0078 (9)
C60.0155 (11)0.0165 (11)0.0138 (11)0.0033 (9)0.0081 (9)0.0004 (9)
C70.0115 (10)0.0195 (11)0.0137 (10)0.0037 (8)0.0074 (8)0.0027 (9)
C80.0150 (11)0.0210 (12)0.0159 (11)0.0029 (9)0.0072 (9)0.0035 (9)
C90.0195 (11)0.0161 (11)0.0148 (11)0.0030 (9)0.0067 (9)0.0048 (9)
C100.0179 (11)0.0107 (10)0.0148 (10)0.0038 (8)0.0074 (9)0.0062 (8)
C110.0135 (10)0.0186 (11)0.0147 (11)0.0047 (9)0.0038 (8)0.0086 (9)
C120.0196 (11)0.0260 (12)0.0100 (10)0.0004 (9)0.0007 (9)0.0055 (9)
C130.0198 (12)0.0225 (12)0.0127 (11)0.0033 (9)0.0052 (9)0.0016 (9)
N10.0119 (9)0.0085 (8)0.0139 (9)0.0010 (7)0.0073 (7)0.0012 (7)
N20.0140 (9)0.0088 (8)0.0160 (9)0.0013 (7)0.0076 (7)0.0046 (7)
S10.0144 (3)0.0085 (2)0.0149 (3)0.00119 (19)0.0084 (2)0.00302 (19)
Cl10.0110 (2)0.0151 (3)0.0245 (3)0.00368 (19)0.0050 (2)0.0100 (2)
Rh10.00837 (9)0.00896 (9)0.00903 (9)0.00087 (6)0.00293 (6)0.00200 (6)
Geometric parameters (Å, º) top
C1—N11.331 (3)C7—H70.98
C1—N21.342 (3)C8—C91.543 (3)
C1—S11.732 (2)C8—H8A0.97
C2—N11.469 (3)C8—H8B0.97
C2—C31.518 (3)C9—C101.519 (3)
C2—H2A0.97C9—H9A0.97
C2—H2B0.97C9—H9B0.97
C3—H3A0.96C10—C111.411 (3)
C3—H3B0.96C10—Rh12.120 (2)
C3—H3C0.96C10—H100.98
C4—N21.466 (3)C11—C121.530 (3)
C4—C51.526 (3)C11—Rh12.130 (2)
C4—H4A0.97C11—H110.98
C4—H4B0.97C12—C131.543 (3)
C5—H5A0.96C12—H12A0.97
C5—H5B0.96C12—H12B0.97
C5—H5C0.96C13—H13A0.97
C6—C71.401 (3)C13—H13B0.97
C6—C131.514 (3)N1—H10.86
C6—Rh12.149 (2)N2—H20.86
C6—H60.98S1—Rh12.4026 (10)
C7—C81.525 (3)Cl1—Rh12.4111 (11)
C7—Rh12.160 (2)
N1—C1—N2118.06 (18)C8—C9—H9B109
N1—C1—S1122.42 (16)H9A—C9—H9B107.8
N2—C1—S1119.52 (16)C11—C10—C9124.75 (19)
N1—C2—C3109.49 (17)C11—C10—Rh171.01 (12)
N1—C2—H2A109.8C9—C10—Rh1110.88 (14)
C3—C2—H2A109.8C11—C10—H10114.1
N1—C2—H2B109.8C9—C10—H10114.1
C3—C2—H2B109.8Rh1—C10—H10114.1
H2A—C2—H2B108.2C10—C11—C12123.07 (19)
C2—C3—H3A109.5C10—C11—Rh170.20 (12)
C2—C3—H3B109.5C12—C11—Rh1114.30 (15)
H3A—C3—H3B109.5C10—C11—H11114
C2—C3—H3C109.5C12—C11—H11114
H3A—C3—H3C109.5Rh1—C11—H11114
H3B—C3—H3C109.5C11—C12—C13112.13 (18)
N2—C4—C5108.76 (17)C11—C12—H12A109.2
N2—C4—H4A109.9C13—C12—H12A109.2
C5—C4—H4A109.9C11—C12—H12B109.2
N2—C4—H4B109.9C13—C12—H12B109.2
C5—C4—H4B109.9H12A—C12—H12B107.9
H4A—C4—H4B108.3C6—C13—C12112.96 (18)
C4—C5—H5A109.5C6—C13—H13A109
C4—C5—H5B109.5C12—C13—H13A109
H5A—C5—H5B109.5C6—C13—H13B109
C4—C5—H5C109.5C12—C13—H13B109
H5A—C5—H5C109.5H13A—C13—H13B107.8
H5B—C5—H5C109.5C1—N1—C2123.97 (17)
C7—C6—C13124.7 (2)C1—N1—H1118
C7—C6—Rh171.44 (12)C2—N1—H1118
C13—C6—Rh1111.45 (15)C1—N2—C4125.27 (17)
C7—C6—H6113.9C1—N2—H2117.4
C13—C6—H6113.9C4—N2—H2117.4
Rh1—C6—H6113.9C1—S1—Rh1115.00 (8)
C6—C7—C8122.7 (2)C10—Rh1—C1138.78 (8)
C6—C7—Rh170.61 (12)C10—Rh1—C697.75 (8)
C8—C7—Rh1112.66 (14)C11—Rh1—C681.39 (9)
C6—C7—H7114.4C10—Rh1—C782.10 (8)
C8—C7—H7114.4C11—Rh1—C790.31 (9)
Rh1—C7—H7114.4C6—Rh1—C737.95 (8)
C7—C8—C9112.29 (17)C10—Rh1—S183.28 (6)
C7—C8—H8A109.1C11—Rh1—S189.52 (7)
C9—C8—H8A109.1C6—Rh1—S1163.50 (6)
C7—C8—H8B109.1C7—Rh1—S1156.79 (6)
C9—C8—H8B109.1C10—Rh1—Cl1159.79 (6)
H8A—C8—H8B107.9C11—Rh1—Cl1160.89 (6)
C10—C9—C8113.14 (18)C6—Rh1—Cl187.71 (7)
C10—C9—H9A109C7—Rh1—Cl190.67 (6)
C8—C9—H9A109S1—Rh1—Cl196.98 (3)
C10—C9—H9B109
C13—C6—C7—C81.3 (3)C12—C11—Rh1—C10118.3 (2)
Rh1—C6—C7—C8105.03 (19)C10—C11—Rh1—C6113.96 (14)
C13—C6—C7—Rh1103.7 (2)C12—C11—Rh1—C64.32 (16)
C6—C7—C8—C992.6 (2)C10—C11—Rh1—C776.94 (13)
Rh1—C7—C8—C911.7 (2)C12—C11—Rh1—C741.35 (16)
C7—C8—C9—C1029.4 (3)C10—C11—Rh1—S179.85 (12)
C8—C9—C10—C1147.8 (3)C12—C11—Rh1—S1161.87 (15)
C8—C9—C10—Rh133.1 (2)C10—C11—Rh1—Cl1169.87 (14)
C9—C10—C11—C124.0 (3)C12—C11—Rh1—Cl151.6 (3)
Rh1—C10—C11—C12106.7 (2)C7—C6—Rh1—C1066.43 (14)
C9—C10—C11—Rh1102.7 (2)C13—C6—Rh1—C1054.45 (16)
C10—C11—C12—C1392.5 (3)C7—C6—Rh1—C11101.71 (14)
Rh1—C11—C12—C1311.1 (2)C13—C6—Rh1—C1119.17 (15)
C7—C6—C13—C1250.9 (3)C13—C6—Rh1—C7120.9 (2)
Rh1—C6—C13—C1230.8 (2)C7—C6—Rh1—S1158.94 (17)
C11—C12—C13—C627.4 (3)C13—C6—Rh1—S138.1 (3)
N2—C1—N1—C24.4 (3)C7—C6—Rh1—Cl194.03 (13)
S1—C1—N1—C2175.86 (15)C13—C6—Rh1—Cl1145.09 (15)
C3—C2—N1—C1174.37 (18)C6—C7—Rh1—C10113.53 (14)
N1—C1—N2—C4178.38 (18)C8—C7—Rh1—C104.79 (15)
S1—C1—N2—C41.3 (3)C6—C7—Rh1—C1175.50 (14)
C5—C4—N2—C1166.75 (19)C8—C7—Rh1—C1142.81 (16)
N1—C1—S1—Rh19.74 (19)C8—C7—Rh1—C6118.3 (2)
N2—C1—S1—Rh1169.97 (13)C6—C7—Rh1—S1164.99 (12)
C9—C10—Rh1—C11120.9 (2)C8—C7—Rh1—S146.7 (2)
C11—C10—Rh1—C665.76 (14)C6—C7—Rh1—Cl185.41 (13)
C9—C10—Rh1—C655.16 (16)C8—C7—Rh1—Cl1156.27 (15)
C11—C10—Rh1—C7100.44 (14)C1—S1—Rh1—C10160.61 (10)
C9—C10—Rh1—C720.48 (15)C1—S1—Rh1—C11122.23 (10)
C11—C10—Rh1—S197.64 (13)C1—S1—Rh1—C666.0 (2)
C9—C10—Rh1—S1141.43 (15)C1—S1—Rh1—C7148.12 (16)
C11—C10—Rh1—Cl1170.40 (13)C1—S1—Rh1—Cl139.75 (8)
C9—C10—Rh1—Cl149.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.862.393.152 (3)148
N2—H2···Cl1i0.862.893.356 (3)116
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[RhCl(C8H12)(C5H12N2S)]
Mr378.76
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.295 (5), 8.705 (5), 12.602 (5)
α, β, γ (°)101.727 (5), 102.058 (5), 94.765 (5)
V3)759.7 (7)
Z2
Radiation typeMo Kα
µ (mm1)1.42
Crystal size (mm)0.60 × 0.24 × 0.16
Data collection
DiffractometerBruker–Nonius Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.540, 0.710
No. of measured, independent and
observed [I > 2σ(I)] reflections
12830, 2656, 2585
Rint0.015
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.042, 0.97
No. of reflections2656
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.35

Computer programs: COLLECT (Nonius, 1998), DIRAX/LSQ (Duisenberg, 1992), EVALCCD (Duisenberg et al., 2003), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.862.393.152 (3)148
N2—H2···Cl1i0.862.893.356 (3)115.5
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors would like to thank the University of Messina and the MIUR (Ministero dell'Istruzione, dell'Universitá e della Ricerca) for financial support.

References

First citationBreuzard, J. A. J., Tommasino, M. L., Touchard, F., Lemaire, M. & Bonnet, M. C. (2000). J. Mol. Catal. A, 156, 223–232.  CrossRef CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCauzzi, D., Costa, M., Gonsalvi, L., Pellinghelli, M. A., Predieri, G., Tiripicchio, A. & Zanoni, R. (1997). J. Organomet. Chem. 541, 377–389.  CSD CrossRef CAS Web of Science Google Scholar
First citationCauzzi, D., Lanfranchi, M., Marzolini, G., Predieri, G., Tiripicchio, A., Costa, M. & Zanoni, R. (1995). J. Organomet. Chem. 488, 115–125.  CSD CrossRef CAS Web of Science Google Scholar
First citationDuisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGibson, V. C., Redshaw, C., Clegg, W. & Elsegood, M. R. J. (1994). J. Chem. Soc. Chem. Commun. pp. 2635–2636.  CrossRef Web of Science Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationRamnathan, A., Sivakumar, K., Subramanian, K., Janarthanan, N., Ramadas, K. & Fun, H.-K. (1995). Acta Cryst. C51, 2446–2450.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRobinson, S. D., Sahajpal, A. & Steed, J. W. (2000). Inorg. Chim. Acta, 306, 205–210.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilkinson, G. (1987). Comprehensive Coordination Chemistry, ch. 16.6, pp. 639–640. Oxford: Pergamon Press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds