metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chloridobis[1-(2-methyl­benzimidazol-1-ylmethyl-κN3)benzotriazole]mercury(II)

aDepartment of Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China
*Correspondence e-mail: wujie@zzu.edu.cn

(Received 17 June 2009; accepted 18 June 2009; online 27 June 2009)

In the title compound, [HgCl2(C15H13N5)2], the HgII atom is located on a twofold rotation axis and resides in a distorted tetra­hedral coordination environment composed of two Cl atoms and two N atoms from two 1-(2-methyl­benzimidazol-1-ylmeth­yl)benzotriazole ligands.

Related literature

For metal complexes of similar N-heterocyclic ligands, see: Fan et al. (2003[Fan, J., Zhu, H. F., Okamura, T., Sun, W. Y., Tang, W. X. & Ueyama, N. (2003). Inorg. Chem. 42, 158-162.]); Hoskins et al. (1997[Hoskins, B. F., Robson, R. & Slizys, D. A. (1997). Angew. Chem. 109, 2430-2432.]); Makoto et al. (2005[Makoto, F., Masahide, T., Akiko, H. & Bruno, T. (2005). Acc. Chem. Res. 38, 371-380.])

[Scheme 1]

Experimental

Crystal data
  • [HgCl2(C15H13N5)2]

  • Mr = 798.10

  • Monoclinic, C 2/c

  • a = 15.612 (3) Å

  • b = 12.883 (3) Å

  • c = 14.751 (3) Å

  • β = 97.49 (3)°

  • V = 2941.5 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.46 mm−1

  • T = 293 K

  • 0.22 × 0.18 × 0.16 mm

Data collection
  • Rigaku Saturn724 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.380, Tmax = 0.476 (expected range = 0.334–0.418)

  • 14609 measured reflections

  • 2587 independent reflections

  • 2379 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.062

  • S = 1.09

  • 2587 reflections

  • 196 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.47 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The complexation of metal ions by nitrogen heterocyclic compounds has been extensively studied. Owing to the unique ability of the heterocyclic compounds to form stable chelates with various coordiantion modes and its biological activity, many crystal ctructures have been determined (Fan, et al., 2003; Hoskins, et al. 1997; Makoto, et al.,2005). N-(2-methyl-benzoimidazol-3-yl-methyl)-benzotriazole, has the benzotriazole group and the benzoimidazole group and can offer possibilities to form complicated coordiantion compounds. However, the coordiantion chemistry and structural properties of metal complexes with the ligand has never been documented to data. In this paper, we reported the synthesis and crystal structure of the title compound, (I). In (I) (Fig. 1), the HgII atom is coordinated by two Cl atoms and two N atoms from the ligand to form a distorted tetrahedral coordination environment. Each ligand is coordianted to the Hg atom in a monodentate fashion. In the ligand, the benzotriazole group and benzotriazole group is bridged by a methylene, with an N—C—N angle of 111.3 (4)°. The benzotriazole group and the benzoimidazole group are almost perpendicular with each other, with the dihedral angle being 89.9°. Thus, two ligands are bridged by the Hg atom to form a cage-like compound.

Related literature top

For metal complexes of similar N-heterocyclic ligands, see: Fan et al. (2003); Hoskins et al. (1997); Makoto et al. (2005)

Experimental top

The ligand N-(2-methyl-benzoimidazol-3-yl-methyl)-benzotriazole (0.04 mmol, 0.118 g) in MeOH (6 ml) was added dropwise to a solution of HgCl2 (0.4 mmol, 0.108 g) in methanol (3 ml). The precipitate was filtered and the resulting solution was allowed to stand at room temperature in the dark. After one week good quality colorless crystals were obtained from the filtrate and dried in air.

Refinement top

H atoms were generated geometrically, with C-H = 0.96, 0.86 and 0.93Å for methyl, N and aromatic H, respectively, and constrained to ride their parent atoms with Uiso(H) = x times Ueq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear (Rigaku/MSC , 2006); data reduction: CrystalClear (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title complex, showing the labeling of the non-H atoms and 30% probability ellipsolids.
Dichloridobis[1-(2-methylbenzimidazol-1-ylmethyl- κN3)benzotriazole]mercury(II) top
Crystal data top
[HgCl2(C15H13N5)2]F(000) = 1560
Mr = 798.10Dx = 1.802 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4239 reflections
a = 15.612 (3) Åθ = 2.1–29.1°
b = 12.883 (3) ŵ = 5.46 mm1
c = 14.751 (3) ÅT = 293 K
β = 97.49 (3)°Prism, colorless
V = 2941.5 (11) Å30.22 × 0.18 × 0.16 mm
Z = 4
Data collection top
Rigaku Saturn724
diffractometer
2587 independent reflections
Radiation source: fine-focus sealed tube2379 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 28.5714 pixels mm-1θmax = 25.0°, θmin = 2.4°
dtprofit.ref scansh = 1818
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2006)
k = 1515
Tmin = 0.380, Tmax = 0.476l = 1717
14609 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0229P)2 + 4.6614P]
where P = (Fo2 + 2Fc2)/3
2587 reflections(Δ/σ)max < 0.001
196 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[HgCl2(C15H13N5)2]V = 2941.5 (11) Å3
Mr = 798.10Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.612 (3) ŵ = 5.46 mm1
b = 12.883 (3) ÅT = 293 K
c = 14.751 (3) Å0.22 × 0.18 × 0.16 mm
β = 97.49 (3)°
Data collection top
Rigaku Saturn724
diffractometer
2587 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2006)
2379 reflections with I > 2σ(I)
Tmin = 0.380, Tmax = 0.476Rint = 0.051
14609 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.062H-atom parameters constrained
S = 1.09Δρmax = 0.57 e Å3
2587 reflectionsΔρmin = 0.47 e Å3
196 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.50000.10389 (2)0.25000.04638 (11)
Cl10.62989 (9)0.19849 (10)0.30815 (8)0.0585 (4)
N10.4757 (2)0.0231 (3)0.3545 (2)0.0389 (9)
N20.4113 (2)0.1501 (3)0.4213 (2)0.0380 (9)
N30.3561 (2)0.3232 (3)0.4176 (2)0.0439 (10)
N40.3539 (3)0.3999 (4)0.4808 (3)0.0606 (12)
N50.3651 (3)0.4882 (4)0.4425 (3)0.0642 (13)
C10.3170 (3)0.0391 (4)0.3110 (4)0.0577 (14)
H1A0.32430.02050.27370.087*
H1B0.29410.09560.27280.087*
H1C0.27780.02260.35380.087*
C20.4021 (3)0.0696 (4)0.3614 (3)0.0392 (11)
C30.5386 (3)0.0762 (3)0.4139 (3)0.0359 (11)
C40.6271 (3)0.0600 (4)0.4337 (3)0.0436 (11)
H40.65470.00660.40640.052*
C50.6722 (3)0.1269 (4)0.4956 (3)0.0513 (13)
H50.73170.11910.50950.062*
C60.6311 (3)0.2054 (4)0.5377 (3)0.0541 (13)
H60.66370.24810.57990.065*
C70.5436 (3)0.2220 (4)0.5189 (3)0.0452 (12)
H70.51630.27500.54690.054*
C80.4984 (3)0.1560 (3)0.4564 (3)0.0348 (10)
C90.3430 (3)0.2172 (4)0.4447 (3)0.0471 (12)
H9A0.28780.19260.41450.057*
H9B0.34140.21460.51020.057*
C100.3696 (3)0.3647 (4)0.3355 (3)0.0420 (11)
C110.3763 (3)0.3232 (5)0.2497 (3)0.0568 (14)
H110.37190.25230.23810.068*
C120.3900 (3)0.3936 (5)0.1833 (4)0.0636 (16)
H120.39460.36970.12460.076*
C130.3973 (3)0.5008 (6)0.2009 (4)0.0688 (17)
H130.40740.54560.15390.083*
C140.3898 (3)0.5404 (5)0.2845 (4)0.0642 (16)
H140.39430.61140.29590.077*
C150.3752 (3)0.4707 (4)0.3524 (3)0.0496 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.05294 (19)0.03316 (15)0.05032 (18)0.0000.00348 (13)0.000
Cl10.0714 (9)0.0507 (8)0.0509 (7)0.0232 (7)0.0012 (7)0.0044 (6)
N10.039 (2)0.034 (2)0.044 (2)0.0053 (18)0.0057 (18)0.0056 (17)
N20.035 (2)0.039 (2)0.040 (2)0.0014 (17)0.0063 (18)0.0022 (18)
N30.050 (2)0.045 (2)0.037 (2)0.0158 (19)0.0079 (19)0.0040 (19)
N40.080 (3)0.058 (3)0.045 (2)0.023 (3)0.011 (2)0.010 (2)
N50.085 (4)0.048 (3)0.060 (3)0.014 (3)0.006 (3)0.003 (2)
C10.042 (3)0.063 (4)0.064 (3)0.001 (3)0.005 (3)0.013 (3)
C20.040 (3)0.040 (3)0.038 (3)0.005 (2)0.004 (2)0.001 (2)
C30.041 (3)0.034 (2)0.032 (2)0.002 (2)0.003 (2)0.0002 (19)
C40.036 (3)0.046 (3)0.049 (3)0.004 (2)0.007 (2)0.004 (2)
C50.038 (3)0.057 (3)0.058 (3)0.006 (2)0.005 (2)0.001 (3)
C60.054 (3)0.057 (3)0.049 (3)0.010 (3)0.001 (3)0.010 (3)
C70.051 (3)0.039 (3)0.046 (3)0.001 (2)0.007 (2)0.006 (2)
C80.040 (3)0.032 (2)0.032 (2)0.001 (2)0.005 (2)0.001 (2)
C90.044 (3)0.056 (3)0.045 (3)0.012 (2)0.018 (2)0.000 (2)
C100.034 (3)0.054 (3)0.039 (3)0.009 (2)0.007 (2)0.001 (2)
C110.053 (3)0.074 (4)0.043 (3)0.009 (3)0.007 (3)0.004 (3)
C120.047 (3)0.107 (5)0.036 (3)0.005 (3)0.004 (2)0.002 (3)
C130.043 (3)0.094 (5)0.068 (4)0.001 (3)0.001 (3)0.033 (4)
C140.050 (3)0.064 (4)0.076 (4)0.006 (3)0.001 (3)0.016 (3)
C150.047 (3)0.054 (3)0.047 (3)0.014 (3)0.002 (2)0.003 (3)
Geometric parameters (Å, º) top
Hg1—N12.313 (3)C4—C51.380 (7)
Hg1—N1i2.313 (3)C4—H40.9300
Hg1—Cl1i2.4248 (13)C5—C61.387 (7)
Hg1—Cl12.4248 (13)C5—H50.9300
N1—C21.311 (5)C6—C71.375 (6)
N1—C31.405 (5)C6—H60.9300
N2—C21.357 (6)C7—C81.378 (6)
N2—C81.392 (5)C7—H70.9300
N2—C91.450 (5)C9—H9A0.9700
N3—N41.362 (5)C9—H9B0.9700
N3—C101.366 (6)C10—C151.389 (7)
N3—C91.444 (6)C10—C111.390 (6)
N4—N51.293 (6)C11—C121.372 (7)
N5—C151.377 (6)C11—H110.9300
C1—C21.488 (6)C12—C131.407 (8)
C1—H1A0.9600C12—H120.9300
C1—H1B0.9600C13—C141.354 (8)
C1—H1C0.9600C13—H130.9300
C3—C41.391 (6)C14—C151.387 (7)
C3—C81.395 (6)C14—H140.9300
N1—Hg1—N1i89.97 (18)C6—C5—H5119.1
N1—Hg1—Cl1i112.90 (10)C7—C6—C5121.8 (5)
N1i—Hg1—Cl1i108.78 (10)C7—C6—H6119.1
N1—Hg1—Cl1108.78 (10)C5—C6—H6119.1
N1i—Hg1—Cl1112.90 (10)C6—C7—C8116.6 (4)
Cl1i—Hg1—Cl1119.65 (7)C6—C7—H7121.7
C2—N1—C3106.1 (4)C8—C7—H7121.7
C2—N1—Hg1126.6 (3)C7—C8—N2132.3 (4)
C3—N1—Hg1126.7 (3)C7—C8—C3122.3 (4)
C2—N2—C8107.5 (4)N2—C8—C3105.4 (4)
C2—N2—C9126.3 (4)N3—C9—N2111.3 (4)
C8—N2—C9126.2 (4)N3—C9—H9A109.4
N4—N3—C10110.1 (4)N2—C9—H9A109.4
N4—N3—C9118.7 (4)N3—C9—H9B109.4
C10—N3—C9131.2 (4)N2—C9—H9B109.4
N5—N4—N3108.8 (4)H9A—C9—H9B108.0
N4—N5—C15108.4 (4)N3—C10—C15103.8 (4)
C2—C1—H1A109.5N3—C10—C11134.1 (5)
C2—C1—H1B109.5C15—C10—C11122.1 (5)
H1A—C1—H1B109.5C12—C11—C10115.7 (5)
C2—C1—H1C109.5C12—C11—H11122.2
H1A—C1—H1C109.5C10—C11—H11122.2
H1B—C1—H1C109.5C11—C12—C13122.2 (5)
N1—C2—N2112.3 (4)C11—C12—H12118.9
N1—C2—C1125.1 (4)C13—C12—H12118.9
N2—C2—C1122.6 (4)C14—C13—C12121.6 (5)
C4—C3—C8120.6 (4)C14—C13—H13119.2
C4—C3—N1130.7 (4)C12—C13—H13119.2
C8—C3—N1108.7 (4)C13—C14—C15117.1 (6)
C5—C4—C3116.9 (4)C13—C14—H14121.4
C5—C4—H4121.6C15—C14—H14121.4
C3—C4—H4121.6N5—C15—C14129.9 (5)
C4—C5—C6121.8 (5)N5—C15—C10108.8 (4)
C4—C5—H5119.1C14—C15—C10121.3 (5)
N1i—Hg1—N1—C286.5 (4)C9—N2—C8—C70.3 (8)
Cl1i—Hg1—N1—C224.0 (4)C2—N2—C8—C30.3 (5)
Cl1—Hg1—N1—C2159.3 (3)C9—N2—C8—C3180.0 (4)
N1i—Hg1—N1—C383.5 (3)C4—C3—C8—C70.2 (7)
Cl1i—Hg1—N1—C3166.0 (3)N1—C3—C8—C7179.9 (4)
Cl1—Hg1—N1—C330.7 (4)C4—C3—C8—N2179.9 (4)
C10—N3—N4—N50.3 (6)N1—C3—C8—N20.3 (5)
C9—N3—N4—N5178.6 (4)N4—N3—C9—N2128.3 (4)
N3—N4—N5—C150.3 (6)C10—N3—C9—N253.1 (7)
C3—N1—C2—N20.0 (5)C2—N2—C9—N3116.4 (5)
Hg1—N1—C2—N2171.7 (3)C8—N2—C9—N363.9 (6)
C3—N1—C2—C1179.6 (4)N4—N3—C10—C150.2 (5)
Hg1—N1—C2—C18.7 (7)C9—N3—C10—C15178.5 (5)
C8—N2—C2—N10.2 (5)N4—N3—C10—C11179.2 (5)
C9—N2—C2—N1179.9 (4)C9—N3—C10—C110.4 (9)
C8—N2—C2—C1179.4 (4)N3—C10—C11—C12179.7 (5)
C9—N2—C2—C10.3 (7)C15—C10—C11—C120.8 (7)
C2—N1—C3—C4180.0 (5)C10—C11—C12—C130.3 (8)
Hg1—N1—C3—C48.4 (7)C11—C12—C13—C141.0 (8)
C2—N1—C3—C80.2 (5)C12—C13—C14—C150.4 (8)
Hg1—N1—C3—C8171.9 (3)N4—N5—C15—C14179.2 (5)
C8—C3—C4—C50.8 (7)N4—N5—C15—C100.1 (6)
N1—C3—C4—C5179.5 (4)C13—C14—C15—N5180.0 (5)
C3—C4—C5—C61.2 (7)C13—C14—C15—C100.8 (8)
C4—C5—C6—C71.1 (8)N3—C10—C15—N50.0 (5)
C5—C6—C7—C80.5 (7)C11—C10—C15—N5179.2 (4)
C6—C7—C8—N2179.7 (5)N3—C10—C15—C14179.4 (4)
C6—C7—C8—C30.0 (7)C11—C10—C15—C141.4 (8)
C2—N2—C8—C7180.0 (5)
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[HgCl2(C15H13N5)2]
Mr798.10
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)15.612 (3), 12.883 (3), 14.751 (3)
β (°) 97.49 (3)
V3)2941.5 (11)
Z4
Radiation typeMo Kα
µ (mm1)5.46
Crystal size (mm)0.22 × 0.18 × 0.16
Data collection
DiffractometerRigaku Saturn724
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2006)
Tmin, Tmax0.380, 0.476
No. of measured, independent and
observed [I > 2σ(I)] reflections
14609, 2587, 2379
Rint0.051
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.062, 1.09
No. of reflections2587
No. of parameters196
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.47

Computer programs: CrystalClear (Rigaku/MSC, 2006), CrystalClear (Rigaku/MSC , 2006), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank Professor Hou Hong-Wei of Zhengzhou University for his help.

References

First citationFan, J., Zhu, H. F., Okamura, T., Sun, W. Y., Tang, W. X. & Ueyama, N. (2003). Inorg. Chem. 42, 158–162.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHoskins, B. F., Robson, R. & Slizys, D. A. (1997). Angew. Chem. 109, 2430–2432.  CrossRef Google Scholar
First citationMakoto, F., Masahide, T., Akiko, H. & Bruno, T. (2005). Acc. Chem. Res. 38, 371–380.  Google Scholar
First citationRigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds