organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Chloro­phenyl­sulfin­yl)-2,5,7-tri­methyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 10 August 2010; accepted 11 August 2010; online 18 August 2010)

In the title compound, C17H15ClO2S, the O atom and the 4-chloro­phenyl group of the 4-chloro­phenyl­sulfinyl substituent are located on opposite sides of the plane through the benzofuran fragment; the 4-chloro­phenyl ring is approximately perpendicular to this plane [dihedral angle = 87.12 (3)°]. In the crystal structure, mol­ecules are linked through a weak inter­molecular C—H⋯O hydrogen bond, and by weak C—S⋯π [3.394 (2) Å] and C—Cl⋯π [3.800 (2) Å] inter­actions.

Related literature

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006[Aslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214-4226.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]). For related structures, see: Choi et al. (2010a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o472.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o543.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15ClO2S

  • Mr = 318.80

  • Triclinic, [P \overline 1]

  • a = 6.0790 (12) Å

  • b = 10.2232 (19) Å

  • c = 12.514 (2) Å

  • α = 84.474 (9)°

  • β = 80.121 (9)°

  • γ = 85.991 (9)°

  • V = 761.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 173 K

  • 0.33 × 0.29 × 0.29 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.883, Tmax = 0.897

  • 13813 measured reflections

  • 3789 independent reflections

  • 3381 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.100

  • S = 1.06

  • 3789 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O2i 0.93 2.52 3.2548 (17) 136
Symmetry code: (i) -x, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

A series of benzofuran ring system show remarkable pharmacological properties such as antimicrobial (Khan et al., 2005), antifungal (Aslam et al., 2006), antitumour and antiviral (Galal et al., 2009) activities. These compounds widely occur in nature (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our study of the substituent effect on the solid state structures of 3-(4-fluorophenylsulfinyl)-2-methyl-1-benzofuran analogues (Choi et al., 2010a,b), we report the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.005 (1) Å from the least-squares plane defined by the nine constituent atoms. The 4-chlorophenyl ring is nearly perpendicular to the benzofuran plane with a dihedral angle of 87.12 (3)° and is tilted slightly towards it. The molecular packing (Fig. 2) is stabilized by a weak intermolecular C—H···O hydrogen bond between the 4-chlorophenyl H atom and the oxygen of the SO unit, with a C13—H13···O2i (Table 1). The crystal packing (Fig. 2) is further stabilized by a weak intermolecular C—S···π interaction between the sulfur and 4-chlorophenyl ring of an adjacent molecule, with a C1—S···Cg1ii [3.394 (2) Å] (Cg1 is the centroid of the C12–C17 4-chlorophenyl ring), and by an intermolecular C—Cl···π interaction between the chlorine and the benzene ring of a neighbouring benzofuran system, with a C15—Cl···Cg2iii [3.800 (2) Å] (Cg2 is the centroid of the C2–C7 benzene ring).

Related literature top

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For related structures, see: Choi et al. (2010a,b).

Experimental top

77% 3-chloroperoxybenzoic acid (247 mg, 1.1 mmol) was added in small portions to a stirred solution of 3-(4-chlorophenylsulfanyl)-2,5,7-trimethyl-1-benzofuran (303 mg, 1.0 mmol) in dichloromethane (40 ml) at 273 K. After being stirred at room temperature for 4 h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 1:1 v/v) to afford the title compound as a colourless solid [yield 79%, m.p. 419–420 K; Rf = 0.69 (hexane–ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for aryl and 0.96 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms.

Structure description top

A series of benzofuran ring system show remarkable pharmacological properties such as antimicrobial (Khan et al., 2005), antifungal (Aslam et al., 2006), antitumour and antiviral (Galal et al., 2009) activities. These compounds widely occur in nature (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our study of the substituent effect on the solid state structures of 3-(4-fluorophenylsulfinyl)-2-methyl-1-benzofuran analogues (Choi et al., 2010a,b), we report the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.005 (1) Å from the least-squares plane defined by the nine constituent atoms. The 4-chlorophenyl ring is nearly perpendicular to the benzofuran plane with a dihedral angle of 87.12 (3)° and is tilted slightly towards it. The molecular packing (Fig. 2) is stabilized by a weak intermolecular C—H···O hydrogen bond between the 4-chlorophenyl H atom and the oxygen of the SO unit, with a C13—H13···O2i (Table 1). The crystal packing (Fig. 2) is further stabilized by a weak intermolecular C—S···π interaction between the sulfur and 4-chlorophenyl ring of an adjacent molecule, with a C1—S···Cg1ii [3.394 (2) Å] (Cg1 is the centroid of the C12–C17 4-chlorophenyl ring), and by an intermolecular C—Cl···π interaction between the chlorine and the benzene ring of a neighbouring benzofuran system, with a C15—Cl···Cg2iii [3.800 (2) Å] (Cg2 is the centroid of the C2–C7 benzene ring).

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For related structures, see: Choi et al. (2010a,b).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. C—H···O, C—S···π, and C—Cl···π interactions (dotted lines) in the crystal structure of the title compound. Cg1 and Cg2 denote the ring centroids. [Symmetry codes: (i) -x, -y + 1, -z + 2; (ii) -x + 1, -y + 1 , -z + 2; (iii) -x + 1, -y, -z + 2.]
3-(4-Chlorophenylsulfinyl)-2,5,7-trimethyl-1-benzofuran top
Crystal data top
C17H15ClO2SZ = 2
Mr = 318.80F(000) = 332
Triclinic, P1Dx = 1.390 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.0790 (12) ÅCell parameters from 8051 reflections
b = 10.2232 (19) Åθ = 2.5–28.5°
c = 12.514 (2) ŵ = 0.39 mm1
α = 84.474 (9)°T = 173 K
β = 80.121 (9)°Block, colourless
γ = 85.991 (9)°0.33 × 0.29 × 0.29 mm
V = 761.5 (3) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
3789 independent reflections
Radiation source: rotating anode3381 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.027
Detector resolution: 10.0 pixels mm-1θmax = 28.5°, θmin = 1.7°
φ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1313
Tmin = 0.883, Tmax = 0.897l = 1616
13813 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: difference Fourier map
wR(F2) = 0.100H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0527P)2 + 0.253P]
where P = (Fo2 + 2Fc2)/3
3789 reflections(Δ/σ)max = 0.001
193 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C17H15ClO2Sγ = 85.991 (9)°
Mr = 318.80V = 761.5 (3) Å3
Triclinic, P1Z = 2
a = 6.0790 (12) ÅMo Kα radiation
b = 10.2232 (19) ŵ = 0.39 mm1
c = 12.514 (2) ÅT = 173 K
α = 84.474 (9)°0.33 × 0.29 × 0.29 mm
β = 80.121 (9)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3789 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3381 reflections with I > 2σ(I)
Tmin = 0.883, Tmax = 0.897Rint = 0.027
13813 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.06Δρmax = 0.29 e Å3
3789 reflectionsΔρmin = 0.37 e Å3
193 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.59001 (8)0.01403 (4)1.15921 (3)0.04476 (12)
S0.39442 (5)0.50713 (3)0.84174 (2)0.02515 (10)
O10.70564 (15)0.39917 (9)0.55824 (7)0.0275 (2)
O20.14556 (16)0.52738 (11)0.85326 (8)0.0345 (2)
C10.4919 (2)0.43493 (12)0.71941 (10)0.0238 (2)
C20.3922 (2)0.33367 (12)0.67424 (10)0.0233 (2)
C30.2051 (2)0.25904 (13)0.70614 (11)0.0268 (3)
H30.11120.26930.77210.032*
C40.1625 (2)0.16917 (13)0.63714 (12)0.0298 (3)
C50.3092 (3)0.15433 (13)0.53838 (12)0.0323 (3)
H50.27830.09280.49370.039*
C60.4978 (2)0.22683 (13)0.50407 (10)0.0299 (3)
C70.5302 (2)0.31615 (12)0.57516 (10)0.0249 (3)
C80.6769 (2)0.47050 (13)0.64733 (10)0.0255 (3)
C90.0407 (3)0.08820 (16)0.66938 (15)0.0409 (4)
H9A0.00030.00650.70760.061*
H9B0.09670.07070.60520.061*
H9C0.15440.13590.71570.061*
C100.6554 (3)0.21158 (16)0.39876 (12)0.0418 (4)
H10A0.65530.29290.35350.063*
H10B0.60780.14320.36190.063*
H10C0.80370.18880.41370.063*
C110.8487 (2)0.56565 (14)0.64818 (12)0.0322 (3)
H11A0.79920.62220.70560.048*
H11B0.87230.61770.57950.048*
H11C0.98620.51890.66000.048*
C120.4487 (2)0.36497 (13)0.93215 (10)0.0238 (2)
C130.2739 (2)0.31452 (14)1.00741 (11)0.0284 (3)
H130.12970.35261.01040.034*
C140.3172 (2)0.20634 (15)1.07826 (12)0.0332 (3)
H140.20200.17081.12900.040*
C150.5339 (3)0.15185 (14)1.07258 (11)0.0307 (3)
C160.7104 (2)0.20486 (15)0.99957 (12)0.0328 (3)
H160.85510.16800.99760.039*
C170.6671 (2)0.31354 (14)0.92966 (11)0.0302 (3)
H170.78350.35180.88140.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0623 (3)0.0352 (2)0.0401 (2)0.00630 (17)0.02155 (19)0.00593 (15)
S0.02602 (17)0.02658 (17)0.02290 (16)0.00133 (12)0.00348 (12)0.00547 (11)
O10.0279 (5)0.0294 (5)0.0231 (4)0.0013 (4)0.0010 (3)0.0016 (3)
O20.0269 (5)0.0442 (6)0.0312 (5)0.0108 (4)0.0041 (4)0.0072 (4)
C10.0238 (6)0.0255 (6)0.0217 (6)0.0002 (5)0.0033 (4)0.0025 (4)
C20.0238 (6)0.0231 (6)0.0226 (6)0.0028 (4)0.0047 (4)0.0018 (4)
C30.0236 (6)0.0266 (6)0.0292 (6)0.0008 (5)0.0024 (5)0.0016 (5)
C40.0287 (6)0.0242 (6)0.0382 (7)0.0010 (5)0.0121 (5)0.0008 (5)
C50.0425 (8)0.0256 (6)0.0319 (7)0.0012 (5)0.0144 (6)0.0049 (5)
C60.0398 (7)0.0266 (6)0.0229 (6)0.0054 (5)0.0071 (5)0.0028 (5)
C70.0270 (6)0.0240 (6)0.0231 (6)0.0011 (5)0.0038 (5)0.0005 (4)
C80.0256 (6)0.0272 (6)0.0230 (6)0.0010 (5)0.0040 (5)0.0011 (5)
C90.0332 (7)0.0346 (8)0.0575 (10)0.0058 (6)0.0121 (7)0.0059 (7)
C100.0617 (10)0.0356 (8)0.0258 (7)0.0021 (7)0.0004 (7)0.0076 (6)
C110.0278 (6)0.0340 (7)0.0341 (7)0.0053 (5)0.0042 (5)0.0010 (5)
C120.0229 (6)0.0281 (6)0.0210 (6)0.0017 (5)0.0039 (4)0.0044 (5)
C130.0215 (6)0.0352 (7)0.0285 (6)0.0037 (5)0.0023 (5)0.0051 (5)
C140.0323 (7)0.0382 (8)0.0287 (7)0.0107 (6)0.0018 (5)0.0009 (6)
C150.0396 (7)0.0290 (6)0.0261 (6)0.0051 (5)0.0120 (5)0.0017 (5)
C160.0263 (6)0.0370 (7)0.0359 (7)0.0023 (5)0.0091 (5)0.0028 (6)
C170.0229 (6)0.0374 (7)0.0286 (7)0.0006 (5)0.0006 (5)0.0009 (5)
Geometric parameters (Å, º) top
Cl—C151.7443 (15)C9—H9A0.9600
S—O21.4964 (10)C9—H9B0.9600
S—C11.7563 (13)C9—H9C0.9600
S—C121.8015 (13)C10—H10A0.9600
O1—C81.3700 (16)C10—H10B0.9600
O1—C71.3846 (16)C10—H10C0.9600
C1—C81.3627 (17)C11—H11A0.9600
C1—C21.4408 (17)C11—H11B0.9600
C2—C71.3920 (17)C11—H11C0.9600
C2—C31.3937 (18)C12—C131.3863 (18)
C3—C41.3854 (19)C12—C171.3900 (18)
C3—H30.9300C13—C141.389 (2)
C4—C51.409 (2)C13—H130.9300
C4—C91.511 (2)C14—C151.387 (2)
C5—C61.392 (2)C14—H140.9300
C5—H50.9300C15—C161.389 (2)
C6—C71.3805 (18)C16—C171.386 (2)
C6—C101.5048 (19)C16—H160.9300
C8—C111.4780 (19)C17—H170.9300
O2—S—C1108.00 (6)H9A—C9—H9C109.5
O2—S—C12106.40 (6)H9B—C9—H9C109.5
C1—S—C1296.87 (6)C6—C10—H10A109.5
C8—O1—C7106.14 (10)C6—C10—H10B109.5
C8—C1—C2107.49 (11)H10A—C10—H10B109.5
C8—C1—S124.61 (10)C6—C10—H10C109.5
C2—C1—S127.86 (10)H10A—C10—H10C109.5
C7—C2—C3119.63 (12)H10B—C10—H10C109.5
C7—C2—C1104.61 (11)C8—C11—H11A109.5
C3—C2—C1135.75 (12)C8—C11—H11B109.5
C4—C3—C2118.34 (12)H11A—C11—H11B109.5
C4—C3—H3120.8C8—C11—H11C109.5
C2—C3—H3120.8H11A—C11—H11C109.5
C3—C4—C5119.66 (13)H11B—C11—H11C109.5
C3—C4—C9119.32 (13)C13—C12—C17121.40 (12)
C5—C4—C9121.02 (13)C13—C12—S119.24 (10)
C6—C5—C4123.56 (13)C17—C12—S119.23 (10)
C6—C5—H5118.2C12—C13—C14119.03 (12)
C4—C5—H5118.2C12—C13—H13120.5
C7—C6—C5114.29 (12)C14—C13—H13120.5
C7—C6—C10121.78 (14)C15—C14—C13119.40 (13)
C5—C6—C10123.92 (13)C15—C14—H14120.3
C6—C7—O1124.64 (12)C13—C14—H14120.3
C6—C7—C2124.50 (12)C14—C15—C16121.63 (13)
O1—C7—C2110.86 (11)C14—C15—Cl119.93 (11)
C1—C8—O1110.89 (11)C16—C15—Cl118.45 (11)
C1—C8—C11133.18 (12)C17—C16—C15118.88 (13)
O1—C8—C11115.91 (11)C17—C16—H16120.6
C4—C9—H9A109.5C15—C16—H16120.6
C4—C9—H9B109.5C16—C17—C12119.56 (13)
H9A—C9—H9B109.5C16—C17—H17120.2
C4—C9—H9C109.5C12—C17—H17120.2
O2—S—C1—C8137.22 (11)C1—C2—C7—C6179.56 (12)
C12—S—C1—C8113.01 (12)C3—C2—C7—O1179.84 (11)
O2—S—C1—C240.20 (13)C1—C2—C7—O10.32 (14)
C12—S—C1—C269.57 (12)C2—C1—C8—O10.20 (14)
C8—C1—C2—C70.07 (14)S—C1—C8—O1178.07 (9)
S—C1—C2—C7177.71 (10)C2—C1—C8—C11178.62 (14)
C8—C1—C2—C3179.47 (14)S—C1—C8—C113.5 (2)
S—C1—C2—C31.7 (2)C7—O1—C8—C10.40 (14)
C7—C2—C3—C40.10 (18)C7—O1—C8—C11179.11 (11)
C1—C2—C3—C4179.23 (13)O2—S—C12—C1311.33 (12)
C2—C3—C4—C50.85 (19)C1—S—C12—C13122.43 (11)
C2—C3—C4—C9179.33 (12)O2—S—C12—C17172.79 (11)
C3—C4—C5—C60.7 (2)C1—S—C12—C1761.69 (12)
C9—C4—C5—C6179.49 (13)C17—C12—C13—C143.1 (2)
C4—C5—C6—C70.2 (2)S—C12—C13—C14178.86 (10)
C4—C5—C6—C10179.96 (13)C12—C13—C14—C150.4 (2)
C5—C6—C7—O1179.80 (12)C13—C14—C15—C161.7 (2)
C10—C6—C7—O10.0 (2)C13—C14—C15—Cl178.75 (11)
C5—C6—C7—C21.05 (19)C14—C15—C16—C171.1 (2)
C10—C6—C7—C2179.14 (13)Cl—C15—C16—C17179.36 (11)
C8—O1—C7—C6179.69 (12)C15—C16—C17—C121.6 (2)
C8—O1—C7—C20.44 (14)C13—C12—C17—C163.7 (2)
C3—C2—C7—C60.92 (19)S—C12—C17—C16179.48 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O2i0.932.523.2548 (17)136
Symmetry code: (i) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC17H15ClO2S
Mr318.80
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)6.0790 (12), 10.2232 (19), 12.514 (2)
α, β, γ (°)84.474 (9), 80.121 (9), 85.991 (9)
V3)761.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.33 × 0.29 × 0.29
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.883, 0.897
No. of measured, independent and
observed [I > 2σ(I)] reflections
13813, 3789, 3381
Rint0.027
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.100, 1.06
No. of reflections3789
No. of parameters193
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.37

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O2i0.932.523.2548 (17)136.1
Symmetry code: (i) x, y+1, z+2.
 

Acknowledgements

This work was supported by Blue-Bio Industry RIC at Dongeui University as an RIC programme under the Ministry of Knowledge Economy and Busan city.

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214–4226.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o472.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o543.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds