organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(4-Chloro­phen­yl)-1H-tetra­zole

aCollege of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, People's Republic of China
*Correspondence e-mail: lnzyxuliang@eyou.com

(Received 27 January 2010; accepted 30 January 2010; online 3 March 2010)

The two independent mol­ecules of the title compound, C7H5ClN4, both lie on a twofold rotation axis that passes through the centroids of the five- and six-membered rings and the attached Cl C atom. One molecule is nearly planar [dihedral angle between rings = 0.22 (6)°], whereas the other is significantly twisted [dihedral angle = 17.38 (6)°]. In the crystal, adjacent mol­ecules are linked by N—H⋯N hydrogen bonds into a chain structure.

Related literature

For the synthesis, see: Xu et al. (2009[Xu, H.-J., Pan, Y.-J. & Cui, L.-J. (2009). Acta Cryst. E65, o1331.]). For a related structure, see: Luo et al. (2006[Luo, J., Zhang, X.-R., Cui, L.-L., Dai, W.-Q. & Liu, B.-S. (2006). Acta Cryst. C62, m614-m616.]).

[Scheme 1]

Experimental

Crystal data
  • C7H5ClN4

  • Mr = 180.60

  • Monoclinic, P 2/c

  • a = 9.4596 (19) Å

  • b = 11.437 (2) Å

  • c = 7.2988 (15) Å

  • β = 107.91 (3)°

  • V = 751.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 291 K

  • 0.21 × 0.14 × 0.11 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.912, Tmax = 0.952

  • 7237 measured reflections

  • 1720 independent reflections

  • 1194 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.135

  • S = 1.05

  • 1720 reflections

  • 118 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H3⋯N3 0.85 (1) 2.05 (1) 2.889 (2) 172 (1)
N3—H6⋯N1 0.83 (3) 2.08 (4) 2.889 (2) 165.7 (2)

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The tetrazole functional group attracted considerable attention over recent years, because of both the intriguing architectures in coordination chemistry and the potential applications in medicinal chemistry and materials science (Luo et al., 2006). Herein, we reported the synthesis and the crystal structure of the title compound.

In the asymmetric unit of the title compound, C7H5ClN4, contains two half molecules of 5-(4-Chlorophenyl)-1H-tetrazole. In these two molecules, the centres of bezene and tetrazole rings locate on the symmetry plane, with the dihedral angle of 0.22 (6)° and 17.38 (6)°, respectively.

A one-dimensional chain structure is built up by N—H···N hydrogen bonds between the imino groups of the title compound.

Related literature top

For the synthesis, see: Xu et al. (2009). For a related structure, see: Luo et al. (2006).

Experimental top

For the preparation of the title compound, 4-chlorobenzonitrile (13.7 g, 0.10 mol), ammonium chloride (13.4 g, 0.25 mmol) and NaN3 (7.8 g, 0.12 mol) were dissolved in DMF (120 ml). The mixture was heated to reflux stirred for 24 h under stirring. Then, it was cooled to room temperature and poured into cold water and acidified to pH = 2 with concentrated hydrochloric acid. The suspension was filtrated, and the residue was washed with water and ethanol for several times, and then dried (11.1 g, 61.8 %). Crystals suitable for X-ray analysis were obtained by recrystallization in the EtOH solution.

Refinement top

Due to the title compound molecules located on the symmetry planes, the H atoms bound to N atoms were disordered into two positions with the occupancies of 0.5, respectively. H atoms bound to N atoms were located in a difference Fourier map and refined freely. H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic) and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids at the 50% probability level for non-H atoms. Dashed lines indicate the hydrogen bonds.
[Figure 2] Fig. 2. A partial packing view, showing one-dimensional chain structure. Dashed lines indicate the hydrogen bonds.
5-(4-Chlorophenyl)-1H-tetrazole top
Crystal data top
C7H5ClN4F(000) = 368
Mr = 180.60Dx = 1.596 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 5352 reflections
a = 9.4596 (19) Åθ = 3.1–27.5°
b = 11.437 (2) ŵ = 0.45 mm1
c = 7.2988 (15) ÅT = 291 K
β = 107.91 (3)°Block, colorless
V = 751.4 (3) Å30.21 × 0.14 × 0.11 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1720 independent reflections
Radiation source: fine-focus sealed tube1194 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω scanθmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1212
Tmin = 0.912, Tmax = 0.952k = 1414
7237 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0807P)2]
where P = (Fo2 + 2Fc2)/3
1720 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C7H5ClN4V = 751.4 (3) Å3
Mr = 180.60Z = 4
Monoclinic, P2/cMo Kα radiation
a = 9.4596 (19) ŵ = 0.45 mm1
b = 11.437 (2) ÅT = 291 K
c = 7.2988 (15) Å0.21 × 0.14 × 0.11 mm
β = 107.91 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1720 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1194 reflections with I > 2σ(I)
Tmin = 0.912, Tmax = 0.952Rint = 0.038
7237 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.77 e Å3
1720 reflectionsΔρmin = 0.24 e Å3
118 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.00000.7724 (3)0.25000.0340 (7)
C20.1238 (2)0.7123 (2)0.3612 (3)0.0375 (5)
H10.20670.75300.43580.045*
C30.1235 (2)0.59197 (19)0.3606 (3)0.0331 (5)
H20.20680.55180.43500.040*
C40.00000.5293 (3)0.25000.0282 (6)
C50.00000.4029 (3)0.25000.0288 (6)
C60.50000.0727 (3)0.75000.0296 (6)
C70.3680 (2)0.0135 (2)0.6704 (3)0.0389 (5)
H40.27970.05440.61880.047*
C80.3688 (2)0.1065 (2)0.6683 (3)0.0354 (5)
H50.28090.14710.61190.042*
C90.50000.1681 (2)0.75000.0258 (6)
C100.50000.2975 (3)0.75000.0267 (6)
Cl10.00000.92391 (7)0.25000.0492 (3)
Cl20.50000.22534 (7)0.75000.0464 (3)
N10.1109 (2)0.33285 (16)0.3488 (2)0.0349 (4)
H30.19340.34930.43180.050 (15)*0.50
N20.0660 (2)0.22079 (17)0.3089 (3)0.0418 (5)
N30.3941 (2)0.36603 (16)0.6406 (3)0.0349 (4)
H60.322 (5)0.352 (4)0.545 (6)0.016 (9)*0.50
N40.4364 (2)0.47685 (17)0.6842 (3)0.0398 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0332 (14)0.0274 (17)0.0377 (15)0.0000.0056 (12)0.000
C20.0313 (10)0.0320 (12)0.0424 (11)0.0035 (8)0.0011 (9)0.0024 (9)
C30.0270 (9)0.0298 (12)0.0349 (10)0.0000 (8)0.0016 (8)0.0017 (8)
C40.0267 (13)0.0285 (17)0.0270 (13)0.0000.0046 (11)0.000
C50.0305 (13)0.0261 (15)0.0266 (12)0.0000.0038 (11)0.000
C60.0365 (14)0.0215 (15)0.0272 (13)0.0000.0047 (12)0.000
C70.0324 (11)0.0310 (12)0.0456 (12)0.0054 (8)0.0006 (10)0.0066 (9)
C80.0242 (9)0.0328 (12)0.0408 (11)0.0009 (8)0.0021 (8)0.0002 (9)
C90.0292 (13)0.0219 (15)0.0238 (12)0.0000.0044 (11)0.000
C100.0248 (12)0.0282 (16)0.0244 (12)0.0000.0037 (11)0.000
Cl10.0465 (5)0.0241 (5)0.0709 (6)0.0000.0090 (4)0.000
Cl20.0591 (5)0.0225 (5)0.0503 (5)0.0000.0061 (4)0.000
N10.0332 (8)0.0275 (10)0.0356 (9)0.0027 (7)0.0019 (8)0.0001 (7)
N20.0437 (10)0.0245 (10)0.0456 (10)0.0031 (8)0.0036 (8)0.0027 (8)
N30.0329 (9)0.0257 (10)0.0374 (9)0.0008 (7)0.0018 (8)0.0000 (7)
N40.0381 (9)0.0259 (10)0.0450 (10)0.0016 (8)0.0027 (8)0.0002 (8)
Geometric parameters (Å, º) top
C1—C21.385 (3)C7—C81.373 (3)
C1—C2i1.385 (3)C7—H40.9300
C1—Cl11.732 (3)C8—C91.392 (2)
C2—C31.376 (3)C8—H50.9300
C2—H10.9300C9—C8ii1.392 (2)
C3—C41.397 (3)C9—C101.480 (4)
C3—H20.9300C10—N3ii1.328 (3)
C4—C3i1.397 (3)C10—N31.328 (3)
C4—C51.446 (4)N1—N21.353 (3)
C5—N1i1.340 (3)N1—H30.8492
C5—N11.340 (3)N2—N2i1.280 (4)
C6—C7ii1.382 (3)N3—N41.338 (3)
C6—C71.382 (3)N3—H60.83 (4)
C6—Cl21.746 (3)N4—N4ii1.288 (3)
C2—C1—C2i120.5 (3)C8—C7—H4120.4
C2—C1—Cl1119.77 (15)C6—C7—H4120.4
C2i—C1—Cl1119.77 (15)C7—C8—C9120.55 (19)
C3—C2—C1119.6 (2)C7—C8—H5119.7
C3—C2—H1120.2C9—C8—H5119.7
C1—C2—H1120.2C8—C9—C8ii119.2 (3)
C2—C3—C4121.05 (19)C8—C9—C10120.38 (13)
C2—C3—H2119.5C8ii—C9—C10120.38 (14)
C4—C3—H2119.5N3ii—C10—N3107.6 (3)
C3—C4—C3i118.2 (3)N3ii—C10—C9126.18 (13)
C3—C4—C5120.88 (14)N3—C10—C9126.18 (13)
C3i—C4—C5120.88 (14)C5—N1—N2107.97 (18)
N1i—C5—N1106.6 (3)C5—N1—H3130.3
N1i—C5—C4126.70 (14)N2—N1—H3121.5
N1—C5—C4126.70 (14)N2i—N2—N1108.73 (11)
C7ii—C6—C7121.3 (3)C10—N3—N4107.51 (18)
C7ii—C6—Cl2119.34 (14)C10—N3—H6131 (3)
C7—C6—Cl2119.34 (14)N4—N3—H6120 (3)
C8—C7—C6119.1 (2)N4ii—N4—N3108.67 (11)
Symmetry codes: (i) x, y, z+1/2; (ii) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H3···N30.85 (1)2.05 (1)2.889 (2)172 (1)
N3—H6···N10.83 (3)2.08 (4)2.889 (2)165.7 (2)

Experimental details

Crystal data
Chemical formulaC7H5ClN4
Mr180.60
Crystal system, space groupMonoclinic, P2/c
Temperature (K)291
a, b, c (Å)9.4596 (19), 11.437 (2), 7.2988 (15)
β (°) 107.91 (3)
V3)751.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.21 × 0.14 × 0.11
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.912, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
7237, 1720, 1194
Rint0.038
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.135, 1.05
No. of reflections1720
No. of parameters118
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.77, 0.24

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H3···N30.85 (1)2.05 (1)2.889 (2)172.4 (1)
N3—H6···N10.83 (3)2.08 (4)2.889 (2)165.7 (2)
 

Acknowledgements

The authors thank Liaoning University of Traditional Chinese Medicine for supporting this study.

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLuo, J., Zhang, X.-R., Cui, L.-L., Dai, W.-Q. & Liu, B.-S. (2006). Acta Cryst. C62, m614–m616.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, H.-J., Pan, Y.-J. & Cui, L.-J. (2009). Acta Cryst. E65, o1331.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds