metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[aqua­(5-nitro­benzene-1,2,3-tri­carboxyl­ato-κO1)copper(II)]-di-μ-aqua-[di­aqua­sodium]-di-μ-aqua] tetra­hydrate]

aDepartment of Chemistry, East China Normal University, Shanghai 200062, People's Republic of China, and bDepartment of Chemistry, Zhoukou Normal University, Zhoukou 466001, People's Republic of China
*Correspondence e-mail: chunxiangzhao@163.com

(Received 25 December 2009; accepted 5 January 2010; online 9 January 2010)

In the heteronuclear coordination polymer, {[CuNa(C9H2NO8)(H2O)7]·4H2O}n, the CuII atom is coordinated by six O atoms from five water mol­ecules and one 5-nitro­benzene-1,2,3-tricarboxyl­ate ligand in a slightly distorted octa­hedral geometry. The Na+ cation is surrounded by six water mol­ecules in an irregular trigonal-prismatic geometry. The Cu and Na atoms are connected by water bridges, forming an infinite chain. O—H⋯O hydrogen bonds involving the coordinated and uncoordinated water mol­ecules connect the chains into a three-dimensional network.

Related literature

For general background to the possible applications of metal coordination polymers as microporous hosts for absorption or as catalytic materials, see: Cheng et al. (2004[Cheng, D.-P., Khan, M.-A. & Houser, R. P. (2004). Cryst. Growth Des. 4, 599-604.]); Yaghi & Li (1995[Yaghi, O. M. & Li, H. (1995). Nature (London), 378, 703-706.]).

[Scheme 1]

Experimental

Crystal data
  • [CuNa(C9H2NO8)(H2O)7]·4H2O

  • Mr = 536.82

  • Triclinic, [P \overline 1]

  • a = 6.6480 (13) Å

  • b = 13.124 (3) Å

  • c = 13.531 (3) Å

  • α = 63.46 (3)°

  • β = 79.17 (4)°

  • γ = 82.13 (3)°

  • V = 1035.5 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.17 mm−1

  • T = 295 K

  • 0.27 × 0.26 × 0.21 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2005[Sheldrick, G. M. (2005). SADABS. University of Göttingen, Germany.]) Tmin = 0.743, Tmax = 0.791

  • 5466 measured reflections

  • 3696 independent reflections

  • 3113 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.133

  • S = 1.02

  • 3696 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.76 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2W⋯O4i 0.84 2.06 2.883 (4) 166
O1W—H1W⋯O5ii 0.84 2.19 2.932 (4) 148
O2W—H4W⋯O3 0.84 1.94 2.706 (4) 151
O2W—H3W⋯O6Wiii 0.84 1.91 2.741 (4) 169
O3W—H6W⋯O4Wi 0.84 2.09 2.863 (4) 153
O3W—H5W⋯O4 0.84 2.01 2.825 (4) 164
O4W—H8W⋯O3Wiv 0.84 2.11 2.868 (4) 149
O4W—H7W⋯O3v 0.84 2.12 2.902 (4) 155
O5W—H10W⋯O1iii 0.84 2.60 3.174 (4) 127
O5W—H10W⋯O5 0.84 2.05 2.778 (4) 145
O5W—H9W⋯O6vi 0.84 1.89 2.711 (3) 166
O6W—H12W⋯O5W 0.84 2.00 2.810 (4) 161
O6W—H11W⋯O7vi 0.84 1.91 2.716 (4) 160
O7W—H14W⋯O2Wv 0.84 1.98 2.788 (4) 160
O7W—H13W⋯O7 0.84 1.87 2.657 (4) 156
O8W—H16W⋯O2Wv 0.84 1.85 2.679 (4) 171
O8W—H15W⋯O6W 0.84 1.95 2.774 (4) 167
O9W—H18W⋯O5i 0.84 1.82 2.647 (4) 168
O9W—H17W⋯O6 0.84 1.99 2.823 (3) 175
O10W—H19W⋯O5W 0.84 1.85 2.674 (4) 166
O10W—H20W⋯O6i 0.84 1.88 2.704 (3) 167
O11W—H22W⋯O3Wv 0.84 1.85 2.670 (4) 165
O11W—H21W⋯O4i 0.84 1.98 2.776 (4) 158
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+2, -y+2, -z+1; (iii) -x+1, -y+1, -z+2; (iv) x+1, y+1, z; (v) x, y+1, z; (vi) x+1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Recently, there has been much interest in the synthesis of metal coordination polymers, due to their possible application as microporous hosts for absorption or even as catalytic materials (Yaghi et al., 1995; Cheng et al.,2004). Herein, we report a new heteronuclear metal coordination polymer with the tricarboxylates, 5-Nitrobenzene-1,2,3-tricarboxylicacid (NBA) as the ligand, the copper (II) and sodium (I) as the metal ions.

As can be seen from the crystal structure in Fig.1, Cu and Na are connected via µ-O, O' coordination of water molecules, which structure is repeating unit along a axis, forming one-dimensional infinite chains, which chains along the a axis is built up through coordination between NBA, a part of water molecules and Cu(II), Na(I) (Fig.2). Through the forming of hydrogen bonds between chains and water molecules of the interchain, three-dimensional supermolecular structure is formed. The different chains are linked by an extensive hydrogen-bonding network (Table 1, Fig.3), through oxygen atoms of carboxylate and water molecule. Each of the water molecules has at least one hydrogen-bonding interaction, this leads to the formation of a stable three dimensional supramolecular structure.

Related literature top

For general background to the possible applications of metal coordination polymers as microporous hosts for absorption or as catalytic materials, see: Cheng et al. (2004); Yaghi & Li (1995).

Experimental top

5-Nitrobenzene-1,2,3-tricarboxylic acid (0.051 g, 0.2 mmol) was added to a solution of copper chloride (0.027 g, 0.2 mmol) (20 mL), the resulting mixture was treated with a solution of NaOH until the pH value come rise to be about 8.The mixture was then stirred continuously for 6 h, and the filtrate was kept in conical flask for about 30 days and blue block crystals were obtained from the solution, dried in vacuum. Yield: 67.6%. Crystal of the title compound suitable for single-crystal X-ray diffraction was selected directly from the sample as prepared.

Refinement top

All C-bound H atoms were placed in calculated positions, with C—H = 0.93Å for phenyl H, and refined as riding, with Uiso(H) =1.2Ueq (C) for phenyl H. The water H-atoms were placed in chemically sensible positions on the basis of hydrogen bonding but were not refined, with Uiso(H) = 1.5Ueq(O).

Structure description top

Recently, there has been much interest in the synthesis of metal coordination polymers, due to their possible application as microporous hosts for absorption or even as catalytic materials (Yaghi et al., 1995; Cheng et al.,2004). Herein, we report a new heteronuclear metal coordination polymer with the tricarboxylates, 5-Nitrobenzene-1,2,3-tricarboxylicacid (NBA) as the ligand, the copper (II) and sodium (I) as the metal ions.

As can be seen from the crystal structure in Fig.1, Cu and Na are connected via µ-O, O' coordination of water molecules, which structure is repeating unit along a axis, forming one-dimensional infinite chains, which chains along the a axis is built up through coordination between NBA, a part of water molecules and Cu(II), Na(I) (Fig.2). Through the forming of hydrogen bonds between chains and water molecules of the interchain, three-dimensional supermolecular structure is formed. The different chains are linked by an extensive hydrogen-bonding network (Table 1, Fig.3), through oxygen atoms of carboxylate and water molecule. Each of the water molecules has at least one hydrogen-bonding interaction, this leads to the formation of a stable three dimensional supramolecular structure.

For general background to the possible applications of metal coordination polymers as microporous hosts for absorption or as catalytic materials, see: Cheng et al. (2004); Yaghi & Li (1995).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (NBA) (thermal ellipsoids areshown at 30% probability levels). [Symmetry codes: (i) 1 + x, y, z; (ii) -1 + x, y, z]
[Figure 2] Fig. 2. The molecular packing diagram along the a axis (the NBA and water molecules have been omitted for clarity)
[Figure 3] Fig. 3. Three-dimensional supermolecular structure is built up through hydrogen bond
catena-Poly[[[aqua(5-nitrobenzene-1,2,3-tricarboxylato- κO1)copper(II)]-di-µ-aqua-[diaquasodium]-di-µ-aqua] tetrahydrate] top
Crystal data top
[CuNa(C9H2NO8)(H2O)7]·4H2OZ = 2
Mr = 536.82F(000) = 554
Triclinic, P1Dx = 1.722 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6480 (13) ÅCell parameters from 2416 reflections
b = 13.124 (3) Åθ = 2.9–27.7°
c = 13.531 (3) ŵ = 1.17 mm1
α = 63.46 (3)°T = 295 K
β = 79.17 (4)°Block, blue
γ = 82.13 (3)°0.27 × 0.26 × 0.21 mm
V = 1035.5 (4) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
3719 independent reflections
Radiation source: fine-focus sealed tube3113 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scanθmax = 25.2°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2005)
h = 77
Tmin = 0.743, Tmax = 0.791k = 1515
5466 measured reflectionsl = 1216
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0826P)2 + 0.906P]
where P = (Fo2 + 2Fc2)/3
3696 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = 0.76 e Å3
Crystal data top
[CuNa(C9H2NO8)(H2O)7]·4H2Oγ = 82.13 (3)°
Mr = 536.82V = 1035.5 (4) Å3
Triclinic, P1Z = 2
a = 6.6480 (13) ÅMo Kα radiation
b = 13.124 (3) ŵ = 1.17 mm1
c = 13.531 (3) ÅT = 295 K
α = 63.46 (3)°0.27 × 0.26 × 0.21 mm
β = 79.17 (4)°
Data collection top
Bruker APEXII area-detector
diffractometer
3719 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2005)
3113 reflections with I > 2σ(I)
Tmin = 0.743, Tmax = 0.791Rint = 0.021
5466 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.02Δρmax = 0.76 e Å3
3696 reflectionsΔρmin = 0.76 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.45974 (6)1.11126 (4)0.67569 (3)0.02613 (17)
Na10.9245 (2)1.21836 (13)0.62390 (12)0.0355 (4)
N10.1276 (5)0.5042 (3)1.1324 (2)0.0300 (7)
C10.2949 (5)0.8902 (3)0.8445 (3)0.0233 (7)
C20.2868 (5)0.7638 (3)0.8775 (3)0.0224 (7)
C30.3519 (5)0.7198 (3)0.7989 (3)0.0209 (7)
C40.3514 (5)0.6022 (3)0.8333 (3)0.0219 (7)
C50.2859 (5)0.5315 (3)0.9441 (3)0.0238 (7)
H50.29260.45280.96870.029*
C60.2110 (5)0.5782 (3)1.0174 (3)0.0246 (7)
C70.2114 (5)0.6939 (3)0.9862 (3)0.0240 (7)
H70.16200.72391.03740.029*
C80.4157 (5)0.7967 (3)0.6777 (3)0.0217 (7)
C90.4168 (5)0.5492 (3)0.7518 (3)0.0255 (8)
O10.1623 (5)0.4011 (2)1.1654 (2)0.0438 (7)
O20.0221 (4)0.5489 (3)1.1883 (2)0.0424 (7)
O30.5154 (4)0.4541 (2)0.7880 (2)0.0350 (6)
O40.3646 (4)0.6026 (2)0.6569 (2)0.0322 (6)
O50.5992 (3)0.7895 (2)0.6373 (2)0.0279 (5)
O60.2773 (3)0.8631 (2)0.62482 (19)0.0253 (5)
O70.1643 (4)0.9349 (2)0.8958 (2)0.0378 (7)
O80.4354 (3)0.94091 (19)0.76839 (19)0.0239 (5)
O1W1.0173 (5)1.3157 (3)0.4326 (3)0.0583 (9)
H1W1.13161.31360.39430.087*
H2W0.91881.34220.39560.087*
O2W0.3871 (5)0.2405 (2)0.8712 (2)0.0480 (8)
H3W0.32770.20630.93670.072*
H4W0.43140.29830.86940.072*
O3W0.2499 (4)0.4492 (2)0.5859 (2)0.0413 (7)
H5W0.28510.48320.61930.062*
H6W0.27120.49380.51770.062*
O4W0.8268 (4)1.3977 (3)0.6357 (2)0.0457 (7)
H7W0.75121.39450.69410.069*
H8W0.93371.42280.63900.069*
O5W0.8772 (4)0.8670 (2)0.7141 (2)0.0342 (6)
H9W1.00520.86510.69650.051*
H10W0.82290.81710.70680.051*
O6W0.7667 (4)0.8945 (3)0.9121 (2)0.0416 (7)
H11W0.87930.90890.92120.062*
H12W0.77990.87370.86070.062*
O7W0.1910 (4)1.1559 (2)0.7608 (2)0.0322 (6)
H13W0.18051.09290.81750.048*
H14W0.22541.19290.79140.048*
O8W0.6440 (4)1.1187 (2)0.7809 (2)0.0304 (6)
H15W0.67071.05280.82950.046*
H16W0.57491.15990.80950.046*
O9W0.2728 (4)1.0955 (2)0.5785 (2)0.0277 (5)
H18W0.29661.13610.50940.041*
H17W0.28141.02660.59040.041*
O10W0.7342 (4)1.0795 (2)0.5925 (2)0.0275 (5)
H19W0.76231.01260.63880.041*
H20W0.73671.08660.52750.041*
O11W0.5012 (4)1.2786 (2)0.5697 (2)0.0329 (6)
H21W0.52591.30050.50030.049*
H22W0.43041.32880.58570.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0215 (3)0.0263 (3)0.0308 (3)0.00127 (17)0.00157 (18)0.0134 (2)
Na10.0309 (8)0.0395 (9)0.0336 (8)0.0038 (7)0.0005 (6)0.0146 (7)
N10.0234 (16)0.0362 (18)0.0270 (16)0.0065 (13)0.0033 (13)0.0094 (14)
C10.0191 (17)0.0243 (17)0.0272 (18)0.0004 (14)0.0049 (14)0.0115 (15)
C20.0163 (16)0.0238 (17)0.0279 (18)0.0009 (13)0.0026 (13)0.0121 (14)
C30.0101 (15)0.0242 (17)0.0283 (18)0.0014 (12)0.0050 (13)0.0112 (14)
C40.0138 (16)0.0239 (17)0.0284 (18)0.0013 (13)0.0054 (13)0.0114 (14)
C50.0200 (17)0.0225 (17)0.0286 (18)0.0001 (13)0.0059 (14)0.0103 (14)
C60.0156 (16)0.0294 (19)0.0251 (18)0.0001 (14)0.0051 (13)0.0081 (15)
C70.0187 (17)0.0280 (18)0.0277 (18)0.0018 (14)0.0023 (14)0.0156 (15)
C80.0182 (17)0.0216 (16)0.0286 (18)0.0023 (13)0.0015 (14)0.0141 (14)
C90.0183 (17)0.0278 (18)0.032 (2)0.0085 (14)0.0041 (14)0.0158 (16)
O10.0474 (18)0.0309 (16)0.0384 (16)0.0047 (13)0.0023 (13)0.0029 (12)
O20.0423 (17)0.0481 (17)0.0325 (15)0.0075 (14)0.0089 (13)0.0178 (14)
O30.0375 (15)0.0285 (14)0.0415 (15)0.0052 (12)0.0052 (12)0.0193 (12)
O40.0358 (15)0.0358 (14)0.0275 (14)0.0040 (12)0.0032 (11)0.0161 (12)
O50.0168 (12)0.0343 (14)0.0294 (13)0.0004 (10)0.0008 (10)0.0127 (11)
O60.0199 (12)0.0275 (13)0.0253 (12)0.0016 (10)0.0047 (10)0.0090 (10)
O70.0351 (15)0.0314 (14)0.0463 (16)0.0050 (12)0.0122 (12)0.0225 (13)
O80.0199 (12)0.0218 (12)0.0275 (13)0.0024 (9)0.0004 (10)0.0095 (10)
O1W0.0451 (18)0.070 (2)0.0423 (18)0.0258 (16)0.0035 (14)0.0179 (16)
O2W0.066 (2)0.0372 (16)0.0431 (17)0.0126 (15)0.0103 (15)0.0239 (14)
O3W0.0445 (17)0.0404 (16)0.0471 (17)0.0023 (13)0.0078 (13)0.0270 (14)
O4W0.0373 (16)0.060 (2)0.0482 (17)0.0100 (14)0.0011 (13)0.0305 (16)
O5W0.0208 (13)0.0348 (14)0.0501 (17)0.0011 (11)0.0051 (11)0.0219 (13)
O6W0.0340 (15)0.0517 (18)0.0388 (16)0.0006 (13)0.0044 (12)0.0202 (14)
O7W0.0282 (14)0.0322 (14)0.0372 (14)0.0002 (11)0.0014 (11)0.0187 (12)
O8W0.0329 (14)0.0314 (14)0.0302 (14)0.0012 (11)0.0060 (11)0.0159 (11)
O9W0.0288 (13)0.0267 (13)0.0274 (13)0.0017 (10)0.0054 (10)0.0111 (11)
O10W0.0232 (12)0.0300 (13)0.0282 (13)0.0018 (10)0.0005 (10)0.0138 (11)
O11W0.0394 (15)0.0237 (13)0.0310 (14)0.0019 (11)0.0016 (11)0.0104 (11)
Geometric parameters (Å, º) top
Cu1—O82.028 (2)C8—O51.249 (4)
Cu1—O11W2.040 (3)C8—O61.260 (4)
Cu1—O10W2.052 (2)C9—O41.247 (4)
Cu1—O9W2.061 (2)C9—O31.256 (4)
Cu1—O8W2.086 (2)O1W—H1W0.8400
Cu1—O7W2.098 (3)O1W—H2W0.8399
Na1—O1W2.318 (4)O2W—H3W0.8400
Na1—O4W2.422 (3)O2W—H4W0.8398
Na1—O8W2.529 (3)O3W—H5W0.8401
Na1—O10W2.574 (3)O3W—H6W0.8398
Na1—O7Wi2.593 (3)O4W—H7W0.8401
Na1—O9Wi2.770 (3)O4W—H8W0.8401
N1—O21.222 (4)O5W—H9W0.8401
N1—O11.224 (4)O5W—H10W0.8400
N1—C61.464 (5)O6W—H11W0.8399
C1—O81.254 (4)O6W—H12W0.8400
C1—O71.256 (4)O7W—Na1ii2.593 (3)
C1—C21.519 (5)O7W—H13W0.8400
C2—C71.378 (5)O7W—H14W0.8399
C2—C31.400 (5)O8W—H15W0.8399
C3—C41.400 (5)O8W—H16W0.8399
C3—C81.505 (5)O9W—Na1ii2.769 (3)
C4—C51.386 (5)O9W—H18W0.8398
C4—C91.521 (5)O9W—H17W0.8400
C5—C61.372 (5)O10W—H19W0.8398
C5—H50.9300O10W—H20W0.8395
C6—C71.382 (5)O11W—H21W0.8400
C7—H70.9300O11W—H22W0.8401
O8—Cu1—O11W174.07 (9)C2—C3—C8121.4 (3)
O8—Cu1—O10W89.57 (10)C5—C4—C3119.6 (3)
O11W—Cu1—O10W85.25 (11)C5—C4—C9118.6 (3)
O8—Cu1—O9W85.27 (10)C3—C4—C9121.8 (3)
O11W—Cu1—O9W92.50 (11)C6—C5—C4119.6 (3)
O10W—Cu1—O9W97.07 (10)C6—C5—H5120.2
O8—Cu1—O8W91.76 (10)C4—C5—H5120.2
O11W—Cu1—O8W90.54 (11)C5—C6—C7122.0 (3)
O10W—Cu1—O8W83.80 (10)C5—C6—N1119.5 (3)
O9W—Cu1—O8W176.89 (10)C7—C6—N1118.5 (3)
O8—Cu1—O7W94.30 (10)C2—C7—C6118.5 (3)
O11W—Cu1—O7W91.04 (11)C2—C7—H7120.8
O10W—Cu1—O7W174.87 (10)C6—C7—H7120.8
O9W—Cu1—O7W86.61 (10)O5—C8—O6125.2 (3)
O8W—Cu1—O7W92.71 (10)O5—C8—C3118.1 (3)
O8—Cu1—Na1118.29 (8)O6—C8—C3116.7 (3)
O11W—Cu1—Na159.92 (9)O4—C9—O3126.4 (3)
O10W—Cu1—Na149.22 (8)O4—C9—C4117.4 (3)
O9W—Cu1—Na1134.47 (8)O3—C9—C4116.2 (3)
O8W—Cu1—Na148.05 (8)C1—O8—Cu1128.3 (2)
O7W—Cu1—Na1125.72 (8)Na1—O1W—H1W128.5
O1W—Na1—O4W90.19 (12)Na1—O1W—H2W115.0
O1W—Na1—O8W146.32 (13)H1W—O1W—H2W114.4
O4W—Na1—O8W91.74 (11)H3W—O2W—H4W104.9
O1W—Na1—O10W89.56 (13)H5W—O3W—H6W105.6
O4W—Na1—O10W134.16 (11)Na1—O4W—H7W116.6
O8W—Na1—O10W65.55 (9)Na1—O4W—H8W107.4
O1W—Na1—O7Wi121.61 (12)H7W—O4W—H8W101.9
O4W—Na1—O7Wi93.88 (11)H9W—O5W—H10W112.6
O8W—Na1—O7Wi91.80 (9)H11W—O6W—H12W112.2
O10W—Na1—O7Wi124.37 (10)Cu1—O7W—Na1ii104.30 (11)
O1W—Na1—O9Wi76.07 (10)Cu1—O7W—H13W97.3
O4W—Na1—O9Wi139.84 (11)Na1ii—O7W—H13W118.8
O8W—Na1—O9Wi120.44 (10)Cu1—O7W—H14W107.2
O10W—Na1—O9Wi84.04 (8)Na1ii—O7W—H14W127.7
O7Wi—Na1—O9Wi64.18 (8)H13W—O7W—H14W97.3
O1W—Na1—O11W84.16 (11)Cu1—O8W—Na194.13 (10)
O4W—Na1—O11W74.72 (10)Cu1—O8W—H15W110.2
O8W—Na1—O11W64.06 (9)Na1—O8W—H15W118.7
O10W—Na1—O11W59.67 (8)Cu1—O8W—H16W105.0
O7Wi—Na1—O11W152.36 (9)Na1—O8W—H16W114.6
O9Wi—Na1—O11W138.74 (9)H15W—O8W—H16W111.7
O1W—Na1—Cu1109.05 (11)Cu1—O9W—Na1ii99.58 (10)
O4W—Na1—Cu1101.24 (9)Cu1—O9W—H18W116.8
O8W—Na1—Cu137.82 (6)Na1ii—O9W—H18W97.8
O10W—Na1—Cu137.12 (6)Cu1—O9W—H17W107.5
O7Wi—Na1—Cu1126.89 (8)Na1ii—O9W—H17W126.6
O9Wi—Na1—Cu1118.89 (7)H18W—O9W—H17W108.9
O11W—Na1—Cu136.68 (5)Cu1—O10W—Na193.66 (10)
O2—N1—O1124.0 (3)Cu1—O10W—H19W99.1
O2—N1—C6118.0 (3)Na1—O10W—H19W108.8
O1—N1—C6117.9 (3)Cu1—O10W—H20W118.2
O8—C1—O7125.5 (3)Na1—O10W—H20W119.7
O8—C1—C2116.4 (3)H19W—O10W—H20W114.0
O7—C1—C2118.2 (3)Cu1—O11W—H21W121.0
C7—C2—C3120.9 (3)Na1—O11W—H21W99.5
C7—C2—C1118.4 (3)Cu1—O11W—H22W118.5
C3—C2—C1120.7 (3)Na1—O11W—H22W118.7
C4—C3—C2119.2 (3)H21W—O11W—H22W111.2
C4—C3—C8119.4 (3)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···O4iii0.842.062.883 (4)166
O1W—H1W···O5iv0.842.192.932 (4)148
O2W—H4W···O30.841.942.706 (4)151
O2W—H3W···O6Wv0.841.912.741 (4)169
O3W—H6W···O4Wiii0.842.092.863 (4)153
O3W—H5W···O40.842.012.825 (4)164
O4W—H8W···O3Wvi0.842.112.868 (4)149
O4W—H7W···O3vii0.842.122.902 (4)155
O5W—H10W···O1v0.842.603.174 (4)127
O5W—H10W···O50.842.052.778 (4)145
O5W—H9W···O6i0.841.892.711 (3)166
O6W—H12W···O5W0.842.002.810 (4)161
O6W—H11W···O7i0.841.912.716 (4)160
O7W—H14W···O2Wvii0.841.982.788 (4)160
O7W—H13W···O70.841.872.657 (4)156
O8W—H16W···O2Wvii0.841.852.679 (4)171
O8W—H15W···O6W0.841.952.774 (4)167
O9W—H18W···O5iii0.841.822.647 (4)168
O9W—H17W···O60.841.992.823 (3)175
O10W—H19W···O5W0.841.852.674 (4)166
O10W—H20W···O6iii0.841.882.704 (3)167
O11W—H22W···O3Wvii0.841.852.670 (4)165
O11W—H21W···O4iii0.841.982.776 (4)158
Symmetry codes: (i) x+1, y, z; (iii) x+1, y+2, z+1; (iv) x+2, y+2, z+1; (v) x+1, y+1, z+2; (vi) x+1, y+1, z; (vii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[CuNa(C9H2NO8)(H2O)7]·4H2O
Mr536.82
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)6.6480 (13), 13.124 (3), 13.531 (3)
α, β, γ (°)63.46 (3), 79.17 (4), 82.13 (3)
V3)1035.5 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.17
Crystal size (mm)0.27 × 0.26 × 0.21
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2005)
Tmin, Tmax0.743, 0.791
No. of measured, independent and
observed [I > 2σ(I)] reflections
5466, 3719, 3113
Rint0.021
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.133, 1.02
No. of reflections3696
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.76, 0.76

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···O4i0.842.062.883 (4)165.9
O1W—H1W···O5ii0.842.192.932 (4)147.8
O2W—H4W···O30.841.942.706 (4)150.8
O2W—H3W···O6Wiii0.841.912.741 (4)168.9
O3W—H6W···O4Wi0.842.092.863 (4)152.7
O3W—H5W···O40.842.012.825 (4)163.7
O4W—H8W···O3Wiv0.842.112.868 (4)149.4
O4W—H7W···O3v0.842.122.902 (4)155.1
O5W—H10W···O1iii0.842.603.174 (4)126.6
O5W—H10W···O50.842.052.778 (4)144.5
O5W—H9W···O6vi0.841.892.711 (3)166.2
O6W—H12W···O5W0.842.002.810 (4)160.5
O6W—H11W···O7vi0.841.912.716 (4)160.2
O7W—H14W···O2Wv0.841.982.788 (4)160.2
O7W—H13W···O70.841.872.657 (4)156.1
O8W—H16W···O2Wv0.841.852.679 (4)170.9
O8W—H15W···O6W0.841.952.774 (4)166.5
O9W—H18W···O5i0.841.822.647 (4)168.3
O9W—H17W···O60.841.992.823 (3)175.1
O10W—H19W···O5W0.841.852.674 (4)166.1
O10W—H20W···O6i0.841.882.704 (3)167.0
O11W—H22W···O3Wv0.841.852.670 (4)164.9
O11W—H21W···O4i0.841.982.776 (4)157.6
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+2, y+2, z+1; (iii) x+1, y+1, z+2; (iv) x+1, y+1, z; (v) x, y+1, z; (vi) x+1, y, z.
 

Acknowledgements

The authors gratefully acknowledge financial support by the Scientific Research Innovation Foundation for youth teachers of Zhoukou Normal University.

References

First citationBruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, D.-P., Khan, M.-A. & Houser, R. P. (2004). Cryst. Growth Des. 4, 599–604.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2005). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYaghi, O. M. & Li, H. (1995). Nature (London), 378, 703–706.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds