metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages m366-m367

(μ-3,4-Di­acetyl­hexa-2,4-diene-2,5-diol­ato-κ4O2,O3:O4,O5)bis­­[aqua(1,10-phen­an­thro­line-κ2N,N′)copper(II)] bis­­(tetra­fluorid­oborate) monohydrate

aInstituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510 Coyoacán, México, DF, Mexico
*Correspondence e-mail: jvaldes@servidor.unam.mx

(Received 20 February 2009; accepted 24 February 2009; online 6 March 2009)

In the title compound, [Cu2(C10H12O4)(C12H8N2)2(H2O)2](BF4)2·H2O, the two Cu atoms are each chelated by the acetyl­acetonate unit of the 3,4-diacetyl­hexa-2,4-diene-2,5-diolate (tae) ligand. The Cu atoms are square-pyramidally penta­coordinated, with one bidentate 1,10-phenanthroline (phen) and the tae ligand basal and one water mol­ecule apical. The pyridyl rings of the phen ligands participate in ππ [centroid–centroid distance = 3.894 (3) Å] and C—H ⋯ π inter­actions, generating layers which are inter­connected through O—H⋯O and O—H⋯F hydrogen bonds between the water mol­ecules and the tetra­fluorido­borate anions. The F atoms of both tetra­fluorido­borate anions are each disordered over two positions of equal occupancy.

Related literature

For related Cu(II)–tae2−–diimine complexes, see: Shen et al. (1999a[Shen, X.-P., Zou, J.-Z., Zha, Z.-G., Duan, C.-Y. & Xu, Z. (1999a). Huaxue Xuebao (Chin.) (Chin. J. Inorg. Chem.), 15, 793-797.],b[Shen, X.-P., Zou, J.-Z., Zha, Z.-G., Xu, Z., Yip, B. C. & Fun, H. K. (1999b). Wuji Huaxue Xuebao (Chin.) (Chin. J. Inorg. Chem.), 15, 641-647.]); Lim et al. (1994[Lim, Y. Y., Chen, W., Tan, L. L., You, X. Z. & Yao, T. M. (1994). Polyhedron, 13, 2861-2866.]); Fukuda et al. (1994[Fukuda, Y., Seino, A., Mafune, K., Nakagawa, H. & Linert, W. (1994). J. Coord. Chem. 33, 123-136.]); Zhang et al. (1999[Zhang, Y., Breeze, S. R., Wang, S., Greedan, J. E., Raju, N. P. & Li, L. (1999). Can. J. Chem. 77, 1424-1435.]). For other similar metal complexes, see: Zhang et al. (1998[Zhang, Y., Wang, S., Enright, G. D. & Breeze, S. R. (1998). J. Am. Chem. Soc. 120, 9398-9399.], 1999[Zhang, Y., Breeze, S. R., Wang, S., Greedan, J. E., Raju, N. P. & Li, L. (1999). Can. J. Chem. 77, 1424-1435.]); Mei et al. (2006a[Mei, G.-Q., Huang, K.-L. & Huang, H.-P. (2006a). Acta Cryst. E62, m2743-m2744.],b[Mei, G.-Q., Huang, K.-L., Huang, H.-P. & Li, Y.-Z. (2006b). Acta Cryst. E62, m2368-m2370.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C10H12O4)(C12H8N2)2(H2O)2](BF4)2·H2O

  • Mr = 911.35

  • Triclinic, [P \overline 1]

  • a = 11.5555 (9) Å

  • b = 12.0954 (9) Å

  • c = 15.4446 (12) Å

  • α = 67.654 (1)°

  • β = 78.890 (1)°

  • γ = 72.784 (1)°

  • V = 1899.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.21 mm−1

  • T = 298 K

  • 0.16 × 0.08 × 0.04 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.858, Tmax = 0.949

  • 15806 measured reflections

  • 6928 independent reflections

  • 3558 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.114

  • S = 0.84

  • 6928 reflections

  • 606 parameters

  • 326 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O2 1.886 (3)
Cu1—O1 1.892 (3)
Cu1—N2 2.008 (4)
Cu1—N1 2.013 (4)
Cu1—O5 2.320 (4)
Cu2—O3 1.884 (3)
Cu2—O4 1.895 (3)
Cu2—N4 1.990 (4)
Cu2—N3 2.004 (4)
Cu2—O6 2.363 (5)
O1—Cu1—N2 166.92 (15)
O2—Cu1—N1 171.40 (16)
O4—Cu2—N4 168.61 (17)
O3—Cu2—N3 172.57 (17)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7B⋯F1Ai 0.845 (11) 1.91 (2) 2.737 (11) 166 (8)
O7—H7A⋯F6A 0.850 (11) 1.90 (3) 2.728 (9) 164 (8)
O7—H7A⋯F7 0.850 (11) 1.99 (4) 2.782 (8) 155 (8)
O6—H6E⋯F4ii 0.852 (11) 2.054 (18) 2.898 (9) 171 (7)
O6—H6D⋯F2Aiii 0.852 (11) 2.080 (16) 2.930 (10) 175 (7)
O6—H6D⋯F2iii 0.852 (11) 1.90 (3) 2.694 (10) 155 (7)
O5—H5E⋯F3A 0.846 (11) 1.96 (2) 2.776 (8) 163 (6)
O5—H5D⋯O7iv 0.842 (11) 2.000 (15) 2.837 (7) 173 (6)
O7—H7A⋯F7 0.850 (11) 1.99 (4) 2.782 (8) 155 (8)
O7—H7A⋯F6A 0.850 (11) 1.90 (3) 2.728 (9) 164 (8)
C29—H29⋯Cgii 0.93 2.75 3.522 (7) 141
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+1; (iii) x, y+1, z; (iv) x+1, y, z. Cg is the centroid of the N1,C12,C11,C13,C21,C20 ring.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, J. L. (2001). Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

The asymmetric structure of 1 consists of one dinuclear [(phen)(H2O)Cu(tae)Cu(H2O)(phen)]2+ complex cation, two disordered BF4- anions and a water molecule, where phen represents the 1,10-phenanthroline, and tae the 3,4-diacetylhexa-2,4-diene-2,5-diolate, see Figure 1. In the cation one Cu atom coordinates to each acac- moiety of the tae2-. The Cu atoms are pentacoordinated with one bidentate phen and one water molecule in addition to the tae2- ligand. The geometry around both Cu atoms is square pyramidal as indicated by the values of the τ parameter, 0.07 for both Cu1 and Cu2. The two acac moieties of the tae ligand deviate from the ideal geometry as indicated by the torsion angles C4—C3—C8—C7 and C2—C3—C8—C9, 99.9 (6) and 101.1 (6)°, respectively (ideal values 90°). The deviation of the ideal geometry is also reflected in the angle the central rings of the phen ligands C(14)—C(15)—C(22)—C(19)—C(20)—C(21) and C(26)—C(27)—C(34)—C(31)—C(32)—C(33) which has a value of 73.6 (3)°, ideal value 90°. The water molecule coordinated to Cu1 forms a hydrogen bond with the free water molecule, O(5) ···O(7) 2.835 (6) Å. In addition the three water molecules present interactions with the disordered BF4- anions. Two of the py rings of each phen ligands coordinated to the Cu1 present π-π interactions between them: N(1)—C(12)—C(11)—C(13)—C(21)—C(20) and N(2)—C(18)—C(17)—C(16)—C(22)—C(19)[2 - x,-y,2 - z], have centroid···centroid distance, Cg···Cg, of 3.894 (3) Å. H-bonded dimers are formed through C—H ··· π interactions between one py ring of the phen coordinated to Cu2 and a phen coordinated to Cu1, C(29)—H(29)···N(1)—C(12)—C(11)—C(13)—C(21)—C(20) [2 - x,1 - y,1 - z] with a C···Cg = 3.522 (7) Å, Figure 2.

Related literature top

For related Cu(II)–tae2-–diimine complexes, see: Shen et al. (1999a,b); Lim et al. (1994); Fukuda et al. (1994); Zhang et al. (1999). For other similar metal complexes, see: Zhang et al. (1998, 1999); Mei et al. (2006a,b).

Experimental top

Copper(II) tetrafluoroborate hydrate (H2O-31.2%) (0.188 g, 0.69 mmol) was added to a freshly made mixture of 1,10-phenanthroline (0.124 g, 0.69 mmol) and tetraacetylethane (0.068 g, 0.34 mmol) in methanol (15 ml) to give a dark green-blue suspension. The reaction mixture was stirred for 3 hrs at 45°C in a water bath, firstly and then at room temperature overnight. The blue-green solid was recovered by filtration and it was air-dried. 12 mg of the product were suspended in acetone (1 ml) and water (ca 1 ml) was added in order to achieve complete dissolution. Crystals suitable for X-ray analysis were obtained after 2 weeks of slow evaporation.

Refinement top

Both BF4- anions are disordered and were refined in two major contributors with s.o.f. 0.5. The H atoms on O atoms were located in the Fourier map and refined with U(iso)= 1.5Ueq(H2O). H on C atoms were fixed geometrically and treated as riding with 0.96Å (methyl) and 0.93Å (aromatic) with Uiso(H)= 1.2Ueq(aromatic) or Uiso(H) = 1.5Ueq(methyl).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: PLATON (Spek, 2009), publCIF (Westrip, 2009) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of the cation in (1), showing the atom- labeling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. View of the molecular packing in (1).
(µ-3,4-Diacetylhexa-2,4-diene-2,5-diolato- κ4O2,O3:O4,O5)bis[aqua(1,10- phenanthroline-κ2N,N')copper(II)] bis(tetrafluoridoborate) monohydrate top
Crystal data top
[Cu2(C10H12O4)(C12H8N2)2(H2O)2](BF4)2·H2OZ = 2
Mr = 911.35F(000) = 924
Triclinic, P1Dx = 1.594 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.5555 (9) ÅCell parameters from 3675 reflections
b = 12.0954 (9) Åθ = 2.2–24.9°
c = 15.4446 (12) ŵ = 1.21 mm1
α = 67.654 (1)°T = 298 K
β = 78.890 (1)°Prism, green
γ = 72.784 (1)°0.16 × 0.08 × 0.04 mm
V = 1899.2 (3) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
6928 independent reflections
Radiation source: fine-focus sealed tube3558 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
Detector resolution: 0.83 pixels mm-1θmax = 25.4°, θmin = 1.9°
ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1414
Tmin = 0.858, Tmax = 0.949l = 1818
15806 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 0.84 w = 1/[σ2(Fo2) + (0.0366P)2]
where P = (Fo2 + 2Fc2)/3
6928 reflections(Δ/σ)max = 0.001
606 parametersΔρmax = 0.54 e Å3
326 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Cu2(C10H12O4)(C12H8N2)2(H2O)2](BF4)2·H2Oγ = 72.784 (1)°
Mr = 911.35V = 1899.2 (3) Å3
Triclinic, P1Z = 2
a = 11.5555 (9) ÅMo Kα radiation
b = 12.0954 (9) ŵ = 1.21 mm1
c = 15.4446 (12) ÅT = 298 K
α = 67.654 (1)°0.16 × 0.08 × 0.04 mm
β = 78.890 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
6928 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3558 reflections with I > 2σ(I)
Tmin = 0.858, Tmax = 0.949Rint = 0.059
15806 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.055326 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 0.84Δρmax = 0.54 e Å3
6928 reflectionsΔρmin = 0.40 e Å3
606 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.99590 (6)0.18154 (5)0.85485 (4)0.0390 (2)
Cu20.65472 (6)0.87240 (6)0.61594 (5)0.0491 (2)
O10.8415 (3)0.2366 (3)0.8079 (2)0.0404 (9)
O20.9820 (3)0.3323 (3)0.8705 (2)0.0468 (10)
O30.7359 (3)0.7405 (3)0.5728 (2)0.0445 (10)
O40.6140 (3)0.7653 (3)0.7374 (2)0.0515 (10)
O51.1038 (4)0.2306 (4)0.7078 (3)0.0604 (11)
H5D1.115 (6)0.301 (3)0.693 (4)0.091*
H5E1.049 (4)0.241 (6)0.674 (4)0.091*
O60.8423 (5)0.8930 (4)0.6395 (4)0.0763 (13)
H6D0.835 (7)0.968 (2)0.632 (5)0.114*
H6E0.904 (4)0.849 (6)0.618 (5)0.114*
O70.1659 (5)0.4582 (5)0.6594 (4)0.0931 (15)
H7A0.194 (7)0.456 (8)0.707 (4)0.140*
H7B0.184 (7)0.521 (5)0.618 (4)0.140*
N11.0160 (4)0.0087 (3)0.8585 (3)0.0374 (11)
N21.1408 (4)0.0983 (4)0.9301 (3)0.0368 (11)
N30.5590 (4)1.0233 (4)0.6458 (3)0.0490 (12)
N40.6619 (4)0.9957 (4)0.4867 (3)0.0485 (12)
C10.6712 (5)0.3667 (5)0.7313 (4)0.0523 (16)
H1A0.66280.28780.73640.078*
H1B0.67680.41770.66620.078*
H1C0.60160.40550.76400.078*
C20.7842 (4)0.3498 (5)0.7739 (3)0.0348 (13)
C30.8174 (5)0.4515 (4)0.7750 (3)0.0348 (13)
C40.9136 (5)0.4354 (5)0.8251 (4)0.0396 (14)
C50.9433 (5)0.5441 (5)0.8342 (4)0.0616 (18)
H5A1.01110.51510.87120.092*
H5B0.87400.58700.86440.092*
H5C0.96350.59900.77290.092*
C60.8686 (5)0.5545 (5)0.5733 (4)0.0555 (17)
H6A0.87670.60320.50780.083*
H6B0.83970.48450.58060.083*
H6C0.94630.52680.59810.083*
C70.7798 (5)0.6312 (5)0.6254 (4)0.0406 (14)
C80.7509 (4)0.5814 (4)0.7219 (4)0.0356 (13)
C90.6633 (5)0.6503 (5)0.7713 (4)0.0425 (14)
C100.6193 (5)0.5913 (5)0.8720 (3)0.0569 (17)
H10A0.55940.65200.89330.085*
H10B0.68660.55780.91000.085*
H10C0.58380.52640.87720.085*
C110.9811 (6)0.1545 (5)0.8256 (4)0.0592 (17)
H110.93410.18070.79840.071*
C120.9525 (5)0.0316 (5)0.8195 (4)0.0507 (16)
H120.88680.02360.78710.061*
C131.0777 (6)0.2358 (5)0.8714 (4)0.0574 (17)
H131.09630.31800.87630.069*
C141.2556 (6)0.2718 (5)0.9568 (4)0.0529 (16)
H141.28090.35430.96160.064*
C151.3201 (5)0.2274 (5)0.9931 (4)0.0503 (16)
H151.38920.27941.02260.060*
C161.3461 (5)0.0469 (5)1.0248 (4)0.0529 (16)
H161.41430.09431.05720.063*
C171.3051 (5)0.0741 (6)1.0134 (4)0.0594 (17)
H171.34570.11061.03730.071*
C181.2015 (5)0.1449 (5)0.9657 (4)0.0490 (15)
H181.17470.22800.95890.059*
C191.1824 (5)0.0245 (4)0.9411 (3)0.0346 (13)
C201.1134 (5)0.0718 (4)0.9031 (3)0.0348 (13)
C211.1489 (5)0.1963 (5)0.9111 (4)0.0427 (14)
C221.2846 (5)0.1003 (5)0.9872 (4)0.0425 (14)
C230.5072 (6)1.0331 (6)0.7278 (5)0.0693 (19)
H230.51290.96210.78090.083*
C240.4450 (6)1.1451 (6)0.7371 (5)0.082 (2)
H240.40861.14880.79550.098*
C250.4372 (6)1.2499 (6)0.6606 (6)0.077 (2)
H250.39571.32560.66660.093*
C260.4903 (6)1.3473 (6)0.4869 (6)0.076 (2)
H260.44891.42580.48730.092*
C270.5463 (6)1.3346 (6)0.4065 (5)0.072 (2)
H270.54651.40430.35290.087*
C280.6657 (6)1.1947 (6)0.3192 (5)0.076 (2)
H280.66741.26050.26310.091*
C290.7220 (6)1.0756 (6)0.3223 (5)0.080 (2)
H290.76201.06050.26810.096*
C300.7183 (5)0.9776 (6)0.4079 (4)0.0602 (17)
H300.75640.89760.40950.072*
C310.6061 (5)1.1119 (5)0.4834 (4)0.0475 (15)
C320.5494 (5)1.1274 (5)0.5703 (4)0.0458 (15)
C330.4910 (5)1.2440 (6)0.5738 (5)0.0595 (18)
C340.6068 (6)1.2147 (5)0.4007 (5)0.0570 (17)
B10.8838 (5)0.2213 (5)0.5346 (4)0.101 (2)
F10.8098 (11)0.3342 (7)0.5272 (7)0.138 (4)0.50
F20.8189 (11)0.1382 (9)0.5615 (8)0.145 (5)0.50
F30.9664 (10)0.1914 (12)0.5938 (8)0.165 (5)0.50
F40.9393 (10)0.2322 (10)0.4465 (5)0.152 (4)0.50
F1A0.8141 (11)0.3279 (8)0.4850 (7)0.145 (5)0.50
F2A0.8125 (10)0.1552 (9)0.6042 (6)0.109 (3)0.50
F3A0.9625 (9)0.2425 (12)0.5766 (8)0.135 (4)0.50
F4A0.9420 (11)0.1540 (10)0.4814 (7)0.180 (5)0.50
B20.3294 (4)0.4202 (4)0.8750 (3)0.0641 (16)
F50.2337 (8)0.4460 (12)0.9365 (7)0.091 (4)0.50
F60.4163 (9)0.3279 (7)0.9241 (7)0.100 (3)0.50
F70.2957 (9)0.3809 (7)0.8148 (5)0.098 (3)0.50
F80.3687 (11)0.5225 (8)0.8272 (6)0.123 (4)0.50
F5A0.2328 (8)0.4162 (13)0.9389 (8)0.098 (4)0.50
F6A0.2915 (10)0.4675 (10)0.7880 (5)0.149 (4)0.50
F7A0.3964 (9)0.4925 (8)0.8799 (7)0.103 (3)0.50
F8A0.4019 (9)0.3057 (6)0.8903 (8)0.102 (3)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0431 (4)0.0245 (4)0.0444 (4)0.0034 (3)0.0095 (3)0.0074 (3)
Cu20.0615 (5)0.0320 (4)0.0425 (4)0.0019 (4)0.0037 (4)0.0083 (3)
O10.043 (2)0.0210 (19)0.052 (2)0.0037 (17)0.0079 (19)0.0084 (18)
O20.051 (2)0.031 (2)0.057 (2)0.0017 (18)0.019 (2)0.0131 (19)
O30.066 (3)0.025 (2)0.033 (2)0.0038 (19)0.0013 (19)0.0074 (17)
O40.066 (3)0.026 (2)0.040 (2)0.0045 (19)0.009 (2)0.0058 (18)
O50.064 (3)0.057 (3)0.056 (3)0.019 (3)0.003 (2)0.012 (3)
O60.083 (4)0.069 (3)0.081 (3)0.018 (3)0.017 (3)0.026 (3)
O70.110 (4)0.082 (4)0.092 (4)0.029 (3)0.034 (4)0.019 (3)
N10.045 (3)0.025 (2)0.037 (3)0.005 (2)0.008 (2)0.005 (2)
N20.039 (3)0.030 (3)0.038 (3)0.008 (2)0.004 (2)0.009 (2)
N30.054 (3)0.039 (3)0.046 (3)0.000 (2)0.002 (3)0.018 (3)
N40.053 (3)0.037 (3)0.044 (3)0.005 (2)0.003 (3)0.006 (2)
C10.047 (4)0.038 (3)0.070 (4)0.004 (3)0.020 (3)0.014 (3)
C20.031 (3)0.037 (3)0.034 (3)0.007 (3)0.003 (3)0.010 (3)
C30.041 (3)0.025 (3)0.034 (3)0.005 (3)0.007 (3)0.006 (2)
C40.048 (4)0.025 (3)0.044 (3)0.004 (3)0.004 (3)0.013 (3)
C50.064 (4)0.039 (3)0.088 (5)0.000 (3)0.029 (4)0.028 (3)
C60.071 (4)0.040 (3)0.045 (4)0.009 (3)0.006 (3)0.012 (3)
C70.040 (3)0.031 (3)0.048 (4)0.008 (3)0.002 (3)0.012 (3)
C80.037 (3)0.025 (3)0.037 (3)0.002 (2)0.003 (3)0.006 (3)
C90.047 (4)0.034 (3)0.039 (3)0.006 (3)0.010 (3)0.006 (3)
C100.061 (4)0.040 (3)0.043 (4)0.002 (3)0.004 (3)0.001 (3)
C110.085 (5)0.039 (4)0.061 (4)0.019 (4)0.021 (4)0.017 (3)
C120.063 (4)0.036 (3)0.050 (4)0.009 (3)0.021 (3)0.007 (3)
C130.084 (5)0.027 (3)0.055 (4)0.008 (3)0.011 (4)0.010 (3)
C140.067 (5)0.028 (3)0.048 (4)0.008 (3)0.005 (3)0.011 (3)
C150.044 (4)0.039 (4)0.046 (4)0.008 (3)0.006 (3)0.005 (3)
C160.043 (4)0.049 (4)0.052 (4)0.003 (3)0.016 (3)0.002 (3)
C170.060 (4)0.060 (4)0.063 (4)0.023 (4)0.022 (4)0.013 (4)
C180.051 (4)0.040 (3)0.054 (4)0.013 (3)0.009 (3)0.011 (3)
C190.039 (3)0.027 (3)0.030 (3)0.005 (3)0.002 (3)0.004 (3)
C200.044 (4)0.023 (3)0.029 (3)0.003 (3)0.004 (3)0.003 (2)
C210.058 (4)0.029 (3)0.038 (3)0.007 (3)0.004 (3)0.012 (3)
C220.037 (3)0.038 (3)0.040 (3)0.007 (3)0.004 (3)0.002 (3)
C230.085 (5)0.060 (4)0.054 (4)0.002 (4)0.001 (4)0.024 (4)
C240.089 (6)0.072 (5)0.083 (6)0.012 (4)0.002 (5)0.053 (5)
C250.071 (5)0.049 (4)0.110 (6)0.008 (4)0.013 (5)0.040 (5)
C260.071 (5)0.033 (4)0.118 (7)0.002 (4)0.027 (5)0.020 (5)
C270.069 (5)0.045 (4)0.081 (5)0.004 (4)0.022 (4)0.002 (4)
C280.085 (5)0.057 (5)0.053 (5)0.012 (4)0.007 (4)0.012 (4)
C290.099 (6)0.069 (5)0.047 (4)0.016 (5)0.002 (4)0.001 (4)
C300.069 (5)0.053 (4)0.049 (4)0.013 (3)0.003 (4)0.009 (4)
C310.038 (4)0.032 (3)0.063 (4)0.003 (3)0.011 (3)0.008 (3)
C320.046 (4)0.031 (3)0.055 (4)0.006 (3)0.009 (3)0.010 (3)
C330.050 (4)0.044 (4)0.082 (5)0.007 (3)0.018 (4)0.026 (4)
C340.060 (4)0.041 (4)0.057 (4)0.007 (3)0.017 (4)0.002 (4)
B10.135 (6)0.089 (4)0.110 (5)0.047 (4)0.019 (4)0.051 (4)
F10.226 (9)0.086 (5)0.115 (9)0.035 (5)0.001 (7)0.059 (6)
F20.162 (8)0.095 (6)0.222 (11)0.062 (6)0.044 (8)0.068 (7)
F30.184 (8)0.193 (11)0.126 (7)0.122 (7)0.059 (6)0.014 (8)
F40.147 (8)0.162 (10)0.122 (6)0.018 (7)0.011 (5)0.064 (7)
F1A0.203 (9)0.121 (6)0.101 (9)0.027 (6)0.052 (7)0.018 (5)
F2A0.136 (7)0.086 (6)0.138 (7)0.059 (5)0.006 (5)0.054 (5)
F3A0.173 (8)0.131 (9)0.125 (8)0.098 (6)0.050 (6)0.008 (6)
F4A0.206 (10)0.175 (10)0.196 (10)0.052 (8)0.043 (8)0.130 (8)
B20.077 (4)0.059 (4)0.067 (4)0.019 (3)0.012 (3)0.029 (3)
F50.087 (6)0.099 (8)0.100 (6)0.014 (5)0.005 (4)0.062 (5)
F60.084 (5)0.096 (6)0.116 (8)0.004 (5)0.046 (5)0.035 (5)
F70.139 (7)0.092 (6)0.084 (6)0.009 (5)0.039 (5)0.052 (5)
F80.173 (8)0.087 (5)0.102 (8)0.066 (5)0.002 (6)0.008 (5)
F5A0.083 (6)0.094 (7)0.135 (6)0.034 (5)0.024 (5)0.065 (6)
F6A0.185 (8)0.168 (9)0.091 (5)0.042 (8)0.071 (5)0.014 (6)
F7A0.122 (7)0.117 (7)0.116 (8)0.074 (6)0.019 (6)0.071 (6)
F8A0.105 (7)0.063 (4)0.131 (8)0.008 (4)0.007 (5)0.043 (5)
Geometric parameters (Å, º) top
Cu1—O21.886 (3)C13—C211.389 (7)
Cu1—O11.892 (3)C13—H130.9300
Cu1—N22.008 (4)C14—C151.336 (7)
Cu1—N12.013 (4)C14—C211.425 (7)
Cu1—O52.320 (4)C14—H140.9300
Cu2—O31.884 (3)C15—C221.440 (7)
Cu2—O41.895 (3)C15—H150.9300
Cu2—N41.990 (4)C16—C171.350 (7)
Cu2—N32.004 (4)C16—C221.407 (7)
Cu2—O62.363 (5)C16—H160.9300
O1—C21.281 (5)C17—C181.401 (7)
O2—C41.280 (5)C17—H170.9300
O3—C71.269 (5)C18—H180.9300
O4—C91.274 (5)C19—C221.389 (6)
O5—H5D0.842 (11)C19—C201.419 (7)
O5—H5E0.846 (11)C20—C211.402 (6)
O6—H6D0.852 (11)C23—C241.380 (7)
O6—H6E0.852 (11)C23—H230.9300
O7—H7A0.850 (11)C24—C251.359 (8)
O7—H7B0.845 (11)C24—H240.9300
N1—C121.320 (6)C25—C331.384 (8)
N1—C201.353 (6)C25—H250.9300
N2—C181.316 (6)C26—C271.327 (8)
N2—C191.372 (6)C26—C331.445 (8)
N3—C231.325 (7)C26—H260.9300
N3—C321.345 (6)C27—C341.441 (8)
N4—C301.329 (6)C27—H270.9300
N4—C311.348 (6)C28—C341.381 (8)
C1—C21.501 (6)C28—C291.380 (8)
C1—H1A0.9600C28—H280.9300
C1—H1B0.9600C29—C301.405 (7)
C1—H1C0.9600C29—H290.9300
C2—C31.399 (6)C30—H300.9300
C3—C41.401 (7)C31—C341.404 (7)
C3—C81.510 (6)C31—C321.429 (7)
C4—C51.513 (6)C32—C331.388 (7)
C5—H5A0.9600B1—F31.326 (6)
C5—H5B0.9600B1—F21.325 (6)
C5—H5C0.9600B1—F4A1.328 (6)
C6—C71.499 (6)B1—F1A1.330 (6)
C6—H6A0.9600B1—F3A1.343 (6)
C6—H6B0.9600B1—F11.356 (6)
C6—H6C0.9600B1—F41.363 (6)
C7—C81.392 (7)B1—F2A1.367 (6)
C8—C91.411 (6)B2—F81.338 (5)
C9—C101.501 (7)B2—F5A1.340 (5)
C10—H10A0.9600B2—F8A1.347 (6)
C10—H10B0.9600B2—F61.347 (5)
C10—H10C0.9600B2—F6A1.349 (5)
C11—C131.356 (7)B2—F71.351 (5)
C11—C121.394 (7)B2—F51.357 (6)
C11—H110.9300B2—F7A1.358 (5)
C12—H120.9300
O2—Cu1—O192.75 (14)C11—C13—C21120.1 (5)
O2—Cu1—N291.77 (16)C11—C13—H13119.9
O1—Cu1—N2166.92 (15)C21—C13—H13119.9
O2—Cu1—N1171.40 (16)C15—C14—C21121.8 (5)
O1—Cu1—N192.39 (16)C15—C14—H14119.1
N2—Cu1—N181.76 (17)C21—C14—H14119.1
O2—Cu1—O595.44 (15)C14—C15—C22121.1 (5)
O1—Cu1—O595.00 (14)C14—C15—H15119.5
N2—Cu1—O596.78 (16)C22—C15—H15119.5
N1—Cu1—O590.97 (16)C17—C16—C22119.2 (5)
O3—Cu2—O492.78 (14)C17—C16—H16120.4
O3—Cu2—N492.05 (17)C22—C16—H16120.4
O4—Cu2—N4168.61 (17)C16—C17—C18120.3 (5)
O3—Cu2—N3172.57 (17)C16—C17—H17119.9
O4—Cu2—N392.64 (17)C18—C17—H17119.9
N4—Cu2—N381.72 (19)N2—C18—C17122.4 (5)
O3—Cu2—O690.72 (16)N2—C18—H18118.8
O4—Cu2—O699.97 (17)C17—C18—H18118.8
N4—Cu2—O690.27 (18)N2—C19—C22123.3 (5)
N3—Cu2—O693.34 (17)N2—C19—C20115.9 (4)
C2—O1—Cu1124.8 (3)C22—C19—C20120.9 (5)
C4—O2—Cu1124.3 (3)N1—C20—C21123.1 (5)
C7—O3—Cu2124.7 (3)N1—C20—C19117.0 (4)
C9—O4—Cu2125.4 (3)C21—C20—C19119.9 (5)
Cu1—O5—H5D108 (5)C13—C21—C20116.7 (5)
Cu1—O5—H5E100 (4)C13—C21—C14125.0 (5)
H5D—O5—H5E105 (6)C20—C21—C14118.3 (5)
Cu2—O6—H6D109 (5)C19—C22—C16117.3 (5)
Cu2—O6—H6E114 (5)C19—C22—C15118.1 (5)
H6D—O6—H6E124 (7)C16—C22—C15124.7 (5)
H7A—O7—H7B102 (8)N3—C23—C24122.2 (6)
C12—N1—C20118.4 (4)N3—C23—H23118.9
C12—N1—Cu1128.9 (4)C24—C23—H23118.9
C20—N1—Cu1112.6 (3)C25—C24—C23119.7 (6)
C18—N2—C19117.6 (5)C25—C24—H24120.2
C18—N2—Cu1129.7 (4)C23—C24—H24120.2
C19—N2—Cu1112.6 (3)C24—C25—C33120.0 (6)
C23—N3—C32117.7 (5)C24—C25—H25120.0
C23—N3—Cu2129.2 (4)C33—C25—H25120.0
C32—N3—Cu2113.1 (4)C27—C26—C33122.6 (6)
C30—N4—C31118.5 (5)C27—C26—H26118.7
C30—N4—Cu2128.5 (4)C33—C26—H26118.7
C31—N4—Cu2113.0 (4)C26—C27—C34121.1 (6)
C2—C1—H1A109.5C26—C27—H27119.4
C2—C1—H1B109.5C34—C27—H27119.4
H1A—C1—H1B109.5C34—C28—C29119.2 (6)
C2—C1—H1C109.5C34—C28—H28120.4
H1A—C1—H1C109.5C29—C28—H28120.4
H1B—C1—H1C109.5C28—C29—C30119.4 (6)
O1—C2—C3126.3 (5)C28—C29—H29120.3
O1—C2—C1113.0 (4)C30—C29—H29120.3
C3—C2—C1120.7 (4)N4—C30—C29122.0 (6)
C2—C3—C4120.8 (4)N4—C30—H30119.0
C2—C3—C8121.0 (5)C29—C30—H30119.0
C4—C3—C8118.2 (4)N4—C31—C34122.8 (6)
O2—C4—C3126.2 (5)N4—C31—C32116.6 (5)
O2—C4—C5112.3 (5)C34—C31—C32120.6 (5)
C3—C4—C5121.4 (5)N3—C32—C33123.8 (6)
C4—C5—H5A109.5N3—C32—C31115.6 (5)
C4—C5—H5B109.5C33—C32—C31120.6 (6)
H5A—C5—H5B109.5C25—C33—C32116.6 (6)
C4—C5—H5C109.5C25—C33—C26126.0 (6)
H5A—C5—H5C109.5C32—C33—C26117.4 (6)
H5B—C5—H5C109.5C28—C34—C31118.2 (6)
C7—C6—H6A109.5C28—C34—C27124.2 (6)
C7—C6—H6B109.5C31—C34—C27117.7 (6)
H6A—C6—H6B109.5F1—B1—F4105.4 (5)
C7—C6—H6C109.5F2—B1—F1110.2 (5)
H6A—C6—H6C109.5F2—B1—F4109.7 (6)
H6B—C6—H6C109.5F3—B1—F4109.9 (6)
O3—C7—C8125.9 (5)F3—B1—F1110.2 (6)
O3—C7—C6113.3 (5)F3—B1—F2111.4 (6)
C8—C7—C6120.8 (5)F4A—B1—F1A111.5 (5)
C7—C8—C9121.6 (5)F4A—B1—F3A111.0 (6)
C7—C8—C3119.1 (5)F1A—B1—F3A109.8 (6)
C9—C8—C3119.3 (5)F4A—B1—F2A107.9 (6)
O4—C9—C8125.1 (5)F1A—B1—F2A109.2 (6)
O4—C9—C10113.5 (5)F3A—B1—F2A107.2 (5)
C8—C9—C10121.4 (5)F6—B2—F7107.9 (5)
C9—C10—H10A109.5F6—B2—F5108.2 (5)
C9—C10—H10B109.5F7—B2—F5110.3 (7)
H10A—C10—H10B109.5F8—B2—F7109.9 (5)
C9—C10—H10C109.5F8—B2—F6112.0 (6)
H10A—C10—H10C109.5F8—B2—F5108.6 (6)
H10B—C10—H10C109.5F5A—B2—F8A109.6 (5)
C13—C11—C12119.8 (5)F5A—B2—F6A109.5 (6)
C13—C11—H11120.1F8A—B2—F6A110.4 (6)
C12—C11—H11120.1F5A—B2—F7A111.7 (7)
N1—C12—C11121.9 (5)F8A—B2—F7A107.8 (5)
N1—C12—H12119.1F6A—B2—F7A107.8 (5)
C11—C12—H12119.1
O2—Cu1—O1—C219.5 (4)C13—C11—C12—N11.0 (9)
N2—Cu1—O1—C2129.6 (7)C12—C11—C13—C210.8 (9)
N1—Cu1—O1—C2167.4 (4)C21—C14—C15—C220.1 (9)
O5—Cu1—O1—C276.2 (4)C22—C16—C17—C180.8 (9)
O1—Cu1—O2—C423.7 (4)C19—N2—C18—C170.0 (8)
N2—Cu1—O2—C4168.6 (4)Cu1—N2—C18—C17177.0 (4)
O5—Cu1—O2—C471.6 (4)C16—C17—C18—N20.3 (9)
O4—Cu2—O3—C722.8 (4)C18—N2—C19—C220.2 (7)
N4—Cu2—O3—C7167.5 (4)Cu1—N2—C19—C22177.3 (4)
O6—Cu2—O3—C777.2 (4)C18—N2—C19—C20179.0 (4)
O3—Cu2—O4—C916.7 (5)Cu1—N2—C19—C203.5 (5)
N4—Cu2—O4—C9131.7 (8)C12—N1—C20—C211.0 (7)
N3—Cu2—O4—C9168.4 (5)Cu1—N1—C20—C21177.3 (4)
O6—Cu2—O4—C974.5 (5)C12—N1—C20—C19177.7 (5)
O1—Cu1—N1—C1213.4 (5)Cu1—N1—C20—C191.4 (6)
N2—Cu1—N1—C12178.3 (5)N2—C19—C20—N11.4 (7)
O5—Cu1—N1—C1281.6 (5)C22—C19—C20—N1179.3 (4)
O1—Cu1—N1—C20170.8 (3)N2—C19—C20—C21179.9 (4)
N2—Cu1—N1—C202.5 (3)C22—C19—C20—C210.6 (7)
O5—Cu1—N1—C2094.2 (3)C11—C13—C21—C201.7 (8)
O2—Cu1—N2—C185.3 (5)C11—C13—C21—C14176.9 (5)
O1—Cu1—N2—C18115.5 (7)N1—C20—C21—C130.8 (8)
N1—Cu1—N2—C18179.6 (5)C19—C20—C21—C13179.4 (5)
O5—Cu1—N2—C1890.4 (5)N1—C20—C21—C14177.9 (5)
O2—Cu1—N2—C19177.5 (3)C19—C20—C21—C140.7 (7)
O1—Cu1—N2—C1967.3 (8)C15—C14—C21—C13179.7 (5)
N1—Cu1—N2—C193.2 (3)C15—C14—C21—C201.1 (8)
O5—Cu1—N2—C1986.8 (3)N2—C19—C22—C160.8 (8)
O4—Cu2—N3—C239.3 (5)C20—C19—C22—C16178.5 (5)
N4—Cu2—N3—C23179.3 (6)N2—C19—C22—C15179.2 (4)
O6—Cu2—N3—C2390.9 (5)C20—C19—C22—C151.6 (7)
O4—Cu2—N3—C32171.6 (4)C17—C16—C22—C191.0 (8)
N4—Cu2—N3—C321.5 (4)C17—C16—C22—C15178.9 (5)
O6—Cu2—N3—C3288.3 (4)C14—C15—C22—C191.2 (8)
O3—Cu2—N4—C305.9 (5)C14—C15—C22—C16178.8 (5)
O4—Cu2—N4—C30121.0 (9)C32—N3—C23—C240.0 (9)
N3—Cu2—N4—C30178.1 (5)Cu2—N3—C23—C24179.1 (5)
O6—Cu2—N4—C3084.8 (5)N3—C23—C24—C250.9 (11)
O3—Cu2—N4—C31177.7 (4)C23—C24—C25—C330.3 (11)
O4—Cu2—N4—C3162.6 (10)C33—C26—C27—C343.0 (11)
N3—Cu2—N4—C311.7 (4)C34—C28—C29—C300.1 (11)
O6—Cu2—N4—C3191.6 (4)C31—N4—C30—C290.5 (9)
Cu1—O1—C2—C37.8 (7)Cu2—N4—C30—C29175.7 (5)
Cu1—O1—C2—C1172.9 (3)C28—C29—C30—N40.0 (10)
O1—C2—C3—C47.5 (8)C30—N4—C31—C341.0 (8)
C1—C2—C3—C4171.7 (5)Cu2—N4—C31—C34175.7 (4)
O1—C2—C3—C8172.2 (5)C30—N4—C31—C32178.5 (5)
C1—C2—C3—C88.6 (7)Cu2—N4—C31—C321.7 (6)
Cu1—O2—C4—C316.7 (7)C23—N3—C32—C331.5 (9)
Cu1—O2—C4—C5166.0 (3)Cu2—N3—C32—C33177.7 (5)
C2—C3—C4—O22.6 (8)C23—N3—C32—C31179.7 (5)
C8—C3—C4—O2177.1 (5)Cu2—N3—C32—C311.1 (6)
C2—C3—C4—C5174.4 (5)N4—C31—C32—N30.4 (8)
C8—C3—C4—C55.9 (7)C34—C31—C32—N3177.1 (5)
Cu2—O3—C7—C817.2 (8)N4—C31—C32—C33179.2 (5)
Cu2—O3—C7—C6163.6 (3)C34—C31—C32—C331.8 (9)
O3—C7—C8—C92.2 (9)C24—C25—C33—C321.1 (10)
C6—C7—C8—C9176.9 (5)C24—C25—C33—C26179.9 (6)
O3—C7—C8—C3176.4 (5)N3—C32—C33—C252.1 (9)
C6—C7—C8—C34.5 (8)C31—C32—C33—C25179.1 (5)
C2—C3—C8—C779.9 (6)N3—C32—C33—C26178.8 (5)
C4—C3—C8—C799.8 (6)C31—C32—C33—C260.0 (9)
C2—C3—C8—C9101.5 (6)C27—C26—C33—C25178.5 (7)
C4—C3—C8—C978.8 (6)C27—C26—C33—C322.5 (10)
Cu2—O4—C9—C84.4 (8)C29—C28—C34—C310.4 (10)
Cu2—O4—C9—C10175.4 (3)C29—C28—C34—C27179.2 (6)
C7—C8—C9—O49.1 (9)N4—C31—C34—C281.0 (9)
C3—C8—C9—O4169.5 (5)C32—C31—C34—C28178.3 (6)
C7—C8—C9—C10171.0 (5)N4—C31—C34—C27178.6 (5)
C3—C8—C9—C1010.4 (8)C32—C31—C34—C271.3 (8)
C20—N1—C12—C111.9 (8)C26—C27—C34—C28179.3 (7)
Cu1—N1—C12—C11177.5 (4)C26—C27—C34—C311.1 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7B···F1Ai0.85 (1)1.91 (2)2.737 (11)166 (8)
O7—H7A···F6A0.85 (1)1.90 (3)2.728 (9)164 (8)
O7—H7A···F70.85 (1)1.99 (4)2.782 (8)155 (8)
O6—H6E···F4ii0.85 (1)2.05 (2)2.898 (9)171 (7)
O6—H6D···F2Aiii0.85 (1)2.08 (2)2.930 (10)175 (7)
O6—H6D···F2iii0.85 (1)1.90 (3)2.694 (10)155 (7)
O5—H5E···F3A0.85 (1)1.96 (2)2.776 (8)163 (6)
O5—H5D···O7iv0.84 (1)2.00 (2)2.837 (7)173 (6)
O7—H7A···F70.85 (1)1.99 (4)2.782 (8)155 (8)
O7—H7A···F6A0.85 (1)1.90 (3)2.728 (9)164 (8)
C29—H29···Cgii0.932.753.522 (7)141
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x, y+1, z; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu2(C10H12O4)(C12H8N2)2(H2O)2](BF4)2·H2O
Mr911.35
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)11.5555 (9), 12.0954 (9), 15.4446 (12)
α, β, γ (°)67.654 (1), 78.890 (1), 72.784 (1)
V3)1899.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.21
Crystal size (mm)0.16 × 0.08 × 0.04
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.858, 0.949
No. of measured, independent and
observed [I > 2σ(I)] reflections
15806, 6928, 3558
Rint0.059
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.114, 0.84
No. of reflections6928
No. of parameters606
No. of restraints326
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.54, 0.40

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), PLATON (Spek, 2009), publCIF (Westrip, 2009) and enCIFer (Allen et al., 2004).

Selected geometric parameters (Å, º) top
Cu1—O21.886 (3)Cu2—O31.884 (3)
Cu1—O11.892 (3)Cu2—O41.895 (3)
Cu1—N22.008 (4)Cu2—N41.990 (4)
Cu1—N12.013 (4)Cu2—N32.004 (4)
Cu1—O52.320 (4)Cu2—O62.363 (5)
O2—Cu1—O192.75 (14)O3—Cu2—O492.78 (14)
O1—Cu1—N2166.92 (15)O4—Cu2—N4168.61 (17)
O2—Cu1—N1171.40 (16)O3—Cu2—N3172.57 (17)
N2—Cu1—N181.76 (17)N4—Cu2—N381.72 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7B···F1Ai0.845 (11)1.91 (2)2.737 (11)166 (8)
O7—H7A···F6A0.850 (11)1.90 (3)2.728 (9)164 (8)
O7—H7A···F70.850 (11)1.99 (4)2.782 (8)155 (8)
O6—H6E···F4ii0.852 (11)2.054 (18)2.898 (9)171 (7)
O6—H6D···F2Aiii0.852 (11)2.080 (16)2.930 (10)175 (7)
O6—H6D···F2iii0.852 (11)1.90 (3)2.694 (10)155 (7)
O5—H5E···F3A0.846 (11)1.96 (2)2.776 (8)163 (6)
O5—H5D···O7iv0.842 (11)2.000 (15)2.837 (7)173 (6)
O7—H7A···F70.850 (11)1.99 (4)2.782 (8)155 (8)
O7—H7A···F6A0.850 (11)1.90 (3)2.728 (9)164 (8)
C29—H29···Cgii0.932.753.522 (7)141
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x, y+1, z; (iv) x+1, y, z.
 

Acknowledgements

JAT thanks CONACYT for a postdoctoral position. We thank CSCI, Spain, for a licence to use the Cambridge Structural Database.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBarbour, J. L. (2001). Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (1999). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFukuda, Y., Seino, A., Mafune, K., Nakagawa, H. & Linert, W. (1994). J. Coord. Chem. 33, 123–136.  CrossRef CAS Web of Science Google Scholar
First citationLim, Y. Y., Chen, W., Tan, L. L., You, X. Z. & Yao, T. M. (1994). Polyhedron, 13, 2861–2866.  CSD CrossRef CAS Web of Science Google Scholar
First citationMei, G.-Q., Huang, K.-L. & Huang, H.-P. (2006a). Acta Cryst. E62, m2743–m2744.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMei, G.-Q., Huang, K.-L., Huang, H.-P. & Li, Y.-Z. (2006b). Acta Cryst. E62, m2368–m2370.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, X.-P., Zou, J.-Z., Zha, Z.-G., Duan, C.-Y. & Xu, Z. (1999a). Huaxue Xuebao (Chin.) (Chin. J. Inorg. Chem.), 15, 793–797.  CAS Google Scholar
First citationShen, X.-P., Zou, J.-Z., Zha, Z.-G., Xu, Z., Yip, B. C. & Fun, H. K. (1999b). Wuji Huaxue Xuebao (Chin.) (Chin. J. Inorg. Chem.), 15, 641–647.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationZhang, Y., Breeze, S. R., Wang, S., Greedan, J. E., Raju, N. P. & Li, L. (1999). Can. J. Chem. 77, 1424–1435.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, Y., Wang, S., Enright, G. D. & Breeze, S. R. (1998). J. Am. Chem. Soc. 120, 9398–9399.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages m366-m367
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds