organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-Bromo-N-(2,4-di­meth­oxy­benzyl­­idene)aniline

aDepartment of Chemistry, Faculty of Science, Golestan University, Gorgan, Iran, and bDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: jsimpson@alkali.otago.ac.nz

(Received 9 February 2009; accepted 10 February 2009; online 21 February 2009)

The title Schiff base compound, C15H14BrNO2, adopts an E configuration with respect to the C=N bond. The C and O atoms of the two meth­oxy substituents lie very close to the dimethoxy­phenyl ring plane [maximum deviation = 0.17 (1) Å]. The dihedral angle between the two aromatic rings is 43.69 (16)°, while the plane through the central C—C=N—C system is inclined at 10.6 (6)° to the dimethoxy­phenyl ring and 34.6 (3)° to the bromo­phenyl ring. In the crystal structure, each mol­ecule is involved in the formation of two inversion-related dimers through weak C—H⋯N and C—H⋯O inter­actions, respectively. These contacts link the mol­ecules into independent rows parallel to the b axis.

Related literature

For related structures, see: Khalaji et al. (2007[Khalaji, A. D., Slawin, A. M. Z. & Woollins, J. D. (2007). Acta Cryst. E63, o4257.]); Khalaji & Harrison (2008[Khalaji, A. D. & Harrison, W. T. A. (2008). Anal. Sci. 24, x3-x4.]); Khalaji & Simpson (2009[Khalaji, A. D. & Simpson, J. (2009). Acta Cryst. E65, o362.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14BrNO2

  • Mr = 320.18

  • Monoclinic, P 21 /c

  • a = 4.1323 (6) Å

  • b = 10.7406 (14) Å

  • c = 29.911 (4) Å

  • β = 90.992 (8)°

  • V = 1327.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.09 mm−1

  • T = 89 K

  • 0.25 × 0.10 × 0.02 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.570, Tmax = 0.940

  • 13728 measured reflections

  • 2390 independent reflections

  • 1664 reflections with I > 2σ(I)

  • Rint = 0.106

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.118

  • S = 1.21

  • 2390 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.83 e Å−3

  • Δρmin = −0.82 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯N1i 0.98 2.74 3.667 (7) 159
C4—H4C⋯O2ii 0.98 2.54 3.398 (6) 145
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and TITAN2000 (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

As a continuation of our work on the synthesis and structural characterization of Schiff-base compounds (Khalaji et al., 2007; Khalaji & Harrison, 2008; Khalaji & Simpson, 2009), we report here the structure of the title compound, C15H14BrNO2, (I), Fig 1.

The compound adopts an E configuration with respect to the C1=N1 bond. The C4, O1 and C7 O2 methoxy substituents lie close to the plane of the C2···C9 ring (maximum deviation 0.17 (1) Å for C7. Bond lengths in the molecule are normal (Allen, et al., 1987) and similar to those found in related compounds (Khalaji et al., 2007; Khalaji & Harrison, 2008; Khalaji & Simpson 2009). The dihedral angle between the two aromatic rings is 43.69 (16) ° while the plane through the central C2—C2?N1—C10 system is inclined at 10.6 (6)° to the dimethoxyphenyl ring and 34.6 (3)° to the bromobenzene ring.

In the crystal structure, each molecule is involved in the formation of two inversion related dimers with R22(18) and R22(14) ring motifs (Bernstein et al. 1995) through weak C7—H7A···N1 and C4—H4···O2 interactions respectively, Table 1. These contacts link the molecules into independent rows parallel to the b axis, Fig. 2.

Related literature top

For related structures, see: Khalaji et al. (2007); Khalaji & Harrison (2008); Khalaji & Simpson (2009). For reference structural data, see: Allen et al. (1987). For graph-set motifs, see: Bernstein et al. (1995).

Experimental top

To a solution of 2,4-Dimethoxy benzaldehyde (332 mg, 0.2 mmol) in methanol (5 ml), cooled in an ice bath, a solution of 4-bromoaniline (344 mg, 0.2 mmol) in methanol (5 ml) was added slowly dropwise with constant stirring (1 h) at 298 k in the presence of molecular sieves. The mixture was filtered and the solution cooled to 273 K to give the compound in about 85% yield. Pale yellow crystals were grown from methanol.

Refinement top

H-atoms were refined using a riding model with d(C—H) = 0.95 Å, Uiso= 1.2Ueq (C) for aromatic and 0.98 Å, Uiso = 1.5Ueq (C) for CH3 H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006) and SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of (I) viewed down the a axis with hydrogen bonds drawn as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
(E)-4-Bromo-N-(2,4-dimethoxybenzylidene)aniline top
Crystal data top
C15H14BrNO2F(000) = 648
Mr = 320.18Dx = 1.602 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2351 reflections
a = 4.1323 (6) Åθ = 2.7–23.6°
b = 10.7406 (14) ŵ = 3.09 mm1
c = 29.911 (4) ÅT = 89 K
β = 90.992 (8)°Rectangular plate, pale yellow
V = 1327.4 (3) Å30.25 × 0.10 × 0.02 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2390 independent reflections
Radiation source: fine-focus sealed tube1664 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.106
ω scansθmax = 25.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 34
Tmin = 0.570, Tmax = 0.940k = 1212
13728 measured reflectionsl = 3535
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.21 w = 1/[σ2(Fo2) + (0.0212P)2 + 3P]
where P = (Fo2 + 2Fc2)/3
2390 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.83 e Å3
0 restraintsΔρmin = 0.82 e Å3
Crystal data top
C15H14BrNO2V = 1327.4 (3) Å3
Mr = 320.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.1323 (6) ŵ = 3.09 mm1
b = 10.7406 (14) ÅT = 89 K
c = 29.911 (4) Å0.25 × 0.10 × 0.02 mm
β = 90.992 (8)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2390 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
1664 reflections with I > 2σ(I)
Tmin = 0.570, Tmax = 0.940Rint = 0.106
13728 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.21Δρmax = 0.83 e Å3
2390 reflectionsΔρmin = 0.82 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.8952 (10)0.5770 (4)0.37825 (15)0.0157 (10)
C10.7282 (12)0.6745 (5)0.38778 (18)0.0154 (12)
H10.67590.73210.36470.018*
C20.6171 (12)0.6989 (5)0.43302 (17)0.0138 (12)
C30.4148 (12)0.8016 (5)0.44237 (18)0.0133 (12)
O10.3071 (9)0.8689 (3)0.40592 (12)0.0174 (9)
C40.1171 (13)0.9771 (4)0.41475 (18)0.0159 (12)
H4A0.08260.95250.42960.024*
H4B0.06321.01920.38650.024*
H4C0.24061.03390.43420.024*
C50.3327 (12)0.8293 (5)0.48586 (18)0.0155 (12)
H50.20030.89940.49190.019*
C60.4459 (12)0.7535 (5)0.52094 (17)0.0138 (12)
O20.3510 (9)0.7888 (3)0.56290 (11)0.0167 (9)
C70.4941 (14)0.7232 (5)0.59995 (18)0.0222 (13)
H7A0.42700.63570.59890.033*
H7B0.42280.76070.62800.033*
H7C0.73040.72830.59840.033*
C80.6428 (12)0.6515 (5)0.51264 (17)0.0153 (12)
H80.71840.59990.53640.018*
C90.7263 (12)0.6267 (5)0.46874 (18)0.0160 (12)
H90.86340.55780.46290.019*
C101.0177 (13)0.5654 (6)0.33449 (18)0.0169 (13)
C111.1201 (12)0.6657 (5)0.30882 (18)0.0181 (13)
H111.09970.74810.32000.022*
C121.2516 (13)0.6466 (5)0.26700 (18)0.0179 (12)
H121.32670.71530.25010.022*
C131.2726 (12)0.5278 (5)0.25015 (18)0.0164 (13)
Br11.44896 (13)0.49899 (7)0.192736 (17)0.02466 (19)
C141.1702 (12)0.4254 (5)0.27488 (19)0.0172 (12)
H141.18660.34320.26330.021*
C151.0447 (13)0.4469 (6)0.31650 (18)0.0176 (13)
H150.97380.37790.33360.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.018 (2)0.013 (3)0.017 (2)0.000 (2)0.004 (2)0.0016 (19)
C10.018 (3)0.011 (3)0.017 (3)0.005 (2)0.002 (2)0.003 (2)
C20.014 (3)0.009 (3)0.018 (3)0.001 (2)0.003 (2)0.002 (2)
C30.008 (3)0.013 (3)0.019 (3)0.000 (2)0.001 (2)0.003 (2)
O10.020 (2)0.016 (2)0.016 (2)0.0038 (17)0.0036 (16)0.0012 (16)
C40.022 (3)0.006 (3)0.021 (3)0.001 (2)0.002 (2)0.002 (2)
C50.015 (3)0.008 (3)0.024 (3)0.003 (2)0.003 (2)0.003 (2)
C60.016 (3)0.012 (3)0.014 (3)0.006 (2)0.002 (2)0.002 (2)
O20.023 (2)0.015 (2)0.012 (2)0.0021 (17)0.0038 (16)0.0013 (16)
C70.036 (3)0.015 (3)0.015 (3)0.001 (3)0.004 (3)0.000 (2)
C80.017 (3)0.016 (3)0.013 (3)0.002 (2)0.003 (2)0.006 (2)
C90.014 (3)0.012 (3)0.022 (3)0.003 (2)0.001 (2)0.003 (2)
C100.017 (3)0.020 (3)0.014 (3)0.003 (2)0.003 (2)0.005 (2)
C110.018 (3)0.012 (3)0.024 (3)0.002 (2)0.003 (2)0.002 (2)
C120.018 (3)0.014 (3)0.022 (3)0.003 (2)0.007 (2)0.002 (2)
C130.014 (3)0.020 (4)0.016 (3)0.002 (2)0.006 (2)0.005 (2)
Br10.0271 (3)0.0313 (3)0.0159 (3)0.0036 (3)0.0069 (2)0.0002 (3)
C140.020 (3)0.009 (3)0.022 (3)0.002 (2)0.005 (2)0.002 (2)
C150.022 (3)0.016 (3)0.014 (3)0.005 (2)0.000 (3)0.003 (2)
Geometric parameters (Å, º) top
N1—C11.288 (7)C7—H7A0.9800
N1—C101.417 (7)C7—H7B0.9800
C1—C21.460 (7)C7—H7C0.9800
C1—H10.9500C8—C91.389 (7)
C2—C91.389 (7)C8—H80.9500
C2—C31.415 (7)C9—H90.9500
C3—O11.376 (6)C10—C151.387 (8)
C3—C51.383 (7)C10—C111.393 (8)
O1—C41.430 (6)C11—C121.388 (7)
C4—H4A0.9800C11—H110.9500
C4—H4B0.9800C12—C131.375 (7)
C4—H4C0.9800C12—H120.9500
C5—C61.402 (7)C13—C141.396 (7)
C5—H50.9500C13—Br11.902 (5)
C6—O21.375 (6)C14—C151.376 (8)
C6—C81.390 (7)C14—H140.9500
O2—C71.432 (6)C15—H150.9500
C1—N1—C10118.5 (5)O2—C7—H7C109.5
N1—C1—C2122.0 (5)H7A—C7—H7C109.5
N1—C1—H1119.0H7B—C7—H7C109.5
C2—C1—H1119.0C6—C8—C9118.4 (5)
C9—C2—C3117.9 (5)C6—C8—H8120.8
C9—C2—C1120.6 (5)C9—C8—H8120.8
C3—C2—C1121.3 (5)C2—C9—C8122.5 (5)
O1—C3—C5123.4 (5)C2—C9—H9118.7
O1—C3—C2115.9 (4)C8—C9—H9118.7
C5—C3—C2120.6 (5)C15—C10—C11117.9 (5)
C3—O1—C4116.9 (4)C15—C10—N1118.1 (5)
O1—C4—H4A109.5C11—C10—N1123.9 (5)
O1—C4—H4B109.5C12—C11—C10120.6 (5)
H4A—C4—H4B109.5C12—C11—H11119.7
O1—C4—H4C109.5C10—C11—H11119.7
H4A—C4—H4C109.5C13—C12—C11119.7 (5)
H4B—C4—H4C109.5C13—C12—H12120.1
C3—C5—C6119.7 (5)C11—C12—H12120.1
C3—C5—H5120.2C12—C13—C14121.0 (5)
C6—C5—H5120.2C12—C13—Br1120.6 (4)
O2—C6—C8123.9 (5)C14—C13—Br1118.3 (4)
O2—C6—C5115.2 (5)C15—C14—C13118.0 (5)
C8—C6—C5120.9 (5)C15—C14—H14121.0
C6—O2—C7116.8 (4)C13—C14—H14121.0
O2—C7—H7A109.5C14—C15—C10122.6 (5)
O2—C7—H7B109.5C14—C15—H15118.7
H7A—C7—H7B109.5C10—C15—H15118.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···N1i0.982.743.667 (7)159
C4—H4C···O2ii0.982.543.398 (6)145
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC15H14BrNO2
Mr320.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)89
a, b, c (Å)4.1323 (6), 10.7406 (14), 29.911 (4)
β (°) 90.992 (8)
V3)1327.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)3.09
Crystal size (mm)0.25 × 0.10 × 0.02
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.570, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
13728, 2390, 1664
Rint0.106
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.118, 1.21
No. of reflections2390
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.83, 0.82

Computer programs: , APEX2 (Bruker, 2006) and SAINT (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···N1i0.982.743.667 (7)158.5
C4—H4C···O2ii0.982.543.398 (6)145.4
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1.
 

Acknowledgements

We thank the University of Otago for purchase of the diffractometer.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationKhalaji, A. D. & Harrison, W. T. A. (2008). Anal. Sci. 24, x3–x4.  CAS Google Scholar
First citationKhalaji, A. D. & Simpson, J. (2009). Acta Cryst. E65, o362.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhalaji, A. D., Slawin, A. M. Z. & Woollins, J. D. (2007). Acta Cryst. E63, o4257.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds