metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m760-m761

Bis(μ-2,4-dihy­dr­oxy­benzoato-κ2O:O′)bis­­[aqua­(2,4-dihy­dr­oxy­benzoato-κO)(1,10-phenanthroline-κ2N,N′)cadmium(II)]

aDepartment of Chemistry, Zhejiang University, People's Republic of China
*Correspondence e-mail: xudj@mail.hz.zj.cn

(Received 16 May 2010; accepted 3 June 2010; online 9 June 2010)

In the title centrosymmetric dimeric CdII complex, [Cd2(C7H5O4)4(C12H8N2)2(H2O)2], the CdII cation is coord­inated by a bidentate phenanthroline (phen) ligand, three dihy­droxy­benzoate (dhba) anions and one water mol­ecule in a distorted CdN2O4 octa­hedral geometry. Among the dhba anions, two anions bridge two CdII cations to form the dimeric complex with significant different Cd—O bond distances of 2.2215 (19) and 2.406 (2) Å. The centroid–centroid distance of 3.4615 (19) Å between two nearly parallel benzene rings of the dhba and phen ligands coordinating to the same CdII cation indicates the existence of intra­molecular ππ stacking in the complex. Extensive O—H⋯O hydrogen bonding and inter­molecular weak C—H⋯O hydrogen bonding help to stabilize the crystal structure. One hy­droxy group of the monodentate dhba ligand is disordered over two sites with a site-occupancy ratio of 0.9:0.1.

Related literature

For the correlation between ππ stacking and electron-transfer processes in some biological systems, see: Deisenhofer & Michel (1989[Deisenhofer, J. & Michel, H. (1989). EMBO J. 8, 2149-2170.]). For general background to ππ stacking, see: Li et al. (2005[Li, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19-m21.]). For ππ stacking involving a dihy­droxy­benzoate ligand in an Ni complex, see: Yang et al. (2006[Yang, Q., Zhang, L. & Xu, D.-J. (2006). Acta Cryst. E62, m2678-m2680.]). Intramol­ecular ππ stacking was previously observed in a Sr complex with a hy­droxy­benzoate ligand, see: Su et al. (2005[Su, J.-R., Gu, J.-M. & Xu, D.-J. (2005). Acta Cryst. E61, m1033-m1035.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd2(C7H5O4)4(C12H8N2)2(H2O)2]

  • Mr = 1233.68

  • Monoclinic, P 21 /n

  • a = 14.899 (4) Å

  • b = 6.874 (2) Å

  • c = 23.400 (6) Å

  • β = 103.378 (2)°

  • V = 2331.4 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.00 mm−1

  • T = 296 K

  • 0.26 × 0.17 × 0.11 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.758, Tmax = 0.890

  • 19273 measured reflections

  • 4654 independent reflections

  • 4015 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.067

  • S = 1.11

  • 4654 reflections

  • 358 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Selected bond lengths (Å)

Cd—N1 2.326 (2)
Cd—N2 2.324 (2)
Cd—O1 2.215 (2)
Cd—O5 2.406 (2)
Cd—O6i 2.2215 (19)
Cd—O9 2.361 (2)
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2 0.82 1.81 2.540 (3) 148
O3′—H3B⋯O1 0.82 1.56 2.332 (19) 156
O4—H4A⋯O7ii 0.82 1.91 2.719 (3) 172
O7—H7A⋯O6 0.82 1.80 2.523 (3) 147
O8—H8A⋯O3iii 0.82 1.94 2.752 (3) 169
O9—H9A⋯O2 0.86 (1) 1.97 (2) 2.738 (3) 148 (3)
O9—H9B⋯O5iv 0.86 (1) 2.03 (2) 2.842 (3) 158 (3)
C24—H24⋯O5i 0.93 2.58 3.433 (4) 152
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x, y+1, z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The π-π stacking between aromatic rings is an important non-covalent interaction and correlated with the electron transfer process in some biological systems (Deisenhofer & Michel, 1989). As a continuous work of the series investigation on the nature of π-π stacking (Li et al., 2005), we prepared the title CdII complex which contains a double-hydroxy substituted benzoate ligand. We present here its crystal structure to compare with those incorporating monohydroxybenzoate ligand and to show the effect of hydroxy substitution on the benzene ring to π-π stacking between aromatic rings.

The molecular structure of the title compound is shown in Fig. 1. The dimeric CdII complex locates across on an inversion center. Each CdII atom is coordinated by one phenanthroline (phen), one water molecule and three dihydroxybenzoate (dhba) dianions in a distorted octahedral geometry (Table 1). The C1-containg dhba is monodentately coordinated to a CdII atom and is well coplanar with the Cd atom [the maximum atomic deviation 0.071 (3) Å (Cd)] while the C8-conating dhba bridges two Cd atoms to form the dimeric complex.

It is notable that intra-molecular π-π stacking exists in the dimeric complex. Partially overlapped arrangement between nearly parallel C9-containg benzene ring and phen ring system [dihedral angle 6.56°] is observed in the molecular structure; the shorter centroids distance of 3.4615 (19) Å between C9-benzene and C19-benzene rings suggests the existence of intramolecualr π-π stacking. The perpendicular distance of centroid of C9-benzene ring on C19-benzene ring and perpendicular distance of centroid of C19-benzene ring on C9-benzene ring are 3.365 and 3.388 Å. Intra-molecular π-π stacking was previously observed in a SrII complex with hydroxybenzoate ligand (Su et al., 2007). π-π stacking involving dhba ligand in a NiII complex was reported by Yang et al. (2006).

Intermolecular π-π stacking is also present in the crystal structure; the centroid distance between C9-ring and C19i-ring is 3.754 (2) Å [symmetry code: (i) x, -1 + y, z] (Fig. 2).

Extensive O—H···O hydrogen bonding and intermolecular weak C—H···O hydrogen bonding (Table 2) help to stabilize the crystal structure.

Related literature top

For the correlation between ππ stacking and electron-transfer processes in some biological systems, see: Deisenhofer & Michel (1989). For general background to ππ stacking, see: Li et al. (2005). For ππ stacking involving a dihydroxybenzoate ligand in an Ni complex, see: Yang et al. (2006). Intra-molecular ππ stacking was previously observed in a Sr complex with a hydroxybenzoate ligand, see: Su et al. (2005).

Experimental top

CdCl2.2.5H2O (0.46 g, 2 mmol), Na2CO3 (0.21 g, 2 mmol) and 2,4-dihydroxybenzoic acid (0.31 g, 2 mmol) was dissolved in a water/ethanol solution (20 ml, 1:3); then phenanthroline (0.36 g, 2 mmol) was added to above solution. The mixture was refluxed for 3 h, and then filtered after cooling to room temperature. Colorless single crystals of the title compound were obtained after one week.

Refinement top

One hydroxy group of C1-containing dhba ligand is disordered, site occupancies for O3 and O3' atoms were initially refined and converged to 0.895 (3) and 0.105 (3), they were fixed as 0.9 and 0.1 respectively in the final refinement. Water H atoms were located in a difference Fourier map and refined with O—H distance restrains, Uiso(H) = 1.2Ueq(O). Other H atoms were placed in calculated positions with O—H = 0.82 and C—H = 0.93 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(O,C). In the final refinement the C6—C7 distance was constrained to be 1.38±0.01 Å.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The dimeric molecular structure of the title complex with 30% probability displacement ellipsoids (arbitrary spheres for H atoms). The minor dosordered component is omitted for clarity. Dashed lines indicate intramolecular hydrogen bonding [symmetry code: (i) 1 - x,1 - y,1 - z].
[Figure 2] Fig. 2. The unit cell packing showing intermolecular π-π stacking between dhba and phen rings.
Bis(µ-2,4-dihydroxybenzoato-κ2O:O')bis[aqua(2,4- dihydroxybenzoato-κO)(1,10-phenanthroline- κ2N,N')cadmium(II)] top
Crystal data top
[Cd2(C7H5O4)4(C12H8N2)2(H2O)2]F(000) = 1240
Mr = 1233.68Dx = 1.757 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 15860 reflections
a = 14.899 (4) Åθ = 3.1–26.0°
b = 6.874 (2) ŵ = 1.00 mm1
c = 23.400 (6) ÅT = 296 K
β = 103.378 (2)°Prism, colorless
V = 2331.4 (11) Å30.26 × 0.17 × 0.11 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4654 independent reflections
Radiation source: fine-focus sealed tube4015 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 10.0 pixels mm-1θmax = 26.1°, θmin = 3.1°
ω scansh = 1818
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 88
Tmin = 0.758, Tmax = 0.890l = 2929
19273 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0281P)2 + 1.5199P]
where P = (Fo2 + 2Fc2)/3
4654 reflections(Δ/σ)max = 0.001
358 parametersΔρmax = 0.66 e Å3
3 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Cd2(C7H5O4)4(C12H8N2)2(H2O)2]V = 2331.4 (11) Å3
Mr = 1233.68Z = 2
Monoclinic, P21/nMo Kα radiation
a = 14.899 (4) ŵ = 1.00 mm1
b = 6.874 (2) ÅT = 296 K
c = 23.400 (6) Å0.26 × 0.17 × 0.11 mm
β = 103.378 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4654 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4015 reflections with I > 2σ(I)
Tmin = 0.758, Tmax = 0.890Rint = 0.031
19273 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0283 restraints
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.66 e Å3
4654 reflectionsΔρmin = 0.38 e Å3
358 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd0.397190 (12)0.67327 (3)0.425111 (8)0.03048 (7)
N10.37208 (16)0.6779 (3)0.32325 (9)0.0369 (5)
N20.53505 (15)0.7623 (3)0.40192 (9)0.0329 (5)
O10.25877 (13)0.5555 (3)0.42507 (10)0.0534 (6)
O20.16636 (15)0.8085 (3)0.39648 (12)0.0592 (6)
O30.00646 (15)0.7698 (3)0.38480 (10)0.0421 (5)0.90
H3A0.04190.82180.38210.063*0.90
O3'0.2006 (13)0.254 (3)0.4445 (9)0.040 (4)0.10
H3B0.23430.34260.43880.060*0.10
O40.11493 (14)0.1736 (3)0.44782 (11)0.0531 (5)
H4A0.16430.23130.43870.080*
O50.44142 (12)0.3360 (3)0.43181 (8)0.0376 (4)
O60.58823 (14)0.2947 (3)0.47871 (8)0.0465 (5)
O70.71417 (12)0.3368 (3)0.42386 (8)0.0453 (5)
H7A0.69100.33420.45240.068*
O80.63878 (16)0.2938 (4)0.21875 (9)0.0554 (6)
H8A0.59530.27740.19050.083*
O90.33412 (15)0.9899 (3)0.41432 (12)0.0584 (6)
H9A0.2763 (6)0.977 (6)0.4129 (16)0.070*
H9B0.353 (3)1.1085 (18)0.4142 (16)0.070*
C10.18095 (18)0.6359 (5)0.41415 (12)0.0408 (7)
C20.10138 (17)0.5164 (4)0.42243 (10)0.0324 (5)
C30.01181 (18)0.5888 (4)0.40876 (11)0.0330 (6)
H30.00110.71420.39390.040*0.10
C40.06174 (17)0.4778 (4)0.41683 (11)0.0350 (6)
H40.12120.52890.40770.042*
C50.04658 (18)0.2906 (4)0.43854 (12)0.0349 (6)
C60.04272 (16)0.2132 (4)0.45253 (13)0.0386 (6)
H60.05320.08740.46720.046*
C70.11485 (15)0.3269 (4)0.44412 (11)0.0366 (6)
H70.17420.27580.45320.044*0.90
C80.52452 (18)0.3071 (4)0.43170 (11)0.0314 (5)
C90.55409 (17)0.2915 (3)0.37581 (11)0.0295 (5)
C100.64719 (18)0.3133 (4)0.37392 (11)0.0338 (5)
C110.67359 (19)0.3138 (4)0.32113 (12)0.0412 (6)
H110.73540.32950.32060.049*
C120.6079 (2)0.2908 (4)0.26885 (12)0.0384 (6)
C130.5157 (2)0.2642 (4)0.26956 (12)0.0378 (6)
H130.47170.24520.23470.045*
C140.49017 (18)0.2662 (4)0.32251 (12)0.0343 (6)
H140.42830.25010.32270.041*
C150.2934 (2)0.6307 (5)0.28578 (13)0.0469 (7)
H150.24270.59850.30070.056*
C160.2839 (3)0.6274 (5)0.22552 (14)0.0568 (9)
H160.22810.59240.20060.068*
C170.3582 (3)0.6768 (5)0.20315 (13)0.0541 (8)
H170.35290.67680.16280.065*
C180.4424 (2)0.7273 (4)0.24132 (12)0.0425 (7)
C190.5236 (3)0.7702 (5)0.22142 (14)0.0523 (8)
H190.52120.77170.18130.063*
C200.6036 (3)0.8083 (5)0.25983 (15)0.0525 (8)
H200.65570.83620.24580.063*
C210.6106 (2)0.8070 (4)0.32217 (13)0.0404 (6)
C220.6939 (2)0.8440 (5)0.36345 (15)0.0512 (8)
H220.74740.87130.35090.061*
C230.6955 (2)0.8396 (5)0.42162 (15)0.0502 (8)
H230.74980.86530.44930.060*
C240.6148 (2)0.7962 (4)0.43937 (13)0.0420 (7)
H240.61700.79080.47940.050*
C250.53247 (19)0.7677 (4)0.34348 (11)0.0325 (6)
C260.4460 (2)0.7251 (4)0.30205 (11)0.0337 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd0.02787 (10)0.03859 (11)0.02644 (10)0.00149 (8)0.00929 (7)0.00251 (8)
N10.0418 (12)0.0401 (12)0.0289 (11)0.0037 (11)0.0084 (9)0.0006 (10)
N20.0353 (12)0.0348 (11)0.0296 (11)0.0047 (9)0.0100 (9)0.0011 (9)
O10.0253 (10)0.0670 (14)0.0680 (14)0.0048 (10)0.0112 (9)0.0102 (12)
O20.0403 (12)0.0583 (14)0.0801 (16)0.0100 (10)0.0161 (11)0.0206 (13)
O30.0364 (12)0.0399 (12)0.0486 (13)0.0017 (9)0.0067 (10)0.0083 (10)
O3'0.029 (9)0.031 (9)0.064 (13)0.004 (8)0.016 (9)0.006 (9)
O40.0311 (10)0.0518 (12)0.0791 (15)0.0038 (9)0.0182 (10)0.0162 (12)
O50.0328 (10)0.0374 (10)0.0479 (11)0.0010 (8)0.0202 (8)0.0007 (9)
O60.0390 (11)0.0724 (15)0.0296 (10)0.0036 (10)0.0107 (8)0.0020 (10)
O70.0266 (9)0.0754 (14)0.0338 (10)0.0018 (10)0.0067 (8)0.0044 (10)
O80.0514 (13)0.0872 (17)0.0321 (10)0.0028 (12)0.0187 (9)0.0037 (11)
O90.0403 (12)0.0381 (11)0.0909 (17)0.0028 (10)0.0029 (12)0.0015 (12)
C10.0298 (14)0.0571 (19)0.0354 (14)0.0078 (13)0.0073 (11)0.0004 (13)
C20.0264 (12)0.0460 (15)0.0249 (11)0.0032 (11)0.0062 (10)0.0005 (11)
C30.0326 (13)0.0366 (13)0.0290 (12)0.0004 (11)0.0054 (10)0.0004 (11)
C40.0230 (12)0.0472 (16)0.0351 (13)0.0031 (11)0.0077 (10)0.0008 (12)
C50.0297 (13)0.0415 (15)0.0352 (13)0.0050 (11)0.0112 (11)0.0012 (12)
C60.0342 (14)0.0377 (16)0.0445 (15)0.0029 (11)0.0103 (12)0.0067 (12)
C70.0238 (12)0.0508 (16)0.0348 (13)0.0049 (12)0.0057 (10)0.0010 (13)
C80.0352 (14)0.0268 (12)0.0344 (13)0.0023 (11)0.0127 (11)0.0006 (10)
C90.0302 (13)0.0291 (13)0.0303 (12)0.0017 (10)0.0095 (10)0.0008 (10)
C100.0299 (13)0.0385 (14)0.0329 (13)0.0012 (11)0.0073 (10)0.0013 (11)
C110.0332 (14)0.0554 (17)0.0382 (14)0.0019 (13)0.0151 (12)0.0014 (13)
C120.0438 (16)0.0425 (16)0.0328 (14)0.0027 (12)0.0166 (12)0.0010 (12)
C130.0397 (15)0.0419 (15)0.0291 (13)0.0041 (12)0.0026 (11)0.0043 (12)
C140.0290 (13)0.0365 (14)0.0367 (14)0.0006 (11)0.0061 (11)0.0024 (11)
C150.0464 (17)0.0512 (18)0.0398 (15)0.0067 (14)0.0027 (13)0.0059 (14)
C160.061 (2)0.063 (2)0.0383 (16)0.0058 (17)0.0045 (15)0.0064 (15)
C170.081 (2)0.0488 (17)0.0279 (14)0.0025 (17)0.0036 (15)0.0025 (13)
C180.069 (2)0.0309 (14)0.0298 (14)0.0020 (13)0.0174 (14)0.0001 (11)
C190.083 (3)0.0474 (18)0.0335 (15)0.0018 (17)0.0284 (16)0.0039 (13)
C200.068 (2)0.0501 (18)0.0532 (19)0.0054 (16)0.0422 (18)0.0091 (15)
C210.0474 (16)0.0354 (14)0.0449 (16)0.0050 (13)0.0239 (13)0.0077 (12)
C220.0439 (17)0.0514 (18)0.065 (2)0.0025 (14)0.0273 (15)0.0150 (16)
C230.0346 (15)0.0570 (19)0.0565 (19)0.0060 (14)0.0057 (13)0.0112 (16)
C240.0410 (15)0.0470 (17)0.0367 (14)0.0058 (13)0.0063 (12)0.0069 (13)
C250.0439 (15)0.0260 (12)0.0311 (13)0.0001 (11)0.0162 (12)0.0037 (10)
C260.0464 (16)0.0259 (13)0.0295 (13)0.0000 (11)0.0100 (11)0.0012 (10)
Geometric parameters (Å, º) top
Cd—N12.326 (2)C5—C61.400 (4)
Cd—N22.324 (2)C6—C71.379 (4)
Cd—O12.215 (2)C6—H60.9300
Cd—O52.406 (2)C7—H70.9300
Cd—O6i2.2215 (19)C8—C91.477 (3)
Cd—O92.361 (2)C9—C141.394 (4)
N1—C151.331 (4)C9—C101.406 (4)
N1—C261.348 (4)C10—C111.380 (4)
N2—C241.324 (3)C11—C121.388 (4)
N2—C251.360 (3)C11—H110.9300
O1—C11.256 (3)C12—C131.390 (4)
O2—C11.258 (4)C13—C141.378 (4)
O3—C31.366 (3)C13—H130.9300
O3—H3A0.8200C14—H140.9300
O3'—C71.370 (18)C15—C161.384 (4)
O3'—H3B0.8200C15—H150.9300
O4—C51.354 (3)C16—C171.373 (5)
O4—H4A0.8200C16—H160.9300
O5—C81.254 (3)C17—C181.404 (5)
O6—C81.279 (3)C17—H170.9300
O6—Cdi2.222 (2)C18—C261.410 (4)
O7—C101.359 (3)C18—C191.425 (5)
O7—H7A0.8200C19—C201.342 (5)
O8—C121.355 (3)C19—H190.9300
O8—H8A0.8200C20—C211.438 (4)
O9—H9A0.860 (11)C20—H200.9300
O9—H9B0.862 (14)C21—C251.395 (4)
C1—C21.491 (4)C21—C221.407 (4)
C2—C31.390 (4)C22—C231.356 (5)
C2—C71.395 (4)C22—H220.9300
C3—C41.384 (4)C23—C241.392 (4)
C3—H30.9300C23—H230.9300
C4—C51.382 (4)C24—H240.9300
C4—H40.9300C25—C261.452 (4)
O1—Cd—O6i84.81 (8)O5—C8—O6123.0 (2)
O1—Cd—N2165.66 (8)O5—C8—C9120.7 (2)
O6i—Cd—N2109.02 (8)O6—C8—C9116.3 (2)
O1—Cd—N194.34 (8)C14—C9—C10117.4 (2)
O6i—Cd—N1172.63 (8)C14—C9—C8121.3 (2)
N2—Cd—N172.45 (8)C10—C9—C8121.2 (2)
O1—Cd—O989.40 (8)O7—C10—C11117.7 (2)
O6i—Cd—O987.72 (9)O7—C10—C9121.3 (2)
N2—Cd—O994.81 (8)C11—C10—C9121.1 (2)
N1—Cd—O984.96 (9)C10—C11—C12120.0 (3)
O1—Cd—O583.61 (8)C10—C11—H11120.0
O6i—Cd—O593.93 (7)C12—C11—H11120.0
N2—Cd—O591.45 (7)O8—C12—C11116.7 (3)
N1—Cd—O593.25 (7)O8—C12—C13123.1 (3)
O9—Cd—O5172.64 (7)C11—C12—C13120.1 (2)
C15—N1—C26119.1 (2)C14—C13—C12119.2 (2)
C15—N1—Cd125.4 (2)C14—C13—H13120.4
C26—N1—Cd115.42 (17)C12—C13—H13120.4
C24—N2—C25118.2 (2)C13—C14—C9122.2 (2)
C24—N2—Cd126.73 (18)C13—C14—H14118.9
C25—N2—Cd114.91 (17)C9—C14—H14118.9
C1—O1—Cd130.9 (2)N1—C15—C16122.8 (3)
C3—O3—H3A109.5N1—C15—H15118.6
C7—O3'—H3B109.5C16—C15—H15118.6
C5—O4—H4A109.5C17—C16—C15118.9 (3)
C8—O5—Cd114.07 (16)C17—C16—H16120.6
C8—O6—Cdi138.08 (18)C15—C16—H16120.6
C10—O7—H7A109.5C16—C17—C18119.9 (3)
C12—O8—H8A109.5C16—C17—H17120.0
Cd—O9—H9A106 (3)C18—C17—H17120.0
Cd—O9—H9B139 (3)C17—C18—C26117.3 (3)
H9A—O9—H9B115 (4)C17—C18—C19123.0 (3)
O1—C1—O2124.3 (3)C26—C18—C19119.6 (3)
O1—C1—C2117.0 (3)C20—C19—C18120.8 (3)
O2—C1—C2118.7 (3)C20—C19—H19119.6
C3—C2—C7117.9 (2)C18—C19—H19119.6
C3—C2—C1121.5 (3)C19—C20—C21121.5 (3)
C7—C2—C1120.7 (2)C19—C20—H20119.2
O3—C3—C4118.0 (2)C21—C20—H20119.2
O3—C3—C2120.7 (2)C25—C21—C22117.7 (3)
C4—C3—C2121.3 (2)C25—C21—C20119.5 (3)
C4—C3—H3119.3C22—C21—C20122.7 (3)
C2—C3—H3119.3C23—C22—C21119.5 (3)
C5—C4—C3119.7 (2)C23—C22—H22120.2
C5—C4—H4120.1C21—C22—H22120.2
C3—C4—H4120.1C22—C23—C24119.2 (3)
O4—C5—C4123.1 (2)C22—C23—H23120.4
O4—C5—C6116.5 (2)C24—C23—H23120.4
C4—C5—C6120.4 (2)N2—C24—C23123.0 (3)
C7—C6—C5118.7 (2)N2—C24—H24118.5
C7—C6—H6120.6C23—C24—H24118.5
C5—C6—H6120.6N2—C25—C21122.2 (3)
O3'—C7—C6123.2 (8)N2—C25—C26118.7 (2)
O3'—C7—C2113.5 (8)C21—C25—C26119.1 (2)
C6—C7—C2122.0 (2)N1—C26—C18122.0 (3)
C6—C7—H7119.0N1—C26—C25118.5 (2)
C2—C7—H7119.0C18—C26—C25119.5 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O20.821.812.540 (3)148
O3—H3B···O10.821.562.332 (19)156
O4—H4A···O7ii0.821.912.719 (3)172
O7—H7A···O60.821.802.523 (3)147
O8—H8A···O3iii0.821.942.752 (3)169
O9—H9A···O20.86 (1)1.97 (2)2.738 (3)148 (3)
O9—H9B···O5iv0.86 (1)2.03 (2)2.842 (3)158 (3)
C24—H24···O5i0.932.583.433 (4)152
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+1/2, y1/2, z+1/2; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cd2(C7H5O4)4(C12H8N2)2(H2O)2]
Mr1233.68
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)14.899 (4), 6.874 (2), 23.400 (6)
β (°) 103.378 (2)
V3)2331.4 (11)
Z2
Radiation typeMo Kα
µ (mm1)1.00
Crystal size (mm)0.26 × 0.17 × 0.11
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.758, 0.890
No. of measured, independent and
observed [I > 2σ(I)] reflections
19273, 4654, 4015
Rint0.031
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.067, 1.11
No. of reflections4654
No. of parameters358
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.66, 0.38

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Cd—N12.326 (2)Cd—O52.406 (2)
Cd—N22.324 (2)Cd—O6i2.2215 (19)
Cd—O12.215 (2)Cd—O92.361 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O20.821.812.540 (3)148
O3'—H3B···O10.821.562.332 (19)156
O4—H4A···O7ii0.821.912.719 (3)172
O7—H7A···O60.821.802.523 (3)147
O8—H8A···O3iii0.821.942.752 (3)169
O9—H9A···O20.860 (11)1.969 (19)2.738 (3)148 (3)
O9—H9B···O5iv0.862 (14)2.03 (2)2.842 (3)158 (3)
C24—H24···O5i0.932.583.433 (4)152
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+1/2, y1/2, z+1/2; (iv) x, y+1, z.
 

Acknowledgements

The project was supported by the ZIJIN project of Zhjiang University, China.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationDeisenhofer, J. & Michel, H. (1989). EMBO J. 8, 2149–2170.  CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19–m21.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, J.-R., Gu, J.-M. & Xu, D.-J. (2005). Acta Cryst. E61, m1033–m1035.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, Q., Zhang, L. & Xu, D.-J. (2006). Acta Cryst. E62, m2678–m2680.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m760-m761
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds