metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(di­methyl sulfoxide-κO)zinc(II)]-μ-(E)-2-[(2-oxido-1-naphth­yl)­methyl­ene­amino]propanoato-κ4O2,N,O1:O1′]

aSchool of Chemistry and Environment Engineering, Harbin University of Science and Technology, Harbin 150040, People's Republic of China
*Correspondence e-mail: liubo200400@vip.sina.com

(Received 22 September 2008; accepted 23 September 2008; online 27 September 2008)

In the title coordination polymer, [Zn(C14H11NO3)(C2H6OS)]n, each ZnII ion is five-coordinated in a slightly distorted trigonal–bipyramidal coordination environment, formed by three O atoms from two 2-[(2-oxido-1-naphth­yl)­methyl­eneamino]propanoate ligands, one O atom from a dimethyl sulfoxide mol­ecule and the N atom from the amino­propanoate ligand. The propanoate ligands bridge ZnII ions, forming a zigzag chain parallel to [010].

Related literature

For the synthesis of (E)-2-[(2-hydroxy­naphthalen-1-yl)­methyl­eneamino]propanoic acid, see: Audriceth et al. (1954[Audriceth, L. F., Scott, E. S. & Kipper, P. S. (1954). J. Org. Chem. 19, 733-741.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C14H11NO3)(C2H6OS)]

  • Mr = 384.74

  • Monoclinic, P 21

  • a = 9.676 (4) Å

  • b = 7.651 (4) Å

  • c = 11.715 (5) Å

  • β = 106.256 (15)°

  • V = 832.6 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.62 mm−1

  • T = 291 (2) K

  • 0.31 × 0.28 × 0.24 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.633, Tmax = 0.697

  • 8191 measured reflections

  • 3729 independent reflections

  • 3533 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.056

  • S = 1.06

  • 3729 reflections

  • 211 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1675 Friedel pairs

  • Flack parameter: 0.006 (8)

Table 1
Selected geometric parameters (Å, °)

N1—Zn1 2.0119 (18)
O1—Zn1 2.0040 (15)
O2—Zn1 2.1891 (16)
O3—Zn1i 1.9560 (15)
O4—Zn1 2.0520 (17)
O3ii—Zn1—O1 98.54 (7)
O3ii—Zn1—N1 138.57 (7)
O1—Zn1—N1 88.32 (7)
O3ii—Zn1—O4 101.12 (7)
O1—Zn1—O4 96.09 (7)
N1—Zn1—O4 118.82 (7)
O3ii—Zn1—O2 93.89 (7)
O1—Zn1—O2 166.10 (6)
N1—Zn1—O2 78.22 (6)
O4—Zn1—O2 87.52 (7)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) [-x+1, y-{\script{1\over 2}}, -z+1].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The continuous interest in designing and making novel Schiff base ligand and transition-metal complexes have persisted because of their impressive catalytic property. In this paper, we report the new title compound, (I), synthesized by the reaction of (E)-2-((2-hydroxynaphthalen-1-yl)methyleneamino)propanoic acid ligands and Zn(OAc)2 in an aqueous solution.

As shown in Fig. 1, ZnII ion is five-coordinate in a slightly distorted trigonal-bipyramidal coordination environment, formed by four O atoms and one N atom. Each quadridentate Schiff base ligand bridge two different CuII ions, resulting in a one-dimensional polymeric structure chain (Fig. 2).

Related literature top

For the synthesis of (E)-2-[(2-hydroxynaphthalen-1-yl)methyleneamino]propanoic acid see Audriceth et al., (1954).

Experimental top

(E)-2-((2-Hydroxynaphthalen-1-yl)methyleneamino)propanoic acid was prepared of L-alanine acid and 2-hydroxy-1-naphthaldehyde in aqueous solution (Audriceth et al., 1954). (E)-2-((2-Hydroxynaphthalen-1-yl)methyleneamino)propanoic acid (0.243 g, 1 mmol) and Zn(OAc)2 (0.190 g, 1 mmol) dissolved in hot aqueous solution (20 ml) then refluxed for 1 huor. After cooling to room temperature the solution was filtered, the residue was recrystaled in DMSO and methanol (10/1, V/V) solution, several days latter, a suitable for X-ray diffraction yellow crystal was obtained.

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (Caromatic); C—H = 0.96 Å (methyl); C—H = 0.98 ° A (methine), and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 30% probability level for non-H atoms. [Symmetry code: (I) -x + 1, 1/2 + y, -z + 1].
[Figure 2] Fig. 2. A partial packing view, showing the one-dimensional chain structure. H atoms have been omitted for clarity.
catena-Poly[[(dimethyl sulfoxide-κO)zinc(II)]- µ-(E)-2-[(2-oxido-1-naphthyl)methyleneamino]propanoato-κ4O2,N,O1:O1'] top
Crystal data top
[Zn(C14H11NO3)(C2H6OS)]F(000) = 396
Mr = 384.74Dx = 1.535 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 7870 reflections
a = 9.676 (4) Åθ = 3.2–27.5°
b = 7.651 (4) ŵ = 1.62 mm1
c = 11.715 (5) ÅT = 291 K
β = 106.256 (15)°Block, yellow
V = 832.6 (7) Å30.31 × 0.28 × 0.24 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3729 independent reflections
Radiation source: fine-focus sealed tube3533 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1112
Tmin = 0.633, Tmax = 0.697k = 99
8191 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0259P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3729 reflectionsΔρmax = 0.25 e Å3
211 parametersΔρmin = 0.19 e Å3
1 restraintAbsolute structure: Flack (1983), 1675 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.006 (8)
Crystal data top
[Zn(C14H11NO3)(C2H6OS)]V = 832.6 (7) Å3
Mr = 384.74Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.676 (4) ŵ = 1.62 mm1
b = 7.651 (4) ÅT = 291 K
c = 11.715 (5) Å0.31 × 0.28 × 0.24 mm
β = 106.256 (15)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3729 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3533 reflections with I > 2σ(I)
Tmin = 0.633, Tmax = 0.697Rint = 0.020
8191 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.056Δρmax = 0.25 e Å3
S = 1.06Δρmin = 0.19 e Å3
3729 reflectionsAbsolute structure: Flack (1983), 1675 Friedel pairs
211 parametersAbsolute structure parameter: 0.006 (8)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7743 (2)0.1178 (3)0.23967 (18)0.0288 (4)
C20.66925 (19)0.0224 (3)0.15494 (15)0.0272 (4)
C30.6855 (2)0.0055 (4)0.03564 (15)0.0304 (4)
C40.5858 (3)0.0965 (3)0.0557 (2)0.0429 (6)
H40.50200.13920.04160.051*
C50.6085 (3)0.1243 (4)0.1655 (2)0.0477 (6)
H50.54000.18370.22430.057*
C60.7336 (3)0.0636 (3)0.1883 (2)0.0483 (6)
H60.75040.08590.26130.058*
C70.8305 (3)0.0276 (4)0.10433 (19)0.0445 (6)
H70.91310.06940.12090.053*
C80.8094 (2)0.0613 (3)0.00897 (19)0.0340 (5)
C90.9098 (2)0.1605 (4)0.0950 (2)0.0418 (5)
H90.98900.20750.07560.050*
C100.8947 (2)0.1897 (3)0.2055 (2)0.0382 (5)
H100.96280.25680.25950.046*
C110.5465 (2)0.0524 (3)0.18248 (18)0.0292 (4)
H110.47780.10430.11980.035*
C120.3897 (2)0.1430 (3)0.29272 (17)0.0307 (4)
H120.36760.23870.23490.037*
C130.2635 (2)0.0163 (5)0.2663 (3)0.0612 (9)
H13A0.24220.02190.18510.092*
H13B0.18080.07380.27880.092*
H13C0.28790.08290.31820.092*
C140.4141 (2)0.2180 (3)0.41799 (18)0.0274 (4)
C150.7228 (3)0.4372 (3)0.3802 (3)0.0555 (7)
H15A0.68520.36180.31320.083*
H15B0.75080.54670.35340.083*
H15C0.65010.45710.42020.083*
C160.9720 (3)0.2924 (4)0.3760 (3)0.0566 (7)
H16A1.06050.23490.41610.085*
H16B0.99300.39980.34180.085*
H16C0.91610.21800.31430.085*
N10.52124 (17)0.0554 (2)0.28544 (14)0.0268 (3)
O10.77231 (16)0.1464 (2)0.34856 (12)0.0355 (3)
O20.51906 (16)0.1680 (2)0.49919 (13)0.0372 (4)
O30.32074 (15)0.3268 (2)0.42825 (13)0.0354 (3)
O40.82733 (16)0.1620 (2)0.51567 (15)0.0422 (4)
S10.87374 (6)0.33792 (8)0.47907 (5)0.03915 (13)
Zn10.66361 (2)0.00892 (3)0.440772 (16)0.02749 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0313 (10)0.0256 (11)0.0325 (9)0.0010 (8)0.0141 (9)0.0017 (8)
C20.0308 (8)0.0236 (10)0.0288 (8)0.0005 (10)0.0113 (7)0.0007 (10)
C30.0376 (9)0.0261 (11)0.0303 (8)0.0042 (11)0.0141 (8)0.0031 (10)
C40.0557 (15)0.0403 (14)0.0372 (11)0.0075 (12)0.0204 (12)0.0064 (10)
C50.0727 (17)0.0373 (14)0.0331 (11)0.0006 (13)0.0146 (12)0.0055 (10)
C60.0787 (18)0.0388 (13)0.0374 (11)0.0155 (13)0.0323 (14)0.0064 (10)
C70.0566 (13)0.0462 (16)0.0411 (10)0.0114 (14)0.0308 (11)0.0094 (12)
C80.0387 (11)0.0339 (13)0.0330 (10)0.0073 (9)0.0162 (9)0.0070 (8)
C90.0357 (11)0.0521 (15)0.0441 (12)0.0053 (11)0.0221 (11)0.0068 (11)
C100.0345 (11)0.0424 (14)0.0392 (11)0.0104 (10)0.0130 (10)0.0003 (10)
C110.0311 (10)0.0269 (10)0.0291 (9)0.0025 (8)0.0076 (9)0.0001 (7)
C120.0280 (10)0.0330 (12)0.0319 (10)0.0043 (9)0.0096 (9)0.0071 (9)
C130.0308 (11)0.073 (2)0.0840 (18)0.0102 (14)0.0225 (12)0.0487 (19)
C140.0279 (10)0.0267 (10)0.0333 (10)0.0044 (8)0.0181 (9)0.0043 (8)
C150.0493 (14)0.0333 (14)0.088 (2)0.0012 (11)0.0255 (15)0.0115 (12)
C160.0464 (15)0.0558 (19)0.0764 (19)0.0036 (13)0.0319 (15)0.0019 (15)
N10.0266 (8)0.0274 (9)0.0284 (7)0.0022 (6)0.0106 (7)0.0035 (6)
O10.0414 (8)0.0361 (9)0.0325 (7)0.0111 (7)0.0161 (7)0.0074 (6)
O20.0369 (8)0.0455 (10)0.0309 (7)0.0056 (7)0.0121 (7)0.0044 (7)
O30.0358 (8)0.0372 (9)0.0365 (7)0.0056 (7)0.0156 (7)0.0104 (7)
O40.0371 (8)0.0357 (9)0.0520 (9)0.0084 (7)0.0094 (7)0.0051 (8)
S10.0388 (3)0.0311 (3)0.0503 (3)0.0096 (2)0.0169 (3)0.0059 (2)
Zn10.02884 (11)0.02883 (11)0.02707 (10)0.00032 (12)0.01157 (8)0.00374 (11)
Geometric parameters (Å, º) top
C1—O11.300 (2)C12—C141.531 (3)
C1—C21.410 (3)C12—H120.9800
C1—C101.443 (3)C13—H13A0.9600
C2—C111.434 (3)C13—H13B0.9600
C2—C31.465 (2)C13—H13C0.9600
C3—C41.408 (3)C14—O21.242 (3)
C3—C81.416 (3)C14—O31.259 (3)
C4—C51.381 (3)C15—S11.762 (3)
C4—H40.9300C15—H15A0.9600
C5—C61.391 (4)C15—H15B0.9600
C5—H50.9300C15—H15C0.9600
C6—C71.348 (4)C16—S11.768 (3)
C6—H60.9300C16—H16A0.9600
C7—C81.422 (3)C16—H16B0.9600
C7—H70.9300C16—H16C0.9600
C8—C91.409 (3)N1—Zn12.0119 (18)
C9—C101.361 (3)O1—Zn12.0040 (15)
C9—H90.9300O2—Zn12.1891 (16)
C10—H100.9300O3—Zn1i1.9560 (15)
C11—N11.296 (2)O4—S11.5184 (18)
C11—H110.9300O4—Zn12.0520 (17)
C12—N11.462 (2)Zn1—O3ii1.9560 (15)
C12—C131.521 (3)
O1—C1—C2124.91 (17)C12—C13—H13B109.5
O1—C1—C10116.32 (19)H13A—C13—H13B109.5
C2—C1—C10118.77 (17)C12—C13—H13C109.5
C1—C2—C11121.86 (16)H13A—C13—H13C109.5
C1—C2—C3119.89 (17)H13B—C13—H13C109.5
C11—C2—C3118.24 (18)O2—C14—O3125.85 (18)
C4—C3—C8116.96 (17)O2—C14—C12119.49 (17)
C4—C3—C2124.27 (18)O3—C14—C12114.66 (19)
C8—C3—C2118.77 (19)S1—C15—H15A109.5
C5—C4—C3122.0 (2)S1—C15—H15B109.5
C5—C4—H4119.0H15A—C15—H15B109.5
C3—C4—H4119.0S1—C15—H15C109.5
C4—C5—C6120.1 (2)H15A—C15—H15C109.5
C4—C5—H5120.0H15B—C15—H15C109.5
C6—C5—H5120.0S1—C16—H16A109.5
C7—C6—C5119.9 (2)S1—C16—H16B109.5
C7—C6—H6120.1H16A—C16—H16B109.5
C5—C6—H6120.1S1—C16—H16C109.5
C6—C7—C8121.5 (2)H16A—C16—H16C109.5
C6—C7—H7119.2H16B—C16—H16C109.5
C8—C7—H7119.2C11—N1—C12117.15 (17)
C9—C8—C3119.56 (17)C11—N1—Zn1125.29 (13)
C9—C8—C7120.97 (19)C12—N1—Zn1116.50 (12)
C3—C8—C7119.5 (2)C1—O1—Zn1126.51 (14)
C10—C9—C8122.14 (19)C14—O2—Zn1114.09 (12)
C10—C9—H9118.9C14—O3—Zn1i126.85 (14)
C8—C9—H9118.9S1—O4—Zn1134.27 (11)
C9—C10—C1120.8 (2)O4—S1—C15108.15 (11)
C9—C10—H10119.6O4—S1—C16106.05 (12)
C1—C10—H10119.6C15—S1—C1698.14 (15)
N1—C11—C2126.87 (19)O3ii—Zn1—O198.54 (7)
N1—C11—H11116.6O3ii—Zn1—N1138.57 (7)
C2—C11—H11116.6O1—Zn1—N188.32 (7)
N1—C12—C13111.01 (19)O3ii—Zn1—O4101.12 (7)
N1—C12—C14108.94 (16)O1—Zn1—O496.09 (7)
C13—C12—C14109.48 (17)N1—Zn1—O4118.82 (7)
N1—C12—H12109.1O3ii—Zn1—O293.89 (7)
C13—C12—H12109.1O1—Zn1—O2166.10 (6)
C14—C12—H12109.1N1—Zn1—O278.22 (6)
C12—C13—H13A109.5O4—Zn1—O287.52 (7)
O1—C1—C2—C110.5 (4)C13—C12—N1—C1189.0 (2)
C10—C1—C2—C11179.8 (2)C14—C12—N1—C11150.37 (18)
O1—C1—C2—C3178.2 (2)C13—C12—N1—Zn1102.1 (2)
C10—C1—C2—C31.4 (3)C14—C12—N1—Zn118.5 (2)
C1—C2—C3—C4179.0 (2)C2—C1—O1—Zn120.7 (3)
C11—C2—C3—C42.2 (4)C10—C1—O1—Zn1158.98 (16)
C1—C2—C3—C81.5 (3)O3—C14—O2—Zn1175.97 (16)
C11—C2—C3—C8177.3 (2)C12—C14—O2—Zn14.9 (2)
C8—C3—C4—C51.7 (4)O2—C14—O3—Zn1i16.7 (3)
C2—C3—C4—C5177.8 (3)C12—C14—O3—Zn1i164.18 (13)
C3—C4—C5—C60.8 (4)Zn1—O4—S1—C1523.79 (18)
C4—C5—C6—C72.2 (4)Zn1—O4—S1—C1680.64 (17)
C5—C6—C7—C81.1 (4)C1—O1—Zn1—O3ii165.79 (17)
C4—C3—C8—C9177.1 (2)C1—O1—Zn1—N126.85 (17)
C2—C3—C8—C93.4 (3)C1—O1—Zn1—O491.96 (18)
C4—C3—C8—C72.8 (3)C1—O1—Zn1—O212.5 (4)
C2—C3—C8—C7176.7 (2)C11—N1—Zn1—O3ii122.75 (17)
C6—C7—C8—C9178.4 (2)C12—N1—Zn1—O3ii69.40 (17)
C6—C7—C8—C31.4 (4)C11—N1—Zn1—O121.72 (17)
C3—C8—C9—C102.4 (4)C12—N1—Zn1—O1170.43 (14)
C7—C8—C9—C10177.7 (2)C11—N1—Zn1—O474.31 (18)
C8—C9—C10—C10.6 (4)C12—N1—Zn1—O493.54 (15)
O1—C1—C10—C9177.2 (2)C11—N1—Zn1—O2154.80 (18)
C2—C1—C10—C92.5 (3)C12—N1—Zn1—O213.05 (14)
C1—C2—C11—N15.6 (4)S1—O4—Zn1—O3ii170.20 (14)
C3—C2—C11—N1173.2 (2)S1—O4—Zn1—O189.82 (14)
N1—C12—C14—O215.1 (3)S1—O4—Zn1—N11.61 (17)
C13—C12—C14—O2106.5 (2)S1—O4—Zn1—O276.72 (14)
N1—C12—C14—O3165.76 (17)C14—O2—Zn1—O3ii134.50 (15)
C13—C12—C14—O372.7 (3)C14—O2—Zn1—O119.0 (4)
C2—C11—N1—C12178.6 (2)C14—O2—Zn1—N14.39 (14)
C2—C11—N1—Zn110.9 (3)C14—O2—Zn1—O4124.51 (15)
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+1, y1/2, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C14H11NO3)(C2H6OS)]
Mr384.74
Crystal system, space groupMonoclinic, P21
Temperature (K)291
a, b, c (Å)9.676 (4), 7.651 (4), 11.715 (5)
β (°) 106.256 (15)
V3)832.6 (7)
Z2
Radiation typeMo Kα
µ (mm1)1.62
Crystal size (mm)0.31 × 0.28 × 0.24
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.633, 0.697
No. of measured, independent and
observed [I > 2σ(I)] reflections
8191, 3729, 3533
Rint0.020
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.056, 1.06
No. of reflections3729
No. of parameters211
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.19
Absolute structureFlack (1983), 1675 Friedel pairs
Absolute structure parameter0.006 (8)

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
N1—Zn12.0119 (18)O3—Zn1i1.9560 (15)
O1—Zn12.0040 (15)O4—Zn12.0520 (17)
O2—Zn12.1891 (16)
O3ii—Zn1—O198.54 (7)N1—Zn1—O4118.82 (7)
O3ii—Zn1—N1138.57 (7)O3ii—Zn1—O293.89 (7)
O1—Zn1—N188.32 (7)O1—Zn1—O2166.10 (6)
O3ii—Zn1—O4101.12 (7)N1—Zn1—O278.22 (6)
O1—Zn1—O496.09 (7)O4—Zn1—O287.52 (7)
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+1, y1/2, z+1.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 20272011).

References

First citationAudriceth, L. F., Scott, E. S. & Kipper, P. S. (1954). J. Org. Chem. 19, 733–741.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds